高中数学必修二两条直线的平行与垂直

合集下载

高中数学《两条直线的垂直与平行》导学课件 北师大版必修2

高中数学《两条直线的垂直与平行》导学课件 北师大版必修2

问题3 两直线垂直的判定
(1)斜截式:已知直线m的方程为y=k1x+b1,直线n的方程为 y=k2x+b2,m⊥n⇔k1·k2=-1. (2)一般式:直线m的方程为A1x+B1y+C1=0,直线n的方程为 A2x+B2y+C2=0,m⊥n⇔A1A2+B1B2=0.
问题3 中心对称问题
(2)直线关于点的对称,其主要方法是:在已知直线上取两点, 利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点 式求出直线方程.
3
整理得 4x+3y-17=0.
对称问题 光线从A(-4,-2)点射出,到直线y=x上的B点后被直线y=x 反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(1,6),求BC所在直线的方程.
【解析】作出草图,如图所示.
设 A 点关于直线 y=x 的对称点为 A'点,D 点关于 y 轴的对称点为 D'点,则易得 A'(-2,-4),D'(1,6). 由入射角等于反射角可得 A'D'所在直线经过点 B 与 C,故 BC 所在的直线方程为y-6 =x-1 ,即 10x-3y+8=0.
(2)因为所求直线垂直于直线 y=-2,所以所求直线的斜率不 存在.又因为直线经过点(-1,1),所以所求直线方程为 x=-1.
平面几何中的平行与垂直问题
已知A(1,1),B(5,4),C(2,3).
(1)求一点D,使四边形ABDC为平行四边形.
(2)求△ABC中AB边上的高所在的直线方程.
【解析】设 D(m,n),由已知得 kAB=34,kAC=2,kBD=mn--45,kCD=mn--32.
问题1 在上述情境中,当m∥n时,直线n的方程为 2x-y-3=0; 当m⊥n时,直线n的方程为 x+2y+1=0 .

高中数学_两条直线平行与垂直的判定教学设计学情分析教材分析课后反思

高中数学_两条直线平行与垂直的判定教学设计学情分析教材分析课后反思

《两条直线平行与垂直的判定》教学设计一、教材分析本课内容选自普通高中新课程标准实验教科书人教版数学必修2的第三章第二节,介绍的是平面解析几何的知识。

从本章开始学生初步、系统地了解平面解析几何的知识,在第一、二章的学习中,学生已掌握了高中立体几何的初步知识,这有利于学生从新的角度了解高中数学几何教学内容编排体系。

通过本章知识的学习可以让学生从新认识平面几何的知识,又可以为选修里面的圆锥曲线理论知识的学习打下重要的基础,起到承上启下的作用。

同时在本章中,学生初步尝试从新的观念来认识直线和方程的联系,再从基本概念和基本方法深化对直线方程的理解,从而使知识规律化、系统化、网络化。

这种学习方式的过程和方法一经掌握,可以轻松地学习第四章圆的方程的内容。

本节内容是在学习了直线的倾斜角和斜率的基础上,重点学习直线与直线在平面中的特殊位置关系。

只有掌握了两条直线的位置关系,才能更进一步的来学习直线方程,教材利用两条直线的倾斜角和斜率的关系引出了两条直线的平行和垂直的位置关系这一节课的知识结构非常系统,有利于学生形成规律性的知识网络。

二、知识结构分析以上的简要教材分析,可从这一章的知识结构的思维导图中得以充分体现。

三、课标的分析《普通高中数学课程标准》关于直线与方程的内容标准指出:将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;分析代数结果的几何含义,最终解决几何问题。

这种思想贯穿本章教学的始终,帮助学生不断地体会数形结合的思想方法。

从课标中这部分内容标准的要求,可以知道直角坐标系使几何研究又一次飞跃,几何从此跨入了一个新的时代。

在欧氏几何里,我们直接依据图形中点、直线、平面的关系,研究图形的性质。

现在我们采用另外一种研究方法:坐标法。

坐标法是在坐标系的基础上,把几何问题转化为代数问题,通过代数运算研究几何图形性质的一种方法。

在平面直角坐标系中,给直线插上方程的“翅膀”,通过直线的方程研究直线之间的位置关系:平行、垂直,以及两条直线的交点坐标,点到直线的距离公式等等。

人教A版高中数学必修二课件一般式平行和垂直

人教A版高中数学必修二课件一般式平行和垂直
(A1X+B1Y+C1)+λ(A2X+B2Y+C2)=0。
2.平行直线系方程:与直线Ax+By+C=0平行 的直线方程是:Ax+By+C1=0(C1≠C).
3.垂直直线系方程:与直线Ax+By+C=0垂直 的直线方程是:Bx-Ay+C1=0.
例8:求过两直线x-2y+4=0和x+y2=0的交点,且满足下列条件的直线 方程: (1)过点(2,-1); (2)和直线3x-4y+5=0垂直。
答: 位置关系
相交
公共点个数 1个
平行 0个
重合 无数个
§2.1.3两条直线的平行与垂直
1.平行
【问题1】你认为,不重合的两条 直线的位置关系(平行、相交) 与它们的斜率有何关系?
答:不重合的两条直线 斜率存在时两直线平行斜率相等 两直线相交斜率不相等
斜率不存在时? 同时不存在
【问题2】由直线方程你能直接判 断两直线的位置关系吗?
2.5
B 120
h
O
C
x
(1)3x+2y-4=0 (2)4x+3y-6=0
例9:证明:无论m取何值,直线L: (m-1)x+(2m-1)y=m-5恒过一个定点, 并求出该定点的坐标。
(9,-4)
课堂练习
1.如果直线ax+y+1=0与直线x+y-2=0互相垂直,则a=.
2
2.如果两直线x+ysin-1=0和2xsin+y+1=0互相垂直,则=
课堂小结
1.填表
两直线方程 平行
垂直
适用范围
l1:y=k1x+b1 l2:y=k2x+b2

两条直线平行与垂直的判

两条直线平行与垂直的判
①当m-2=0,即m=2时,k1不存在,此时k2=0,则AB⊥BC;
1 . ②当 m-2≠0,即 m≠2 时, k1= m- 2
m 2- m - 2 1 · 由 k1k2= =- 1,得 m=- 3, 2 m- 2 故若 AB⊥BC,则 m=2 或 m=-3.
高中数学人教版必修2课件
平行和垂直关系的综合应用
高中数学人教版必修2课件
2-a+2 a 解:设直线 l2 的斜率为 k2,则 k2= =-3, 1--2 a-4 a (1)若 l1∥l2,则 k1= (a≠4)=-1=k2=-3, 3-a-1
∴a=3.
(2)若 l1⊥l2,
当 k2=0 时,此时 a=0,k1=-1,显然不符合题意; 当 k2≠0 时,l1 的斜率存在,此时 k1=-1, 由于 l1⊥l2,∴k1·2=-1,解得 a=-3. k
由①②,则 x=-17,y=8,则 D(-17,8).
高中数学人教版必修2课件
2-ห้องสมุดไป่ตู้.已知三点 A(m-1,2),B(1,1),C(3,m2-m-1),若 AB
⊥BC,求 m 的值.
解:设 AB、BC 的斜率分别为 k1、k2,
m2-m-1-1 m2-m-2 = , 则 k2= 3-1 3-1 又知 xA-xB=m-2,
高中数学人教版必修2课件
两条直线垂直的判定
例 2:已知 A(1,-1),B(2,2),C(4,1),求点 D,使直线 AB
⊥CD 且直线 AD∥BC. 解:设 D(x,y),∵AB⊥CD, 2--1 1-y 1-y kAB= =3,kCD= , ∴3× =-1 2-1 4-x 4-x
①.
y--1 y+1 1-2 1 = =- , 又 AD∥BC,kAD= ,kBC= x-1 x-1 4-2 2 ∴ y+1 1 =- 2 x-1 ②.

