数控铣床的程序编制
数控铣床程序编制及操作
数控铣床程序编制及操作数控铣床程序编制及操作数控铣床是一种高精度、高效率的机床,能够对工件进行高精度的加工,其程序编制和操作是数控加工的关键环节。
本文将从数控铣床的概念、程序编制、操作等方面进行介绍。
一、数控铣床的概念数控铣床是一种采用计算机控制系统的机床,能够对工件进行三维雕刻、镂空、倒角、孔加工等复杂加工。
数控铣床具有高效精密、自动化程度高等特点,可以替代传统手工加工及普通机床加工,成为重要的制造技术手段之一。
二、数控铣床程序编制数控铣床程序编制是指将加工工艺要求汇总,导入计算机中进行处理,然后生成控制加工中心的一系列加工程序。
具体流程如下:1、了解零件图纸编制加工程序之前,必须对要加工的零件图纸进行仔细分析,了解零件的几何形状、尺寸、位置及精度要求等方面。
2、确定加工工艺根据了解的要求,确定零件加工所需的加工工艺,包括加工方式、刀具类型、加工顺序及加工方式等。
3、计算参数根据零件的各项几何数据和零件加工顺序,逐步确定加工过程中所需的各个参数,如切削深度、切削速度、进给速度、刀具的路径等。
4、程序编写在加工程序编辑器中输入计算所得的加工参数,用相应的语言编写加工程序,并检查程序的正确性。
5、加工模拟对编写好的程序,进行加工模拟,查看刀具路径、零件加工状态等,以确保程序的正确性。
6、工艺文件汇总将零件图纸、加工工艺、加工参数、程序和加工模拟结果等整理在一起,形成一个工艺文件。
三、数控铣床操作数控铣床的操作需要进行详细规范的流程和过程,下面进行具体介绍:1、准备工作使用机床轴手轮进行零点调整,确定坐标系原点。
安装夹具或者卡盘固定工件,进行工件定位。
清理工作区域,检查机床各部分、夹具和工件的紧固性。
2、程序传输使用U盘或者网口将编写好的加工程序传入数控铣床。
3、加工参数输入根据工艺文件所列出的加工参数,手动输入或使用数控铣床的自动输入功能,将刀具、切削速度、进给速度等参数输入到数控铣床控制系统中。
数控铣床的程序编制
数控铣床的程序编制数控铣床是一种非常重要的机械加工设备,它能够对各种复杂的零件进行精确的加工。
而在数控铣床的工作过程中,程序编制则是非常重要的一步。
本文将详细介绍数控铣床的程序编制过程。
一、数控铣床的概述数控铣床是一种通过计算机程序来控制铣刀的运动轨迹的机床。
数控铣床能够通过预先编好的程序,在铣刀的移动轨迹中加以控制,从而实现对工件的高精度加工。
二、数控铣床的程序编制步骤1.选择合适的编程语言在进行数控铣床的程序编制之前,需要先选择合适的编程语言。
目前常用的编程语言有G代码和M代码两种。
其中,G 代码用于控制铣刀在工件表面的轨迹,M代码用于控制铣刀的速度、旋转方向、加速度等方面的参数。
一般来说,数控铣床所需的程序编制主要是G代码的编写。
2.准确绘制零件图纸在开始编制程序之前,需要首先准确绘制出零件的图纸,确定零件的尺寸、形状、材料等方面的内容。
只有在清晰的图纸基础上才能编写出准确的加工程序。
3.将零件图纸转化为加工程序在进行加工程序编制时,需要将零件图纸转化为可被数控铣床识别的程序语言。
此时需根据零件图纸的要求,依次编制出各个工序的G代码,包括铣刀的直线和圆弧轨迹等方面的内容。
同时还需设置合适的加工参数,如铣刀的转速、进给速度、切屑推力等方面的内容。
4.进行程序调试在编写出完整的加工程序后,需要对程序进行调试。
通过对G代码程序的编辑和调整,进一步优化程序的运行效果,以保证精度和加工质量的需求。
5.进行加工经过程序调试之后,即可进行实际的加工操作。
在加工过程中需要保持监控,随时观察加工效果,及时进行调整。
三、数控铣床程序编制的注意事项1.零件图纸必须准确,加工程序必须与零件图纸一一对应。
2.在进行编程前,要先理解数控铣床的原理和操作规程,避免出现错误操作。
3.在进行加工过程中,要注意刀具的选择和合适的工件固定方式。
4.在加工过程中,要根据铣削的情况,及时对加工速度和行程进行调整。
5.加工结束后,应检查工件的质量和精度是否符合要求,如有不合格,请调整程序并重新加工。
数控铣床固定循环编程
1)高速钻深孔循环G73和钻深孔循环指令G83
说明:Q:每次进给深度;
k:指令执行重复次数。G73 用于Z 轴的间歇进给,使深孔加工时容易排屑,减少退刀量, 可以进行高效率的加工。G73 指令动作循环见上图。注意:Z、K、Q 移动量为零时,该指令不执行。
G73(G83) X_Y_Z_R_Q_F_K_
第17页/共24页
例 使用G88 指令编制如图所示的螺纹加工程序:设刀具起点距工作表面 100mm 处,切削深度为10mm。
(i) 先用G81 钻孔%1000G92 X0 Y0 Z0G91 G00 M03 S600G99 G81 X40 Y40 G90 R −98 Z −110 F200G91 X40 L3Y50X-40 L3G90 G80 X0 Y0 Z0 M05M30(ii) 再用G84 攻丝%2000G92 X0 Y0 Z0G91 G00 M03 S600G99 G84 X40 Y40 G90 R −93 Z −110 F100G91 X40 L3Y50X-40 L3G90 G80 X0 Y0 Z0 M05M30