高中数学2.1直线与方程2.1.3两条直线的平行与垂直第一课时两条直线的平行课件苏教版必修2

高中数学2.1直线与方程2.1.3两条直线的平行与垂直第一课时两条直线的平行课件苏教版必修2

[小试身手]
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1) 不 重 合 的 两 条 直 线 的 倾 斜 角 相 等 , 则 它 们 一 定 互 相 平
行.
(√ )
(2) 如 果 两 条 直 线 互 相 平 行 , 那 么 它 们 的 斜 率 一 定 相 等 .
(×)
(3)直线 l1:ax+y+2a=0 与 l2:x+ay+2=0 互相平行,则
[活学活用] 1.若直线 l1:ax+y+2a=0 与 l2:x两直线平行,所以 a2-1=0,解得 a=±1.
答案:±1
2.直线 l1 经过 A(3,4),B(5,8),直线 l2 经过点 M(1,-2),N(0, b),且 l1∥l2,则实数 b=________. 解析:∵k1=85- -43=2,k2=b-+12=-(b+2), 又∵l1∥l2,∴k1=k2, 即-b-2=2,∴b=-4. 答案:-4
应用两直线平行求参数值
[典例] 已知直线 l1:mx+y-(m+1)=0,l2:x+my-2m =0,当 m 为何值时,
(1)直线 l1 与 l2 互相平行? (2)直线 l1 与 l2 重合? [解] (1)若 l1∥l2,需满足
m2-1=0, -2m2+m+1≠0,
解得 m=-1.
[解] (1)k1=1,k2=33- -11=1,k1=k2, ∴l1 与 l2 重合或 l1∥l2. (2)l1 与 l2 都与 x 轴垂直,通过数形结合知 l1∥l2. (3)k1=01- -10=-1,k2=2-0--31=-1,k1=k2,数形结合 知 l1∥l2.
判断两条直线平行的方法 (1)①若两条直线 l1,l2 的斜率都存在,将它们的方程都化成 斜截式.如:l1:y=k1x+b1,l2:y=k2x+b2; 则kb11= ≠kb22, ⇒l1∥l2. ②若两条直线 l1,l2 的斜率都不存在,将方程化成 l1:x=x1, l2:x=x2,则 x1≠x2⇒l1∥l2. (2)若直线 l1:A1x+B1y+C1=0(A1,B1 不全为 0),l2:A2x+ B2y+C2=0(A2,B2 不全为 0),由 A1B2-A2B1=0 得到 l1∥l2 或 l1, l2 重合;排除两直线重合,就能判定两直线平行.

高中数学 两条直线的平行与垂直

高中数学 两条直线的平行与垂直

典例导学
即时检测



2.与直线2x+3y+5=0平行,且在两坐标轴上截距的绝对值之和为 10 . 3 的直线l的方程为 解析:设与直线2x+3y+5=0平行的直线l的方程为 2x+3y+c1=0(c1≠5),
典例导学
即时检测



二、两条直线平行或垂直条件的应用 如图,在平行四边形OABC中,点A(3,0),点C(1,3). (导学号51800070)
(1)求AB所在直线的方程; (2)过点C作CD⊥AB于点D,求CD所在直线的方程. 思路分析:已知四边形OABC是平行四边形,可以利用平行四边 形的有关性质求AB的斜率,利用两条直线垂直的条件求CD的斜率, 进而求相应直线的方程.
∴AB
即 3x+5y+2=0. ∵点 C(12,6)不在 AB 上 , ∴AB∥CD.
12-2 ∵kAD= 2+4
-4-2 3 12-6 3 =- ,kCD= =- , 6+4 5 2-12 5 3 的方程为 y-2=- (x+4), 5
=
∴kAB· kAD=-1,即 AB⊥AD.
5 , 3
典例导学
∴m=2.
1
∴当 m=2时,l1⊥l2.
1
典例导学
即时检测



1.已知A(-4,2),B(6,-4),C(12,6),D(2,12),下列结论正确的个数是 ( ) (导学号51800069) ①AB∥CD;②AB⊥AD;③AC⊥BD;④AC∥BD. A.1 B.2 C.3 D.4
解析: ∵kAB=
典例导学
即时检测

人教版高中数学必修二课件 3.1.2 两条直线平行与垂直的判定

人教版高中数学必修二课件 3.1.2 两条直线平行与垂直的判定

k2=_______.
解:由斜率定义,直线l的斜率k=tan 30°= 3, 3
因为l1∥l,所以k1=k=
3 3
.
因为l2⊥l,所以k2·k=-1,
所以k 2
=
1 k
=

3.
答案: 3
3
3
16
例3 已知A(-6,0),B(3,6),P(0,3),Q(6, -6),试判断直线AB与PQ的位置关系.
C.0
D. 1
2
解:选A.l1,l2的斜率分别为2,-a,由l1∥l2,可知
a=-2.
12
思考3 设两条直线l1,l2的斜率分别为k1,k2 ,
l1 ⊥ l2时,k1与k2满足什么关系?
提示:
如图,α2 =α1 + 90o,
tanα2
=
tan(α1
+ 90o
)=
-
1 tanα1
,
即k1k2 = -1.
3.1.2 两条直线平行与垂直的判定
1
平面内两条直线有哪些位置关系? 平行或相交
2
为了在平面直角坐标系内表示直线的倾斜程度, 我们引入倾斜角的概念,进而又引入了直线的斜率.
y
.
O
x
能否通过斜率来 判断两条直线的
位置关系?
3
1.理解并掌握两条直线平行与垂直的条件. (重点)
2.会运用条件判断两直线是否平行或垂直. (难点)
反之,成立,可得
y l2
l1
α1 α2
O
x
l1 l2 k1k2 = 1.
13
思考4
设两条直线l1的斜率k1 = 0,l2的斜率不存在,
l1 ⊥ l2吗?