第21页/共24页
例2:如图3-36所示,工件材料为HT300,使用刀具T01为镗孔刀, T02为Φ13钻头,T03为锪钻。
第22页/共24页
小结 本次课需要学生掌握数控铣床的孔加工的循环指令格式;编程方法;学会应用这些指令来
G82 X_Y_Z_R_P_F_K_G82 指令除了要在孔底暂停外,其他动作与G81 相同。暂停时间由地址P 给出。G82 指令主要用于加工盲孔,以提高孔深精度。注意:如果Z 的移动量为零,该指令不执行。
3)攻丝循环指令G74(左) G84(右)
G74 X_Y_Z_R_P_F_K_G74 攻反螺纹时主轴反转,到孔底时主轴正转,然后退回。G74 指令动作循环见图。★注意:(1) 攻丝时速度倍率、进给保持均不起作用;(2) R 应选在距工件表面7mm 以上的地方;(3) 如果Z 的移动量为零,该指令不执行。
数控铣床程序编制及操作
数控铣床程序编制及操作数控铣床程序编制及操作数控铣床是一种高效、精度高、功能多样化的机床,广泛应用于各个行业。
与传统的手动铣床相比,数控铣床拥有更高的加工精度、更广泛的应用范围、更低的人力成本等优点,因此被越来越多的制造企业所采用。
数控铣床的使用需要进行程序编制和操作,下面我们就来详细介绍一下。
一、数控铣床程序编制数控铣床的程序编制通常分为以下几个步骤:1. 工件的输入首先需要在数控铣床上输入工件的程序,这可以通过直接输入坐标、打开CAD文件等方式实现。
输入后,工件将会在机床上显示。
2. 定义工件坐标系在铣削之前需要先定义工件的坐标系,这可以通过输入坐标或使用机床的坐标系功能实现。
坐标系定义好之后,机床上的刀具将以此坐标系进行移动和铣削。
3. 设定加工参数设定加工参数是程序编制的重要步骤,具体包括刀头的转速、进给速度、进给量、切削深度、铣削方向等参数。
这些参数需要根据实际加工需求进行调整,以确保加工效果满足要求。
4. 编写铣削程序在设置好加工参数后,即可开始编写铣削程序。
铣削程序通常使用G代码编写,可以通过手工输入或使用CAM软件编写。
铣削程序应包括工件坐标、加工参数和刀具路径等信息。
5. 复核和修改程序编写好程序后,需要进行复核和修改。
在复核时需要检查程序中的数值是否正确、加工路径是否符合要求、刀具路径是否合理等,以确保程序的正确性和可行性。
如有必要可以进行修改,直至满足要求。
二、数控铣床的操作数控铣床操作复杂,需要进行以下几个步骤:1. 上料和刀具更换在进行铣削操作之前,需要进行上料和刀具更换。
首先需要将待加工的工件放置到机床的工作台上,然后再将所需刀具安装到刀库中。
2. 程序加载和调试将编写好的铣削程序通过存储介质(如U盘)导入机床,并在机床上进行加载和调试。
调试包括检查程序的正确性、刀具路径是否符合要求等。
3. 开始铣削确认程序无误后,方可开始铣削操作。
首先需要将加工台臂移至合适的位置,然后进行加工。
数控加工程序的编制
第三章数控加工程序的编制本章教学重点及难点:数控车床、数控铣床编程的特点;固定循环指令的应用。
§3.1数控车床的程序编制说明:(1)数控车床主要加工轴类零件和法兰类零件,使用四爪卡盘和专用夹具也能加工出较复杂的回转零件。
(2)车削加工时,装在数控车床上的工件随同主轴一起作回转运动,数控车床的刀架在X轴和Z轴组成的平面内运动,主要加工回转零件的端面、内孔和外圆。
(3)由于数控车床配置的数控系统不同,使用的指令在定义和功能上有一定的差异,但其基本功能和编程方法还是相同的。
(4)前置刀架与后置刀架:是数控车床刀架布置的两种形式。
前置刀架位于Z轴的前面,与传统卧式车床刀架的布置形式一样,刀架导轨为水平导轨,使用四工位电动刀架;后置刀架位于Z轴的后面,刀架的导轨位置与正平面倾斜,这样的结构形式便于观察刀具的切削过程、切屑容易排除;且后置空间大,可以设计更多工位的刀架;一般全功能的数控车床都设计为后置刀架。
一、数控车床的编程特点(1)可以采用绝对值编程、增量值编程,或二者的混用。
在采用增量值编程时,有些数控车床不用G91指令,而是在运动轨迹的起点建立起平行于X、Z 轴的增量坐标系U、W。
如:N01 G91 G01 X-20 Z-18 (半径编程)相当于:N01 G01 U-20 W-18N01 G91 G01 X-40 Z-18 (直径编程)相当于:N01 G01 U-40 W-18有些数控车床编程时,绝对坐标指令直接用X、Z 来指定数值;而增量坐标指令直接用U、W来指定数值。
如:N01 G01 X30 W-18 (直径编程)(2)直径编程和半径编程由于零件的回转尺寸(径向尺寸)在图纸上标注及测量时,一般都用直径值表示,因此数控车削加工常用直径编程。
直径编程时,若用G90绝对值编程时,则X值以直径值表示;若用G91相对值编程时,则X 值以实际增量的两倍表示。
半径编程时,若用G90绝对值编程时,则X值以半径值表示;若用G91相对值编程时,则X 值即为实际增量值。
数控铣程序编制教案
数控铣程序编制教案
一、教学课题:数控铣程序编制
二、教学目的与基本要求
1.理解数控铣的基本工艺以及编制流程;
2.熟练掌握数控铣程序编制的基本方法;
3.熟练描述CNC铣床使用的G代码及M代码;
4.熟练操作数控加工系统,将编制的程序转换为控制程序;
5.了解自动化数控技术在加工场景中的应用。
三、教学内容和基本要求
第一部分、数控铣的原理及基本工艺
1.了解数控加工基本概念
2.了解数控铣的原理及基本工艺
第二部分、数控铣程序编制
1.了解数控加工系统
2.掌握CNC铣床使用的G代码及M代码
3.熟悉数控铣程序的编制方法
4.编制简单的数控铣加工程序
四、设备准备
1.数控铣床
2.光学测量仪
3.加工软件
五、教学步骤
1.向学生介绍数控加工的基本概念,了解数控铣床的原理及基本工艺;
2.演示CNC铣床使用的G代码及M代码,详细讲解数控铣程序的编制
方法;
3.完成简单加工零件,并完成程序调试;
4.通过光学测量仪算出加工精度,精确测量零件大小;
5.讨论总结,引导学生了解自动化数控加工技术在加工场景中的应用
方式。
六、教学考核。
数控铣床的程序编制基础
2020/3/3
钻头
镗刀
13
4.1.4 数控铣削工艺性分析
1、数控铣削加工内容的确定:
适宜数控铣削的内容: (1)工件上的曲线轮廓表面; (2)给出数学模型的空间曲面或通过测量数据建立的 空间曲面; (3)形状复杂,尺寸繁多,画线与检测困难的部位; (4)能在一次装夹中顺带铣出来的简单表面或形状; (5)用通用铣床加工时难以观察、测量和控制进给的 内、外凹槽; (6)采用数控铣削能成倍提高生产率,大大减轻体力 劳动的一般加工内容。
2020/3/3
30
4.2.1 基本编程指令的应用
⑴-子程序调用指令M98
编程格式:M98 P □□□□××××;
式中:□□□□ ——表示重复调用子程序的次数,若省略
则调用次数为1 次。
×××× ——表示要调用的子程序号。
P——最多跟8位数字连,续数调字用可4以次小子于或等于4位。 举例:M98 P46666; 程序O12的指令?
例2、控制钻孔刀具运动如图,假设刀具长度补偿H01= 5mm,H02=-5mm, 用同一把刀具走出轨迹,程序名取 O0010,编程原点设置如图,起刀点在(0,0,30)。
图4.18
2020/3/3
28
长度补偿应用举例:
例2、控制钻孔刀具运动如图,假设刀具长度补偿H01=
5mm,H02=-5mm, 用同一把刀具走出轨迹,程序名取
N150 M30
N50 G41 G01 X0 Y0 H03 F60;
图4.17
N60 G91 G01 X40 Y40;
N70 G03 X20 Y0 I10 J0;
N80 G01 X10
N90 G02 X10 Y-10 I0 J-10;
数控铣加工中心程序的编制教案
干个指令字组成。指令字代表某一信息单元,每个指令字又由字母、数字、
符号组成。如:
O1234;
程序编号
N1 G90G54G00X0Y0;
程序段
N2 S800M03;
程序段
N3 Z100.0
程序段
N4 Z5.0;
程序段
N5 G01Z-10.0F100;
程序段
N6 G41X5.0Y5.0 D1 F200;
家对使用的编号的位数和数值范围将不同,通常用 4 位数字表示,即
“0001”~“9999”,但“8000”~“9999”已被生产厂家使用,不能作为编程号
使用,故编程号为“0001”~“7999”,并在数字前必须给出标识符号“O”。
第二行是一些准备工作,告知数控机床程序编制的方式、工件所在位置、
选用的坐标系等。N1 代表程序段号(简称顺序号),机床加工时并不起作
G90G00Z100.0;/*刀具首先快速移到 Z=100.0mm 高度的位置
X0.Y0.;
/*刀具接着快速定位到工件原点的上方
G00 指令一般在需要将主轴和刀具快速移动时使用,可以同时控制 1~3
轴,即可在 X 或 Y 轴方向移动,也可以在空间作三轴联动快速移动。而刀
具的移动速度又数控系统内部参数设定,在数控机床出厂前已设置完毕,
g代码的说明代码功能g00定位快速进给g43取消刀具长度补偿g01直线插补切削进给g44刀具长度正偏置刀具延长g02圆弧插补顺时针g49刀具长度负偏置刀具缩短g03圆弧插补逆时针g54g59工作坐标系g17xy平面选择g80固定循环取消g18zx平面选择g81钻孔固定循环g19yz平面选择g83深孔钻孔固定循环g40取消刀具半径补偿g90绝对坐标编程方式g41刀具半径左补偿g91相对坐标编程方式g42刀具半径右补偿注
数控铣手工编程
工件
刀具
刀具半径补偿(G41、G42、G40)
左刀补:沿着刀具前进方向刀具在工 件轮廓左侧的补偿
右刀补:沿着刀具前进方向刀具在工 件轮廓右侧的补偿
刀具半径补偿(G41、G42、G40)
指令格式:
刀具半径补偿的建立:
XY
XZ
D
YZ
刀具补偿号
刀具补偿起刀时必须为G00或G01 左、右刀补的设置
刀具半径补偿(G41、G42、G40)
螺旋线进给G02/G03
说明 1.X, Y, Z 中由G17/G18/G19 平面选定的两个坐标为螺旋线投影圆弧的终点 意义同圆弧进给第3 坐标是与选定平面相垂直的轴终点其余参数的意义同圆弧进 给。 2.该指令对另一个不在圆弧平面上的坐标轴施加运动指令对于任何小于360 的 圆弧可附加任一数值的单轴指令。