【步步高】高中数学 第二章 2.1.3两条直线的平行与垂直(二)配套课件 苏教版必修2

【步步高】高中数学 第二章 2.1.3两条直线的平行与垂直(二)配套课件 苏教版必修2
∴kOP=kQR,kOR=kPQ, 从而 OP∥QR,OR∥PQ.∴四边形 OPQR 为平行四边形.
又 kOP· kOR=-1,∴OP⊥OR,
故四边形 OPQR 为矩形.
研一研· 问题探究、课堂更高效
例 3 在路边安装路灯,路宽 23 m,灯杆长 2.5 m,且与灯 柱成 120° 角, 路灯采用锥形灯罩, 灯罩轴线与灯杆垂直. 当 灯柱高 h 为多少米时,灯罩轴线正好通过道路路面的中 线?(精确到 0.01 m) 解 记灯柱顶端为 B,灯罩顶为 A,灯杆为
研一研· 问题探究、课堂更高效
问题 2 若 l1⊥l2 且直线 l1,l2 有一条与 x 轴垂直,那么两条 直线的斜率如何?
答 有一条直线与 x 轴垂直,则另一条与 x 轴平行,所以 两条直线中有一条直线斜率不存在, 另一条直线的斜率为 0.
研一研· 问题探究、课堂更高效
问题 3 吗?
对任意两条直线,如果 l1⊥l2,一定有 k1· k2 =-1
研一研· 问题探究、课堂更高效
跟踪训练 1
已知 A(5,-1),B(1,1),C(2,3)三点,试判断
△ABC 是否为直角三角形.
1--1 1 解 AB 边所在直线的斜率 kAB= =- , 2 1-5 3-1 BC 边所在直线的斜率 kBC= =2. 2-1 由 kAB· kBC=-1,得 AB⊥BC, 即∠ABC=90° .所以△ABC 是直角三角形.
研一研· 问题探究、课堂更高效
探究点二 例1
两条直线垂直关系的应用
(1)已知四点 A(5,3),B(10,6),C(3,-4),D(-6,11),
求证:AB⊥CD. 3 (2)已知直线 l1 的斜率 k1= ,直线 l2 经过点 A(3a,-2), 4 B(0,a2+1)且 l1⊥l2,求实数 a 的值.