G90 时为中间点在工件坐标系中的坐标。 G91 时为中间点相对于起点的位移量。
G28 指令首先使所有的编程轴都快速定位到中间点,然后再从中间 点返回到参考点。
一般G28 指令用于刀具自动更换或者消除机械误差,在执行该指 令之前应取消刀具半径补偿和刀具长度补偿。
自动返回参考点G28
利用G28从当前点直接回参考点:
该指令使刀具以F指定的进给速度插补加
工出任意斜率的直线, 指令格式如下: G01 X__ Y __ Z __ F __ ;
其中, X、 Y、 Z为直线的终点坐标, 可以是绝对坐标, 也可以是增量坐标, 不移动的坐标轴可以省略; F为刀具移 动的速度, 单位为mm/min。
直线插补(G01)
直线插补编程实例:
圆弧半径 圆弧终点的坐标值
圆弧插补G02/G03
圆弧的终点位置与圆心
数控铣床程序编程(精)
第5章 数控铣床程序编程
(8) 数据输入/输出及DNC功能。数控铣床一般通过RS232C 接口进行数据的输入及输出,包括加工程序和机床参数等,可 以在机床与机床之间、机床与计算机之间进行 ( 一般也叫做脱 线编程 ) ,以减少编程占机时间。近来数控系统有所改进,有 些数控机床可以在加工的同时进行其他零件的程序输入。
固定点。它在机床装配、调试时就已确定下来了,是数控机床
进行加工运动的基准点,由机床制造厂家确定。
第5章 数控铣床程序编程
2.数控铣床参考点
在数控铣床上,机床参考点一般取在X、Y、Z三个直角坐 标轴正方向的极限位置上。在数控机床回参考点(也叫做回零) 操作后,CRT显示的是机床参考点相对机床坐标原点பைடு நூலகம்相对位 置的数值。对于编程人员和操作人员来说,它比机床原点更 重要。对于某些数控机床来说,坐标原点就是参考点。 机床参考点也称为机床零点。机床启动后,首先要将机 床返回参考点(回零),即执行手动返回参考点操作,使各轴都 移至机床参考点。这样在执行加工程序时,才能有正确的工 件坐标系。数控铣床的坐标原点和参考点往往不重合,由于 系统能够记忆和控制参考点的准确位置,因此对操作者来说, 参考点显得比坐标原点更重要。
5.1.2 数控铣床坐标系和参考点
1.数控铣床坐标系 1) 坐标系的确定原则 我国机械工业部 1982 年颁布了 JB 3052—82 标准,其中规 定数控铣床坐标系的命名原则如下: (1) 刀具相对于静止工件而运动的原则。这一原则使编程 人员能在不知道是刀具移近工件还是工件移近刀具的情况下,
就可依据零件图样,确定机床的加工过程。也就是说,在编程
17
第5章 数控铣床程序编程
G47 G48 G54 G55 G56 G57 G58 G59 G65 G68 G69 G73 G74 G76 * G80 09 00 16 14 00 刀具位置增加两倍补偿值 刀具位置减少两倍补偿值 第一工件坐标系设定 第二工件坐标系设定 第三工件坐标系设定 第四工件坐标系设定 第五工件坐标系设定 第六工件坐标系设定 自设程序(宏程序) 坐标系旋转 坐标系旋转取消 深钻孔循环 左螺纹攻螺纹循环 精钻孔循环 固定循环取消 G81 G82 G83 G84 G85 G86 G87 G88 G89 G90 G91 G92 G98 G99 00 10 03 09 09 钻孔循环 盲孔钻孔循环 钻孔循环 右螺纹攻螺纹循环 铰孔循环 镗孔循环 反镗孔循环 手动退刀盲孔镗孔循环 盲孔铰孔循环 绝对值坐标系统 增量值坐标系统 工件坐标系设定 返回固定循环起始点 返回固定循环参考点(R 点)
数控铣床的程序编制
加工台阶面铣刀
第4章 数控铣床和加工中心的程序编制
4) 铣键槽时,为了保证槽的尺寸精度、一般用两刃键槽铣刀。
加工槽类铣刀
第4章 数控铣床和加工中心的程序编制
5)孔加工时,可采用钻头、镗刀等孔加工类刀具。 4.铣刀结构选择 1)平装结构(刀片径向排列)
平装结构铣刀
3) 内、外轮廓零件z方向的确定 • 如图所示,铣刀快速进给至 z',再工作进给至切削长度z"。 • 铣削外轮廓零件时,落刀点要 选在工件外,距离工件一定的 距离L(L>r+R,r为刀具半径, R为余量); • 铣削内轮廓零件时,落刀点选 在有空间下刀的地方,一般在 内轮廓零件的中间。若没有空 间的话,应先钻落刀孔。
第4章 数控铣床和加工中心的程序编制
4.2.3 切削类刀具的选择 1. 数控铣刀具的基本要求 • 铣刀刚性要好 • 铣刀的寿命要长 • 铣刀切削刃的几何角度参数的选择和排屑性能 等也非常重要
2. 数控铣加工刀具的选择原则 • 适用是要求所选择的刀具能达到加工目的,完成材料 的去除,并达到预定的加工精度。 • 安全指的是在有效去除材料的同时,不会产生刀具的 碰撞,折断等。 • 经济指的是能以最小的成本完成加工。
第4章 数控铣床和加工中心的程序编制
2)立装结构(刀片切向排列)
立装结构铣刀
第4章 数控铣床和加工中心的程序编制
4.铣刀角度的选择 铣刀的角度有前角、后角、主偏角、副偏角、刃倾角等。
为满足不同的加工需要,有多种角度组合型式。各种角度中最 主要的是主偏角和前角 1)主偏角Kr
主偏角为切削刃与切削平面的夹角,如图。铣刀的主偏角 有90°、88°、75°、70°、60°、45°等几种。
数控铣床程序编制及操作
第四章数控铣床程序编制及操作第10次授课教案授课计划第10 次课授课提纲第四章数控铣削加工技术第一节数控铣床简介一、分类与结构特点(一)按机床主轴的布置形式及机床的布局特点分类数控铣床可分为数控立式铣床、数控卧式铣床和数控龙门铣床等。
1.数控立式铣床如图4-1所示。
2.数控卧式铣床如图4-2所示。
3.数控龙门铣床对于大尺寸的数控铣床,一般采用对称的双立柱结构,保证机床的整体刚性和强度,即数控龙门铣床,有工作台移动和龙门架移动两种形式。
它适用于加工飞机整体结构件零件、大型箱体零件和大型模具等,如图4-3所示。
二)按数控系统的功能分类数控铣床可为经济型数控铣床、全功能数控铣床和高速铣削数控铣床等。
1.经济型数控铣床2.全功能数控铣床采用半闭环控制或闭环控制,数控系统功能丰富,一般可以实现4坐标以上联动,加工适应性强,应用最广泛。
3.高速铣削数控铣床高速铣削是数控加工的一个发展方向,技术已经比较成熟,已逐渐得到广泛的应用。
二、数控铣床的主要功能不同档次的数控铣床的功能有较大的差别,但都应具备以下主要功能。
1.铣削加工数控铣床一般应具有三坐标以上联动功能,能够进行直线插补和圆弧插补,自动控制旋转的铣刀相对于工件运动进行铣削加工,如图4-4所示。
坐标联动轴数越多,对工件的装夹要求就越低,加工工艺范围越大。
2.孔及螺纹加工可以采用定尺寸孔加工刀具进行钻、扩、铰、锪、镗削等加工,也可以采用铣刀铣削不同尺寸的孔,如图4-5所示。
3.刀具补偿功能一般包括刀具半径补偿功能和刀具长度补偿功能。
4.公制、英制单位转换可以根据图纸的标注选择公制单位(mm)和英制单位(inch)进行程序编制,以适应不同企业的具体情况。
5.绝对坐标和增量坐标编程程序中的坐标数据可以采用绝对坐标或增量坐标,使数据计算或程序的编写更方便。
6.进给速度、主轴转速调整数控铣床控制面板上一般设有进给速度、主轴转速的倍率开关,用来在程序执行中根据加工状态和程序设定值随时调整实际进给速度和主轴实际转速,以达到最佳的切削效果。
第3章:数控加工程序的编制
刀具中心的走刀路线为:
对刀点1→对刀点2 →b→c→c’→下刀点2→下刀点1
各基点及圆心坐标如下: A(0,0) B(0,40) C(14.96,70) D(43.54,70) E(102,64) F(150,40) G(170,40) H(170,0) O1(70,40) O2(150,100)
10 20 =10
60O
17.321
N18 G90 G00 Z100.;
10 20 =10
60O
17.321
N19 X0. Y0. M05; N20 M30;
10 20 =10
60O
孔加工注意事项:
孔加工循环指令是模态指令,孔加工数据 也是模态值;
撤消孔加工固定循环指令为G80,此外, G00、G01、G02、G03也可起撤消作用;
N016 G01 X45.0 W0 F100;
切槽
N017 G04 U5.0;
延迟
N018 G00 X51.0 W0;
退刀
退刀 N019 X200.0 Z350.0 T20 M05 M09;
N020 X52.0 Z296.0 S200 T33 M03 M08;
N021 G33 X47.2 Z231.5 F1.5;
(5)复杂轮廓一般要采用计算机辅 助计算和自动编程。
二、数控铣床编程中的特殊功能指令
(1)工件坐标系设定指令 G54~G59
G54~G59无需在程序段中给出工件 坐标系与机床坐标系的偏置值,而是安 装工件后测量出工件坐标系原点相对机 床坐标系原点在X、Y、Z向上的偏置值, 然后用手动方式输入到数控系统的工件 坐标系偏置值存储器中。系统在执行程 序时,从存储器中读取数值,并按照工 件坐标系中的坐标值运动。
数控铣床基本编程指令
G17
X
G19—— YZ平面。
G19
G18
Z
➢坐标平面选择指令是用来选择圆弧插补的 平面和刀具补偿平面的。
➢ G17、G18、G19为模态功能,可相互注销,G17为缺省
值。
三、 参考点控制指令
(1)、自动返回参考点 G28
➢格式: G28 X _ Y _ Z _
➢其中,X、Y、Z 为指定的中间点位置。
Z-2.0 S100 M03 G01 X75.0 F100
X35.0 G02 X15.0 R10.0 G01 Y70.0 G03 X-15.0 R15.0 G01 Y60.0 G02 X-35.0 R10.0
G01 X-75.0
主程序号 建立工件坐标系,编程零点w 快进到X=100,Y=60 Z轴快移到 Z= -2,主轴 直线插补至 X= 75,Y= 60, 直线插补至 X= 35,Y= 60 顺圆插补至 X=15,Y=60 直线插补至 X=15,Y=70 逆圆插补至 X= -15,Y=70 直线插补至 X= -15,Y=60 顺圆插补至 X= -35,Y=60 直线插补至 X= -75,Y=60
Z
如下图G03所示轨迹G02
Z
G19
Y
Z
10
30
起点
X (d)
终点
30
Y
G91 G17 G03 X -30.0 Y30.0 R 30.0 Z10.0 F100