高中数学必修二:两条直线的位置关系

高中数学必修二:两条直线的位置关系

高中数学必修二 第二节:两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解. 3.三种距离公式1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k 2.( ) (5)两平行直线2x -y +1=0,4x -2y +1=0间的距离是0.( ) 答案:(1)× (2)× (3)√ (4)× (5)×2.若直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-43C .2D .3解析:选D 直线ax +2y -1=0的斜率k 1=-a 2,直线2x -3y -1=0的斜率k 2=23,因为两直线垂直,所以-a 2×23=-1,即a =3.3.(教材习题改编)已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 的值为( ) A.2 B .2- 2 C.2-1D.2+1解析:选C 由题意知|a -2+3|2=1,∴|a +1|=2,又a >0,∴a =2-1.4.若直线2x -y =-10,y =x +1,y =ax -2交于一点,则a 的值为________.解析:由⎩⎪⎨⎪⎧ 2x -y =-10,y =x +1得⎩⎪⎨⎪⎧x =-9,y =-8.即直线2x -y =-10与y =x +1相交于点(-9,-8). 又因为直线2x -y =-10,y =x +1,y =ax -2交于一点, 所以-8=-9a -2,解得a =23.答案:235.已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是________. 解析:∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.答案:2考点一 两条直线的位置关系 (基础送分型考点——自主练透)[考什么·怎么考]1.已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A ∵l 1∥l 2,∴4-mm +2=-2(m ≠-2),解得m =-8(经检验,l 1与l 2不重合),∵l 2⊥l 3,∴2×1+1×n =0,解得n =-2,∴m +n =-10.2.已知经过点A (-2,0)和点B (1,3a )的直线l 1与经过点P (0,-1)和点Q (a ,-2a )的直线l 2互相垂直,则实数a 的值为________.解析:l 1的斜率k 1=3a -01-(-2)=a .当a ≠0时,l 2的斜率k 2=-2a -(-1)a -0=1-2aa .因为l 1⊥l 2,所以k 1k 2=-1,即a ·1-2aa =-1,解得a =1.当a =0时,P (0,-1),Q (0,0),这时直线l 2为y 轴,A (-2,0),B (1,0),直线l 1为x 轴,显然l 1⊥l 2.综上可知,实数a 的值为1或0. 答案:1或03.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得⎩⎪⎨⎪⎧m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2.又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2,且l 1在y 轴上的截距为-1.[怎样快解·准解]1.解题要“前思后想”解决两直线平行与垂直的参数问题一定要“前思后想”2.方法要“因题而定”(1)已知两直线的斜率存在,判断两直线平行垂直的方法 ①两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; ②两直线垂直⇔两直线的斜率之积等于-1. (2)由一般式确定两直线位置关系的方法[注意] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题 (重点保分型考点——师生共研)1.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95 B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910,所以|PQ |的最小值为2910.2.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P 点坐标为________.解析:设点P 的坐标为(a ,b ). ∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2). 而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3, 即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上, ∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2, ∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②联立解得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.∴所求点P 的坐标为(1,-4)或⎝⎛⎭⎫277,-87. 答案:(1,-4)或⎝⎛⎭⎫277,-87[解题师说]距离问题的常见题型及解题策略(1)求两点间的距离.关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等.(2)解决与点到直线的距离有关的问题.应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.(3)求两条平行线间的距离.要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.[冲关演练]1.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( ) A.22B .1 C. 2D .2解析:选C 因为点P 是曲线y =x 2-ln x 上任意一点,所以当点P 处的切线和直线y =x -2平行时,点P 到直线y =x -2的距离最小.因为直线y =x -2的斜率等于1,曲线y =x 2-ln x 的导数y ′=2x -1x ,令y ′=1,可得x =1或x =-12(舍去),所以在曲线y =x 2-ln x 上与直线y =x -2平行的切线经过的切点坐标为(1,1),所以点P 到直线y =x -2的最小距离为2,故选C.2.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3 2B .2 2C .3 3D .4 2解析:选A 依题意知AB 的中点M 的集合为与直线l 1:x +y -7=0和l 2:x +y -5=0距离都相等的直线,则M 到原点的距离的最小值为原点到该直线的距离.设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0.根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.考点三 对称问题 (题点多变型考点——追根溯源)[题点全练]角度(一) 点关于点的对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=0[题型技法] 若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.角度(二) 点关于线的对称2.在等腰直角三角形ABC 中,|AB |=|AC |=4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 的长度为( )A .2B .1 C.83D.43解析:选D 以AB 所在直线为x 轴,AC 所在直线为y 轴建立如图所示的坐标系,由题意可知B (4,0),C (0,4),A (0,0),则直线BC 的方程为x +y -4=0,设P (t,0)(0<t <4),由对称知识可得点P 关于BC 所在直线的对称点P 1的坐标为(4,4-t ),点P 关于y 轴的对称点P 2的坐标为(-t,0),根据反射定律可知P 1P 2所在直线就是光线RQ 所在直线.由P 1,P 2两点坐标可得P 1P 2所在直线的方程为y =4-t4+t·(x +t ),设△ABC 的重心为G ,易知G ⎝⎛⎭⎫43,43.因为重心G ⎝⎛⎭⎫43,43在光线RQ 上,所以有43=4-t 4+t ⎝⎛⎭⎫43+t ,即3t 2-4t =0.所以t =0或t =43,因为0<t <4,所以t =43,即|AP |=43,故选D.[题型技法] 若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2).角度(三) 线关于点的对称3.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A 对称的直线m 的方程为________________.解析:在直线l 上取两点B (1,1),C (10,7),B ,C 两点关于点A 的对称点为B ′(-3,-5),C ′(-12,-11),所以直线m 的方程为y +11-5+11=x +12-3+12,即2x -3y -9=0.答案:2x -3y -9=0[题型技法] 线关于点的对称的求解方法(1)在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;(2)求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.角度(四) 线关于线的对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________.解析:法一:联立⎩⎪⎨⎪⎧ 2x -y +3=0,x -y +2=0,得⎩⎪⎨⎪⎧x =-1,y =1.在直线2x -y +3=0上取一点(0,3),设其关于直线x -y +2=0的对称点为(a ,b ), 则⎩⎪⎨⎪⎧a 2-b +32+2=0,b -3a -0=-1,解得⎩⎪⎨⎪⎧a =1,b =2.故所求直线方程经过点(-1,1),(1,2),所以该直线方程为y -12-1=x +11+1,即x -2y +3=0.法二:设所求直线上任意一点P (x ,y ), 则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0. 答案:x -2y +3=0[题型技法] 线关于线的对称的求解方法(1)若直线与对称轴平行,则在直线上取一点,求出该点关于轴的对称点,然后用点斜式求解.(2)若直线与对称轴相交,则先求出交点,然后再取直线上一点,求该点关于轴的对称点,最后由两点式求解.[题“根”探求]1.“线关于点的对称”其实质就是“点关于点的对称”,只要在直线上取两个点,求出其对称点的坐标即可,可统称为“中心对称”.2.“线关于线的对称”其实质就是“点关于线的对称”,只要在直线上取两个点,求出其对称点的坐标即可,可统称为“轴对称”.3.解决对称问题的2个关键点(1)已知点与对称点的连线与对称轴垂直;(2)以已知点和对称点为端点的线段的中点在对称轴上.[冲关演练]1.(2018·湖北孝感五校联考)已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎪⎨⎪⎧ 3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,则C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.即M ′(1,0).又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=03.设A ,B 是x 轴上的两点,点P 的横坐标为3,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程是________.解析:由|PA |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且PA 的方程为x -y +1=0,得P (3,4).直线PA ,PB 关于直线x =3对称,直线PA 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,所以直线PB 的方程为y -41-4=x -36-3,即x +y -7=0.答案:x +y -7=0(一)普通高中适用作业A 级——基础小题练熟练快1.过点(1,0)且与直线x -2y -2=0垂直的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选C 因为直线x -2y -2=0的斜率为12,所以所求直线的斜率k =-2.所以所求直线的方程为y -0=-2(x -1), 即2x +y -2=0.2.(2018·北京顺义区检测)若直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,则实数k 的取值范围是( )A .(-6,-2)B .(-5,-3)C .(-∞,-6)D .(-2,+∞)解析:选A 解方程组⎩⎪⎨⎪⎧ y =-2x +3k +14,x -4y =-3k -2,得⎩⎪⎨⎪⎧x =k +6,y =k +2,因为直线y =-2x +3k +14与直线x -4y =-3k -2的交点位于第四象限,所以k +6>0且k +2<0,所以-6<k <-2.3.已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2)和B (a ,-1),且直线l 与l 1平行,则实数a 的值为( )A .0B .1C .6D .0或6解析:选C 由直线l 的倾斜角为3π4得l 的斜率为-1,因为直线l 与l 1平行,所以l 1的斜率为-1. 又直线l 1经过点A (3,2)和B (a ,-1),所以l 1的斜率为33-a ,故33-a=-1,解得a =6.4.若点P 在直线3x +y -5=0上,且P 到直线x -y -1=0的距离为2,则点P 的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)解析:选C 设P (x,5-3x ),则d =|x -5+3x -1|12+(-1)2=2,化简得|4x -6|=2,即4x -6=±2,解得x =1或x =2,故P (1,2)或(2,-1).5.(2018·西安一中检测)若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析:选B 由题知直线l 1过定点(4,0),则由条件可知,直线l 2所过定点关于(2,1)对称的点为(4,0),故可知直线l 2所过定点为(0,2),故选B.6.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3 B.10 C.14D .215解析:选B 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x+2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.7.直线x -2y +1=0关于直线x =1对称的直线方程是____________.解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则|c +6|=⎪⎪⎪⎪c +32,解得c =-154,所以l 的方程为12x +8y -15=0.答案:12x +8y -15=09.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-7910.(2018·湘中名校联考)已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x-1),即x +2y -3=0.答案:x +2y -3=0B 级——中档题目练通抓牢1.已知A (1,2),B (3,1)两点到直线l 的距离分别是2,5-2,则满足条件的直线l 共有( )A .1条B .2条C .3条D .4条解析:选C 当A ,B 两点位于直线l 的同一侧时,一定存在这样的直线l ,且有两条.又|AB |=(3-1)2+(1-2)2=5,而点A 到直线l 与点B 到直线l 的距离之和为2+5-2=5,所以当A ,B 两点位于直线l 的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.故选C.2.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,则P 1P 2的中点P 到原点的距离的最小值是( )A.522B .5 2 C.1522D .15 2解析:选B 由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d =|-10|2=52,即P 到原点距离的最小值为5 2. 3.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎫0,10a ,则线段AB 的长为( ) A .11 B .10 C .9D .8解析:选B 依题意,a =2,P (0,5),设A (x,2x ),B (-2y ,y ),故⎩⎨⎧x -2y2=0,2x +y2=5,解得⎩⎪⎨⎪⎧x =4,y =2,所以A (4,8),B (-4,2),故|AB |=(4+4)2+(8-2)2=10. 4.(2018·湖南东部十校联考)经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________________.解析:法一:由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,解得⎩⎨⎧x =-53,y =79,即交点为⎝⎛⎭⎫-53,79, ∵所求直线与直线3x +4y -7=0垂直, ∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79=43⎝⎛⎭⎫x +53,即4x -3y +9=0.法二:由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0,可解得交点为⎝⎛⎭⎫-53,79, 代入4x -3y +m =0,得m =9, 故所求直线方程为4x -3y +9=0. 法三:由题意可设所求直线的方程为 (2x +3y +1)+λ(x -3y +4)=0, 即(2+λ)x +(3-3λ)y +1+4λ=0, ① 又因为所求直线与直线3x +4y -7=0垂直, 所以3(2+λ)+4(3-3λ)=0,所以λ=2,代入①式得所求直线方程为4x -3y +9=0. 答案:4x -3y +9=05.(2018·豫北重点中学联考)已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________________.解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k 2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y -6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0. 答案:y =-7x 或y =x 或x +y -2=0或x +y -6=06.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)由已知可得l 2的斜率存在, ∴k 2=1-a .若k 2=0,则1-a =0,a =1. ∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾),∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=ab ,l 1⊥l 2,∴k 1k 2=-1,即ab (1-a )=-1.① 又∵l 1过点(-3,-1), ∴-3a +b +4=0.②由①②联立,解得a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即ab =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,即4b =b .④联立③④,解得⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23,b =2.∴a =2,b =-2或a =23,b =2.7.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.C 级——重难题目自主选做1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点, 设Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A.22,12B.2,22C.2,12D.24,14解析:选A 由题意a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0与x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c ,而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A. (二)重点高中适用作业A 级——保分题目巧做快做1.命题p :“a =-2”是命题q :“直线ax +3y -1=0与直线6x +4y -3=0垂直”成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选A 直线ax +3y -1=0与直线6x +4y -3=0垂直的充要条件是6a +12=0,即a =-2,故选A.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为( ) A.423B .4 2 C.823D .2 2解析:选C ∵l 1∥l 2,∴1a -2=a 3≠62a,解得a =-1, ∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =⎪⎪⎪⎪6-232=823.3.如果平面直角坐标系内的两点A (a -1,a +1),B (a ,a )关于直线l 对称,那么直线l 的方程为( )A .x -y +1=0B .x +y +1=0C .x -y -1=0D .x +y -1=0解析:选A 因为直线AB 的斜率为a +1-aa -1-a=-1,所以直线l 的斜率为1,设直线l的方程为y =x +b ,由题意知直线l 过点⎝⎛⎭⎫2a -12,2a +12,所以2a +12=2a -12+b ,解得b =1,所以直线l 的方程为y =x +1,即x -y +1=0.4.已知定点A (1,0),点B 在直线x -y =0上运动,当线段AB 最短时,点B 的坐标是( )A.⎝⎛⎭⎫12,12 B.⎝⎛⎭⎫22,22C.⎝⎛⎭⎫32,32D.⎝⎛⎭⎫52,52 解析:选A 因为定点A (1,0),点B 在直线x -y =0上运动,所以当线段AB 最短时,直线AB 和直线x -y =0垂直,设直线AB 的方程为x +y +m =0,将A 点代入,解得m =-1,所以直线AB 的方程为x +y -1=0,它与x -y =0联立解得x =12,y =12,所以点B 的坐标是⎝⎛⎭⎫12,12.5.已知点P (-2,0)和直线l :(1+3λ)x +(1+2λ)y -(2+5λ)=0(λ∈R),则点P 到直线l 的距离d 的最大值为( )A .2 3 B.10 C.14D .215解析:选B 由(1+3λ)x +(1+2λ)y -(2+5λ)=0,得(x +y -2)+λ(3x+2y -5)=0,此方程是过直线x +y -2=0和3x +2y -5=0交点的直线系方程.解方程组⎩⎪⎨⎪⎧x +y -2=0,3x +2y -5=0,可知两直线的交点为Q (1,1),故直线l 恒过定点Q (1,1),如图所示,可知d =|PH |≤|PQ |=10,即d 的最大值为10.6.若m >0,n >0,点(-m ,n )关于直线x +y -1=0的对称点在直线x -y +2=0上,那么1m +4n的最小值等于________.解析:设点(-m ,n )关于直线x +y -1=0的对称点为(a ,b ),则⎩⎪⎨⎪⎧b -n a +m =1,a -m 2+b +n 2-1=0,解得⎩⎪⎨⎪⎧a =1-n ,b =1+m .则(-m ,n )关于直线x +y -1=0的对称点为(1-n ,1+m ),则1-n -(1+m )+2=0,即m +n =2.于是1m +4n =12(m +n )⎝⎛⎭⎫1m +4n =12×⎝⎛⎭⎫5+n m +4m n ≥12×(5+2×2)=92,当且仅当m =23,n =43时等号成立. 答案:927.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34.则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形. 故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:258.如图,已知A (-2,0),B (2,0),C (0,2),E (-1,0),F (1,0),一束光线从F 点出发射到BC 上的D 点,经BC 反射后,再经AC 反射,落到线段AE 上(不含端点),则直线FD 的斜率的取值范围为________.解析:从特殊位置考虑.如图所示,∵点A (-2,0)关于直线BC :x +y =2的对称点为A 1(2,4),∴kA 1F =4.又点E (-1,0)关于直线AC :y =x +2的对称点为E 1(-2,1),点E 1(-2,1)关于直线BC :x +y =2的对称点为E 2(1,4),此时直线E 2F 的斜率不存在,∴k FD >kA 1F ,即k FD ∈(4,+∞).答案:(4,+∞)9.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程.解:点C 到直线x +3y -5=0的距离 d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是 x +3y +m =0(m ≠-5),则点C 到直线x +3y +m =0的距离 d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是 x +3y +7=0.设与x +3y -5=0垂直的边所在直线的方程是 3x -y +n =0,则点C 到直线3x -y +n =0的距离 d =|-3+n |9+1=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0. 10.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO垂直的直线,如图.由l ⊥OP ,得k l ·k OP =-1, 因为k OP =-12,所以k l =-1k OP =2.由直线方程的点斜式得y +1=2(x -2), 即2x -y -5=0.所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线.B 级——拔高题目稳做准做1.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点, 设Ax 0+By 0+C =k ,k ≠0.若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,而k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P .2.设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx-sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a ,bx -sin B ·y +sinC =0的斜率k 2=b sin B,故k 1k 2=-sin A a ·b sin B =-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.3.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( ) A.22,12 B.2,22 C.2,12 D.24,14解析:选A 由题意a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0与x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c ,而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A. 4.(2018·豫北重点中学联考)已知直线l 在两坐标轴上的截距相等,且点A (1,3)到直线l 的距离为2,则直线l 的方程为________________. 解析:当直线过原点时,设直线方程为y =kx ,由点A (1,3)到直线l 的距离为2,得|k -3|1+k 2=2,解得k =-7或k =1,此时直线l 的方程为y =-7x 或y =x ;当直线不过原点时,设直线方程为x +y =a ,由点A (1,3)到直线l 的距离为2,得|4-a |2=2,解得a =2或a =6,此时直线l 的方程为x +y -2=0或x +y -6=0.综上所述,直线l 的方程为y =-7x 或y =x 或x +y -2=0或x +y -6=0.答案:y =-7x 或y =x 或x +y -2=0或x +y -6=05.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)由已知可得l 2的斜率存在,∴k 2=1-a .若k 2=0,则1-a =0,a =1.∵l 1⊥l 2,直线l 1的斜率k 1必不存在,∴b =0.又∵l 1过点(-3,-1),∴-3a +4=0,即a =43(矛盾), ∴此种情况不存在,∴k 2≠0,即k 1,k 2都存在.∵k 2=1-a ,k 1=a b,l 1⊥l 2,∴k 1k 2=-1, 即a b(1-a )=-1.① 又∵l 1过点(-3,-1),∴-3a +b +4=0.②由①②联立,解得a =2,b =2.(2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,k 1=k 2,即a b =1-a .③又∵坐标原点到这两条直线的距离相等,且l 1∥l 2,∴l 1,l 2在y 轴上的截距互为相反数,即4b =b .④联立③④,解得⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧ a =23,b =2.∴a =2,b =-2或a =23,b =2. 6.一条光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),求:(1)入射光线所在直线的方程;(2)这条光线从P 到Q 所经路线的长度.解:(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点,QQ ′交l 于M 点,∵k l =-1,∴k QQ ′=1,∴QQ ′所在直线的方程为y -1=1×(x -1),即x -y =0.由⎩⎪⎨⎪⎧ x +y +1=0,x -y =0,解得⎩⎨⎧ x =-12,y =-12,∴交点M ⎝⎛⎭⎫-12,-12,∴⎩⎨⎧ 1+x ′2=-12,1+y ′2=-12,解得⎩⎪⎨⎪⎧x ′=-2,y ′=-2,∴Q ′(-2,-2). 设入射光线与l 交于点N ,则P ,N ,Q ′三点共线,又P (2,3),Q ′(-2,-2),故入射光线所在直线的方程为y -(-2)3-(-2)=x -(-2)2-(-2),即5x -4y +2=0.(2)|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′| =[2-(-2)]2+[3-(-2)]2=41,即这条光线从P 到Q 所经路线的长度为41.。