或:
G90 G17 G03 X0 Y 30.0 R 30.0 Z 10.0 F100
六、基本指令编程举例
60 28
10
Z
w
Y
150
25 25
Z
•G91 G03 X-25 Y25 R-25 F80
数控铣床程序编制
数控铣床程序编制数控铣床是机床设备中应用非常广泛的加工机床,它可以进行平面铣削、平面型腔铣削、外形轮廓铣削、三维及三维以上复杂型面铣削,还可进行钻削、镗削、螺纹切削等孔加工。
加工中心、柔性制造单元等都是在数控铣床的基础上产生和发展起来的。
4.1数控铣床程序编制的基础数控铣床具有丰富的加工功能和较宽的加工工艺范围,面对的工艺性问题也较多。
在开始编制铣削加工程序前,一定要仔细分析数控铣削加工工艺性,掌握铣削加工工艺装备的特点,以保证充分发挥数控铣床的加工功能。
4.1.1数控铣床的主要功能各种类型数控铣床所配置的数控系统虽然各有不同,但各种数控系统的功能,除一些特殊功能不尽相同外,其主要功能基本相同。
1、点位控制功能此功能可以实现对相互位置精度要求很高的孔系加工。
2、连续轮廓控制功能此功能可以实现直线、圆弧的插补功能及非圆曲线的加工。
3、刀具半径补偿功能此功能可以根据零件图样的标注尺寸来编程,而不必考虑所用刀具的实际半径尺寸,从而减少编程时的复杂数值计算。
4、刀具长度补偿功能此功能可以自动补偿刀具的长短,以适应加工中对刀具长度尺寸调整的要求。
5、比例及镜像加工功能比例功能可将编好的加工程序按指定比例改变坐标值来执行。
镜像加工又称轴对称加工,如果一个零件的形状关于坐标轴对称,那么只要编出一个或两个象限的程序,而其余象限的轮廓就可以通过镜像加工来实现。
6、旋转功能该功能可将编好的加工程序在加工平面内旋转任意角度来执行。
7、子程序调用功能有些零件需要在不同的位置上重复加工同样的轮廓形状,将这一轮廓形状的加工程序作为子程序,在需要的位置上重复调用,就可以完成对该零件的加工。
8、宏程序功能该功能可用一个总指令代表实现某一功能的一系列指令,并能对变量进行运算,使程序更具灵活性和方便性。
4.1.2数控铣床的加工工艺范围铣削加工是机械加工中最常用的加工方法之一,它主要包括平面铣削和轮廓铣削,也可以对零件进行钻、扩、铰、镗、锪加工及螺纹加工等。
数控铣床程序编制
数控铣床程序编制数控铣床是一种高精度、高效率的机床,它的操作需要通过数控编程来实现。
数控编程是将加工零件的几何图形和工艺要求,通过数学语言和代码进行编制,再通过数控系统进行指令解释和操作控制,使机床能够自动完成零件加工的一种加工方式。
本文将从数控铣床程序编制的基础知识、编程规范、程序文件结构和编程方法四个方面详细介绍数控铣床程序的编制流程和注意事项,以期为广大数控编程人员提供有益的指导和帮助。
一、数控铣床程序编制的基础知识数控铣床程序编制的基础知识包括数学知识、机械制图、工艺知识等方面,下面将分别进行介绍。
1、数学知识数控编程是以数学语言为基础的,因此数学知识对数控编程人员十分重要。
数控编程中常用的数学知识包括:(1)坐标系:常用的坐标系有直角坐标系、极坐标系、圆柱坐标系等,熟练应用不同的坐标系可以使编程更加灵活和高效。
(2)矩阵:矩阵是数控编程中经常用到的数学工具,能够简化坐标变换、旋转等操作。
(3)三角函数:三角函数在数控编程中也是经常使用的,如正弦、余弦、正切等,可用于计算角度、边长等量。
2、机械制图机械制图是数控编程的基础,熟练掌握机械制图的标准规范和符号,能够准确理解和表达工程图纸中所包含的信息。
机械制图知识主要包括:(1)图形投影法:主要有正投影、斜投影和等角投影三种方法,根据不同情况选择合适的投影方法,能够更好地表达零件几何形状。
(2)基础符号:包括尺寸标注、表面粗糙度符号、公差标注等,熟练掌握标准符号和标注规范,可以准确表达零件制造的要求。
(3)视图选择:机械制图中的多个视图能够从不同角度展示零件的形状和特征,熟练选择视图并理解其含义,能够更加准确地描述零件品质特征。
3、工艺知识工艺知识在数控编程中同样重要,它不但可以影响加工效率和质量,还能够指导程序编制,避免出现一些不必要的操作。
数控铣床程序编制时常用的工艺知识包括:(1)刀具选择:不同的零件形状、材料和加工目的将需要不同的刀具,合理选择刀具能够提高加工效率和精度。
数控铣床编程30例带图
实例一毛坯为70㎜×70㎜×18㎜板材,六面已粗加工过,要求数控铣出如图3-23所示的槽,工件材料为45钢。
1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线1)以已加工过的底面为定位基准,用通用台虎钳夹紧工件前后两侧面,台虎钳固定于铣床工作台上。
2)工步顺序①铣刀先走两个圆轨迹,再用左刀具半径补偿加工50㎜×50㎜四角倒圆的正方形。
②每次切深为2㎜,分二次加工完。
2.选择机床设备根据零件图样要求,选用经济型数控铣床即可达到要求。
故选用XKN7125型数控立式铣床。
3.选择刀具现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。