高中数学课件-2.1.3两条直线的位置关系课件( 北师大版必修2 )

高中数学课件-2.1.3两条直线的位置关系课件( 北师大版必修2 )

4.已知经过两点(3,2)和(m,n)的直线l. (1)若l与x轴平行,则m,n的取值情况是__________; (2)若l与x轴垂直,则m,n的取值情况是__________.
【解析】(1)∵l与x轴平行,由图①可知m∈R且m≠3,n=2. (2)∵l与x轴垂直,由图②可知m=3,n∈R且n≠2.
【例2】如图,在平行四边形OABC中, 点A(3,0),点C(1,3). (1)求AB所在直线的方程; (2)过点C作CD⊥AB于点D, 求CD所在直线的方程. 【审题指导】已知四边形OABC是平行四边形,可以利用 平行四边形的有关性质求AB的斜率,利用两条直线垂直的 条件求CD的斜率,进而求相应直线的方程.
解得h≈14.92(m).
故灯柱高h约为14.92 m.
【典例】(12分)已知A(0,3)、B(-1,0)、C(3,0),求D点 的坐标,使四边形ABCD为直角梯形(A、B、C、D按逆时针方 向排列). 【审题指导】解答本题可先对直角梯形中哪个角为直角进 行讨论,然后借助于平行、垂直的关系列方程组求D点的坐 标.
【例3】已知直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0,求满足下 列条件的a的值:
(1)l1∥l2;
(2)l1⊥l2.
【审题指导】直线l1和l2的方程均以一般式的形式给出,要
判断l1∥l2及l1⊥l2时,参数a的取值,求解思路有二:一是把
方程均化成斜截式利用斜率及在y轴上截距的关系求解;二
答案:(1)m∈R且m≠3,n=2 (2)m=3,n∈R且n≠2
5.已知P(2,1),直线l:x-y+4=0. (1)求过点P与直线l平行的直线方程; (2)求过点P与直线l垂直的直线方程. 【解析】(1)设过点P与直线l平行的直线方程为x-y+m=0. 由题意可知2-1+m=0,解得m=-1. 所以过点P与直线l平行的直线方程为x-y-1=0. (2)设过点P与直线l垂直的直线方程为x+y+n=0. 由题意可知2+1+n=0,解得n=-3. 所以过点P与直线l垂直的直线方程为x+y-3=0.

北师大版高中数学必修二两条直线的平行与垂直教案

北师大版高中数学必修二两条直线的平行与垂直教案

2.1.2两条直线的平行与垂直一、教学目标(一)知识教学:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.(二)能力训练:通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力.(三)学科渗透:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.二、重难点重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.三、教学方法:启发、引导、讨论.四、教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等). (三)、例题:例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为 k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想: 四边形ABCD是平行四边形,再通过计算加以验证) 解同上.例3 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以 AB⊥PQ.例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)(四)、课堂练习:P94 练习 1. 2.(五)、课后小结:(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.(六)、布置作业:P94 习题3.1 5. 8.五、教后反思:。

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

两条直线平行与垂直的判定【知识梳理】1.对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔k 1=k 2.2.如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.【常考题型】题型一、两条直线平行的判定【例1】 根据下列给定的条件,判断直线l 1与直线l 2是否平行.(1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3);(3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23);(4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2. (2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2.【类题通法】判断两条不重合直线是否平行的步骤【对点训练】1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD的斜率存在,则与其平行的直线AB的斜率也存在.k AB=m-0-5-(m+1)=m-6-m,k CD=5-30-(-4)=12,由于AB∥CD,即k AB=k CD,所以m-6-m=12,得m=-2.经验证m=-2时直线AB的斜率存在,所以m=-2.题型二、两条直线垂直的问题【例2】已知直线l1经过点A(3,a),B(a-2,-3),直线l2经过点C(2,3),D(-1,a-2),如果l1⊥l2,求a的值.[解]设直线l1,l2的斜率分别为k1,k2.∵直线l2经过点C(2,3),D(-1,a-2),且2≠-1,∴l2的斜率存在.当k2=0时,a-2=3,则a=5,此时k1不存在,符合题意.当k2≠0时,即a≠5,此时k1≠0,由k1·k2=-1,得-3-aa-2-3·a-2-3-1-2=-1,解得a=-6.综上可知,a的值为5或-6.【类题通法】使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l1与l2一个斜率为0,另一个斜率不存在时,l1⊥l2;l1与l2斜率都存在时,满足k1·k2=-1.【对点训练】2.已知定点A(-1,3),B(4,2),以A、B为直径作圆,与x轴有交点C,则交点C的坐标是________.解析:以线段AB为直径的圆与x轴的交点为C,则AC⊥BC.设C(x,0),则k AC=-3x+1,k BC=-2x-4,所以-3x+1·-2x-4=-1,得x=1或2,所以C(1,0)或(2,0).答案:(1,0)或(2,0)题型三、平行与垂直的综合应用【例3】 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13, k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合,所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1, 所以AB ⊥AD ,故四边形ABCD 为直角梯形.【类题通法】1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况.【对点训练】3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =y x -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC ,所以⎩⎨⎧ 1×y -4x =-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6). 【练习反馈】1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行;②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A .1个B .2个C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( )A .平行B .重合C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点,∴EF ∥AB .∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________.解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145. 答案:1455.判断下列各小题中的直线l 1与l 2的位置关系.(1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40);(3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0);(4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5).解:(1)k 1=-10,k 2=3-220-10=110. ∵k 1k 2=-1,∴l 1⊥l 2.(2)l1的倾斜角为90°,则l1⊥x轴.k2=40-4010-(-10)=0,则l2∥x轴,∴l1⊥l2.(3)k1=0-11-0=-1,k2=0-32-(-1)=-1,∴k1=k2.又k AM=3-1-1-0=-2≠k1,∴l1∥l2.(4)∵l1与l2都与x轴垂直,∴l1∥l2.。