4.确定切削用量切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。
5.确定工件坐标系和对刀点在XOY平面内确定以工件中心为工件原点,Z方向以工件表面为工件原点,建立工件坐标系,如图2-23所示。
采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O 作为对刀点。
6.编写程序按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。
考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完,则为编程方便,同时减少指令条数,可采用子程序。
该工件的加工程序如下(该程序用于XKN7125铣床):N0010 G00 Z2 S800 T1 M03N0020 X15 Y0 M08N0030 G20 N01 P1.-2 ;调一次子程序,槽深为2㎜N0040 G20 N01 P1.-4 ;再调一次子程序,槽深为4㎜N0050 G01 Z2 M09N0060 G00 X0 Y0 Z150N0070 M02 ;主程序结束N0010 G22 N01 ;子程序开始N0020 G01 ZP1 F80N0030 G03 X15 Y0 I-15 J0N0040 G01 X20N0050 G03 X20 YO I-20 J0N0060 G41 G01 X25 Y15 ;左刀补铣四角倒圆的正方形N0070 G03 X15 Y25 I-10 J0N0080 G01 X-15N0090 G03 X-25 Y15 I0 J-10N0100 G01 Y-15N0110 G03 X-15 Y-25 I10 J0N0120 G01 X15N0130 G03 X25 Y-15 I0 J10N0140 G01 Y0N0150 G40 G01 X15 Y0 ;左刀补取消N0160 G24 ;主程序结束实例二毛坯为120㎜×60㎜×10㎜板材,5㎜深的外轮廓已粗加工过,周边留2㎜余量,要求加工出如图2-24所示的外轮廓及φ20㎜的孔。
数控铣床的程序编制相关习题
数控铣床的程序编制相关习题数控铣床的程序编制习题一判定题1.子程序的编写方式必须是增量方式。
〔〕2.G40 是数控编程中的刀具左补偿指令。
〔〕3.G04 X3.0 表示暂停 3ms 。
〔〕4.一个主程序中只能有一个子程序。
〔〕5.数控铣床加工时保持工件切削点的线速度不变的功能称为恒线速度操纵。
〔〕6.一个主程序调用另一个主程序称为主程序嵌套。
〔〕7.数控机床的镜象功能适用于数控铣床和加工中心。
〔〕8.刀具半径补偿是一种平面补偿,而不是轴的补偿。
〔〕9.固定循环是预先给定一系列操作,用来操纵机床的位移或主轴运转。
〔〕10.数控机床配备的固定循环功能要紧用于孔加工。
〔〕11.两轴联动坐标数控机床只能加工平面零件轮廓,曲面轮廓零件必须是三轴坐标联动的数控机床。
〔〕12.G03X—Y—I—J—K—F—表示在XY平面上顺时针插补。
〔〕13.铣削常用之进给率能够用mm/min表示。
〔〕14、在XY平面执行圆弧切削的指令,可写成G17 G02 X_ Y_ R_ F_;。
〔〕15.程序指令G90 G28 Z5.0;代表Z轴移动5㎜。
〔〕16.CNC铣床切削工件时,床台进给率是以主轴每一回转之进给量来表示。
〔〕17.于YZ平面执行圆弧切削的指令,可写成G19 G03 Y_ Z_ J_ K_ F_;。
〔〕18.程序G01 X40.0 Y20.0 F100.0.,刀具进给到〔40,20〕点,X、Y两轴均以每分钟100㎜的进给率进给。
〔〕19.制作程序时G17及G18不可使用在同一单节。
〔〕20.指令G43、G44、G49 为刀具半径左、右补正与排除。
〔〕21.工作坐标系的设定分别为G54~G59。
〔〕22.编写圆弧切削程序时,应考虑圆弧所在的平面。
〔〕23.CNC铣床程序,不适宜将机械原点当作程序原点。
〔〕24.CNC铣床钻孔程序,孔深坐标可依据钻头尖端为准。
〔〕25.刀具半径补正与选择平面有关。
〔〕26.CNC铣床加工程序是依据切削刀具的移动路径顺序来编写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 数控铣床的程序编制
(4)铣刀的齿数(齿距) 选择
铣刀齿数多,可提高生产效率,但受容屑空间、刀齿强 度、机床功率及刚性等的限制,不同直径的铣刀的齿数均有 相应规定。为满足不同用户的需要,同一直径的铣刀一般有 粗齿、中齿、密齿三种类型。
粗齿铣刀 适用于普通机床的大余量粗加工和软材料或 切削宽度较大的铣削加工;当机床功率较小时,为使切削稳 定,也常选用粗齿铣刀。
第4章 数控铣床的程序编制
4.1数控铣床程序编制的基础 4.1.1数控铣床的主要功能 1、 点位控制功能 2、 连续轮廓控制功能 3、 刀具半径补偿功能 4、 刀具长度补偿功能 5、 比例及镜像加工功能 6、 旋转功能 7、 子程序调用功能 8、 宏程序功能
第4章 数控铣床的程序编制
4.1.2数控铣床的加工工艺范围 1、平面类零件 2、 直纹曲面类零件 3、 立体曲面类零件 (1) 行切加工法