2.1.3两条直线的平行与垂直(1)教案 高中数学 必修二 苏教版 Word版

2.1.3两条直线的平行与垂直(1)教案 高中数学 必修二 苏教版 Word版

2.1.3 两条直线的平行与垂直(1)从容说课本节课的主要内容是研究在直角坐标系下,通过给出两条直线方程如何去判断两直线是否平行.在讨论两条直线平行的问题时,教材先假定了两条直线有斜截式方程,根据倾斜角与斜率的对应关系,将初中学过的两直线平行的充要条件(即判定定理和性质定理)转化为坐标系中的语言,用斜率和截距重新加以刻画,教学中应注意斜率不存在的情况. 教学重点两直线平行的判断.教学难点两直线平行的判断的各类问题.教具准备多媒体.课时安排1课时三维目标一、知识与技能1.掌握两条直线平行的判断方法.2.理解刻画直线方程的量可以刻画两直线的平行关系.二、过程与方法1.代数化处理几何问题中的平行问题.2.师生共同探讨,注重引领.三、情感态度与价值观培养分类讨论的思想及全面思考问题的思维方式.教学过程导入新课师我们知道倾斜角、斜率刻画了直线的倾斜程度,那么,能否用倾斜角、斜率刻画两条直线的位置关系呢?投影:当给出两条平行直线时,我们可以分为3大类,见图(1)、(2)、(3).它们的倾斜角如何?生相等.师它们的斜率呢?生图(1)l 1∥l 2,构造两个直角三角形(直角边分别平行于坐标轴),那么△ABC ∽△DEF (两角对应相等).∴k 1=DFEF AC BC ==k 2. 师反之图(1)中如果k 1=k 2,那么△ABC ∽△DEF ,于是∠BAC=∠EDF,从而l 1∥l 2. 图(2)是否仍有斜率相等?生仍相等.∵k 1=DFEF AC BC -=-=k 2, ∴k 1=k 2.师反之k 1=k 2,那么△ABC ∽△DEF ,于是∠BAC=∠EDF,从而l 1∥l 2.推进新课板书:两直线不重合时,当k 1、k 2均存在,则l 1∥l 2⇔k 1=k 2.生⇔是什么意思?师就是l 1∥l 2时,有k 1=k 2;反之k 1=k 2能够推出l 1∥l 2.“⇔”我们也可以形象地称为等价条件.不过这里的条件“两直线不重合时,当k 1、k 2均存在”是特别要注意的.【例1】已知两条直线l 1:2x -4y +7=0,l 2:x -2y +5=0.求证:l 1∥l 2.(师生共同探究)证明:把l 1、l 2的方程写成斜截式:l 1:y =4721+x ,l 2:y =2521+x . ∵k 1=21,k 2=21,∴k 1=k 2. ∴两直线不相交. ∵b 1=47,b 2=25,b 1≠b 2, ∴两直线不重合.∴l 1∥l 2.师证明两直线平行,需说明两个要点:(1)两直线斜率相等;(2)两直线不重合.【例2】求证:顺次连结A(2,-3)、B(5,-27)、C(2,3)、D(-4,4)四点所得的四边形是梯形.师什么是梯形?生有一组对边平行,另一组对边不平行的四边形.师如何处理直线平行?生分别求出直线AB 、BC 、CD 、AD 的斜率.师大家自己动手做一做(学生板演,师生交流,得出结论)∵k AB =6125)3(27-=----,k BC =61352)27(3-=---,k CD =612434-=---,k DA =67)4(243-=----,∴k AB =k CD ,k BC ≠k DA .∴直线AB ∥CD,而直线BC 与DA 不平行.【例3】求过点A(1,-4),且与直线2x +3y +5=0平行的直线方程.解法一:已知直线的斜率是-32,因为所求直线与已知直线平行,因此它的斜率也是-32,根据点斜式得所求直线的方程是y +4=-32(x -1),即2x +3y +10=0. 师与一直线平行的直线我们可以采取设的技巧,请看下面的解法.解法二:因所求直线与2x +3y +5=0平行,可设所求直线方程为2x +3y +m=0,将A(1,-4)代入有m=10,故所求直线方程为2x +3y +10=0.评注:一般情况下与直线Ax +By +C=0平行的直线可以设为A x +B y +C 1=0.大家学习解析几何时注意设的技巧,这样可以帮助我们更快捷地解决问题.【例4】已知ABCD 的三个顶点A (-3,0)、B (-1,2)、C (-5,3),求AD 、CD 边所在的直线方程.分析:由平行四边形的性质知道AD ∥BC ,AB ∥DC ,∴AD 与BC ,AB 与DC 的斜率分别相等. 解:ABCD 中,AD ∥BC ,AB ∥DC ,∴直线斜率k AD =k BC =41)1(523-=----,k CD =k AB =)3(102----=1. ∴AD 、CD 所在直线方程分别为y =-41(x +3),y -3=x +5, 即x +4y +3=0及x -y +8=0.【例5】求与直线3x +4y +9=0平行,并且和两坐标轴在第一象限所围成的三角形面积是24的直线方程.解:∵直线3x +4y +9=0的斜率为-43,∴设所求直线方程为y =-43x +b . 令x =0,得y =b ; 令y =0,得x =34b . 由题意b >0,34b >0,∴b >0. ∴21×b ×34b =24.∴b =6. 故所求直线方程为y =-43x +6,即3x +4y +24=0. 点评:直线方程为y =-43x +b 可化为3x +4y -4b =0,令m=-4b ,即可得3x +4y +m=0.因此,与3x +4y +9=0平行的直线也可设为3x +4y +m=0,但注意到两直线不重合,所以m ≠9.师已知A(x 1,y 1)、B(x 2,y 2)分别是直线l 上和l 外的点,若直线l 的方程为f(x ,y )=0,则方程f(x ,y )=f(x 1,y 1),f(x ,y )=f(x 2,y 2)分别表示()A .直线lB .过点A 、B 的直线C .直线l ,过点B 与l 垂直的直线D .直线l ,过点B 与l 平行的直线 答案:D师代数式f(x ,y )可以理解成含有字母x 、y 的关系式,直线l 的方程为f(x ,y )=0具体可以如何表示?生可以表示成A x +B y +C=0.师对!那么对于f(x ,y )=f(x 1,y 1)你是怎么理解的?特别增加了f(x 1,y 1).生因为A(x 1,y 1)是直线l 上的点,所以f(x 1,y 1)=0.所以f(x ,y )=f(x 1,y 1),化为f(x ,y )=0,所以方程f(x ,y )=f(x 1,y 1)实质上与f(x ,y )=0相同,即表示直线l.师对!我们可能被其表达式吓住,去掉其表面,经过转化可以发现该方程其实是该直线的原始方程.那么f(x ,y )=f(x 2,y 2)是否也与f(x ,y )=0相同?生因为B(x 2,y 2)是直线l 外的点,所以f(x 2,y 2)≠0.所以f(x ,y )=f(x 2,y 2)不与f(x ,y )=0相同.师对.但是是否与直线l 平行呢?生平行.师如何证明?生f(x ,y )=f(x 2,y 2),即为A x +B y +C=A x 2+B y 2+C ,与A x +B y +C =0表示直线的斜率相同,但不重合.师说得很好.课堂小结师今天我们学习了判断两直线平行的方法,判定直线l 1与l 2平行的前提是:l 1、l 2是不重合的两条直线.①如果l 1、l 2斜率都存在,则直线平行能得到斜率相等,反之,斜率相等也能得到直线平行;②如果l 1、l 2斜率都不存在,那么两直线都垂直于x 轴,故它们平行.另外大家在处理与已知直线平行的直线时注意设的技巧.布置作业P 84练习2、3.板书设计2.1.3 两条直线的平行与垂直(1)l 1、l 2是不重合的两条直线 例3①如果l 1、l 2斜率都存在…… 例4②如果l 1、l 2斜率都不存在…… 例5例1 课堂小结例2 布置作业活动与探究讨论:已知直线l :A x +B y +C=0,则和l 平行的直线方程都可写为A x +B y +m=0(m ≠C)吗?(都可以)例:已知直线l 与直线m :2x +3y -5=0平行,且在两坐标轴上的截距之和为1,求直线l 的方程.解:设直线l 的方程为2x +3y +m=0,令x =0,得y =-3m ;令y =0,得x =-2m . 由题意知-23m m =1,解得m=-56. 故直线l 的方程为2x +3y -56=0,即10x +15y -6=0. (可组织学生用多种方法解答此题,进一步验证讨论的结论)备课资料备选练习或例题1.若过两点P (6,m)和Q (m,3)的直线与直线x -2y +5=0平行,则m 的值为()A.5B.4C.9D.02.直线m x +y -n=0和x +m y +1=0平行的条件是()A.m=1B.m=±1C.⎩⎨⎧-≠=11n mD.⎩⎨⎧≠=⎩⎨⎧-≠=1111n m n m 或 3.过点(a ,b )且与直线bx -ay +ab =0平行的直线一定还过点()A.(a ,2b )B.(b ,a )C.(0,1)D.(0,0)4.平行于直线3x -8y +25=0,且在y 轴上截距为-2的直线方程是_________.5.若直线y =(a 2-2a +3)x -1与直线y =(a +7)x +4平行,则a 的值为_________.6.若直线m x +4y -1=0与直线x +m y -3=0不平行,则实数m 的取值范围是_________.7.求证:以A(4,5)、B(6,7)、C(7,9)、D(5,7)为顶点的四边形是平行四边形.8.求与直线x -2y +1=0平行,且在两坐标轴上的截距和为-4的直线方程. 参考答案:1.B2.D3.D4.3x -8y -16=05.-1或46.m ≠±27.证明:只要证AB ∥CD ,AD ∥BC .8.x -2y +8=0.。