凡能采用双负前角刀具加工时建议优先选用双负前角铣 刀,以便充分利用和节省刀片。当采用双正前角铣刀产生崩 刃(即冲击载荷大)时,在机床允许的条件下亦应优先选用双 负前角铣刀。
第4章 数控铣床的程序编制
双正前角 双正前角铣刀采用带有后角的刀片,这种铣刀楔角 小,具有锋利的切削刃。由于切屑收缩比小,所耗切削功率 较小,切屑成螺旋状排出,不易形成积屑瘤。这种铣刀最宜 用于软材料和不锈钢、耐热钢等材料的切削加工。对于刚性 差(如主轴悬伸较长的镗铣床)、功率小的机床和加工焊接结 构件时,也应优先选用双正前角铣刀。 正负前角(轴向正前角、径向负前角) 这种铣刀综合了 双正前角和双负前角铣刀的优点,轴向正前角有利于切屑的 形成和排出;径向负前角可提高刀刃强度,改善抗冲击性能。 此种铣刀切削平稳,排屑顺利,金属切除率高,适用于大余 量铣削加工。WALTER公司的切向布齿重切削铣刀F2265就 是采用轴向正前角、径向负前角结构的铣刀。
中齿铣刀 系通用系列,使用范围广泛,具有较高的 金属切除率和切削稳定性。
密齿铣刀 主要用于铸铁、铝合金和有色金属的大进给 速度切削加工。在专业化生产(如流水线加工)中,为充分利 用设备功率和满足生产节奏要求,也常选用密齿铣刀(此时 多为专用非标铣刀)。
第4章 数控铣床的程序编制
(5)铣刀直径的选择
槽铣刀的直径和宽度应根据加工工件尺寸选择,并保证 其切削功率在机床允许的功率范围之内ຫໍສະໝຸດ 第4章 数控铣床的程序编制
(6)铣刀的最大切削深度 不同系列的可转位面铣刀有不同的最大切削深度。最大
切削深度越大的刀具所用刀片的尺寸越大,价格也越高,因 此从节约费用、降低成本的角度考虑,选择刀具时一般应按 加工的最大余量和刀具的最大切削深度选择合适的规格。当 然,还需要考虑机床的额定功率和刚性应能满足刀具使用最 大切削深度时的需要。 (7)刀片牌号的选择
平装结构铣刀
第4章 数控铣床的程序编制
2)立装结构(刀片切向排列)
立装结构铣刀
第4章 数控铣床的程序编制
(3)铣刀角度的选择
铣刀的角度有前角、后角、主偏角、副偏角、刃倾角等。为满 足不同的加工需要,有多种角度组合型式。各种角度中最主
要的是主偏角和前角
1)主偏角Kr 主偏角为切削刃与切削平面的夹角,如图。铣刀的主偏
1)平面铣刀 选择平面铣刀直径时主要需考虑刀具所需功率应在机床
功率范围之内,也可将机床主轴直径作为选取的依据。平面 铣刀直径可按D=1.5d(d为主轴直径)选取。在批量生产时, 也可按工件切削宽度的1.6倍选择刀具直径。 2)立铣刀
立铣刀直径的选择主要应考虑工件加工尺寸的要求,并 保证刀具所需功率在机床额定功率范围以内。如系小直径立 铣刀,则应主要考虑机床的最高转数能否达到刀具的最低切 削速度(60m/min)。 3)槽铣刀
影响切削功率;轴向前角γp则影响切屑的形成和轴向力的方 向,当γp为正值时切屑即飞离加工面。径向前角γf和轴向前
角γp正负的判别见图4.16。 常用的前角组合形式如下:
前角
第4章 数控铣床的程序编制
双负前角 双负前角的铣刀通常均采用方形(或长方形)无后 角的刀片,刀具切削刃多(一般为8个),且强度高、抗冲击性 好,适用于铸钢、铸铁的粗加工。由于切屑收缩比大,需要 较大的切削力,因此要求机床具有较大功率和较高刚性。由 于轴向前角为负值,切屑不能自动流出,当切削韧性材料时 易出现积屑瘤和刀具振动。
P类合金(包括金属陶瓷)用于加工产生长切屑的金属材料, 如钢、铸钢、可锻铸铁、不锈钢、耐热钢等。其中,组号越 大,则可选用越大的进给量和切削深度,而切削速度则应越 小。
第4章 数控铣床的程序编制
M类合金用于加工产生长切屑和短切屑的黑色金属或有色 金属,如钢、铸钢、奥氏体不锈钢、耐热钢、可锻铸铁、合 金铸铁等。其中,组号越大,则可选用越大的进给量和切削 深度,而切削速度则应越小。
加工大平面铣刀
第4章 数控铣床的程序编制
3) 铣小平面或台阶面时一般采用通用铣刀.。
加工台阶面铣刀
第4章 数控铣床的程序编制
4) 铣键槽时,为了保证槽的尺寸精度、一般用两刃键槽铣刀。
加工槽类铣刀
第4章 数控铣床的程序编制
5)孔加工时,可采用钻头、镗刀等孔加工类刀具。
(2)铣刀结构选择
1)平装结构(刀片径向排列)
行切加工法
第4章 数控铣床的程序编制
(2) 三坐标联动加工
三坐标联动加工
第4章 数控铣床的程序编制 4.1.3数控铣床的工艺装备
1、 夹具 凸轮夹具
第4章 数控铣床的程序编制
2、 刀具 (1)铣刀类型选择
1) 加工曲面类零件时.
加工曲面类铣刀
第4章 数控铣床的程序编制
2) 铣较大平面时,为了提高生产效率和提高加工表面粗糙度, 一般采用刀片镶嵌式盘形铣刀。
角有90°、88°、75°、70°、60°、45°等几种。 主偏角对径向切削力和切削深度影响很大。径向切削力
的大小直接影响切削功率和刀具的抗振性能。铣刀的主偏角 越小,其径向切削力越小,抗振性也越好,但切削深度也随 之减小。
第4章 数控铣床的程序编制
主偏角
第4章 数控铣床的程序编制
2)前角γ 铣刀的前角可分解为径向前角γf 和轴向前角γp,径向前角γf主要