高中数学 两条直线平行与垂直的判定 PPT课件 图文

高中数学 两条直线平行与垂直的判定 PPT课件 图文

【解析】1.根据题中的条件及斜率公式得 (1)kl15 4,kl2 2,所 以 kl1kl2,所以直线l1与l2不平行. (2)kl1 3kl2,所以l1∥l2或l1与l2重合. (3)l1斜率不存在,且直线l1与y轴不重合,而l2的斜率也不存 在,且恰好是y轴,所以l1∥l2. 答案:(3)
2.“练一练”尝试知识的应用点(请把正确的答案写在横线上).
(1)直线l1,l2满足l1⊥l2,若直线l1的倾斜角为30°,则直线l2的斜
率为
.
(2)直线l1过点A(0,3),B(4,-1),直线l2的倾斜角为45°,则直
线l1与l2的位置关系是
.
(3)直线l1过A(-2,m)和B(m,4),直线l2的斜率为-2,且l1∥l2,则
所以C点坐标为 (0,5 17)或(0, 5 17).
2
2
【技法点拨】使用斜率公式判定两直线垂直的步骤 (1)一看:就是看所给两点的横坐标是否相等,若相等,则直 线的斜率不存在,若不相等,则进行第二步. (2)二用:就是将点的坐标代入斜率公式. (3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有 参数时,应用斜率公式要对参数进行讨论.
【解析】1.直线PQ的斜率kPQ= 2 ,当m≠-1时,直线AB的斜率
7
kAB

3m2 . 22m
(1)因为AB∥PQ,所以kAB=kPQ,
即 3m 2 2 ,
2 2m 7
解得 m

2. 5
(2)因为AB⊥PQ,所以kAB·kPQ=-1,
即 3m2 21,
22m 7
解得 m 9 .
【探究提升】两条直线垂直的等价条件
(1)直线的斜率存在时,l1⊥l2则

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

高中数学第2章平面解析几何初步2.1.3两条直线的平行与垂直讲义苏教版必修2

2.1.3 两直线的平行与垂直1.两条直线平行(1)若直线l1:y=k1x+b1,直线l2:y=k2x+b2,则l1∥l2⇔k1=k2且b1≠b2(k1,k2均存在).(2)设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0)思考:两平行直线的斜率是否一定相等.提示:只要斜率存在,则斜率一定相等.2.两条直线垂直(1)如图①,如果两条直线都有斜率且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直.即l1⊥l2⇔k1k2=-1(k1,k2均存在).(2)如图②,若l1与l2中的一条斜率不存在,另一条斜率为零,则l1与l2的位置关系是垂直.①②思考:两直线垂直,则两直线斜率乘积是否一定为-1?提示:两直线斜率存在的前提下,斜率乘积为-1.1.思考辨析(1)若直线l1与l2斜率相等,则l1∥l2. ( )(2)若直线l1∥l2(两条直线的斜率存在,分别为k1,k2),则k1=k2.( )(3)若两条直线的斜率不相等,则两直线不平行.( )[答案](1)×(2)√(3)√2.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率k=________.3 [k AB =3-03-2=3,k l =k AB =3.]3.与直线x +2y +7=0垂直的一条直线的斜率k =______.2 [直线x +2y +7=0的斜率k =-12,故与其垂直的一条直线的斜率k =2.]4.过点(0,1)且与直线2x -y =0垂直的直线的一般式方程是________.x +2y -2=0 [直线2x -y =0的斜率是k =2,故所求直线的方程是y =-12x +1,即x+2y -2=0.]12(1)l 1的斜率为1,l 2经过点P (1,1),Q (3,3);(2)l 1经过点A (-3,2),B (-3,10),l 2经过点C (5,-2),D (5,5); (3)l 1经过点A (0,1),B (1,0),l 2经过点C (-1,3),D (2,0); (4)l 1:x -3y +2=0,l 2:4x -12y +1=0.思路探究:依据斜率公式,求出斜率,利用l 1∥l 2或l 1,l 2重合⇔k 1=k 2或k 1,k 2不存在判断.[解] (1)k 1=1,k 2=3-13-1=1,k 1=k 2,∴l 1与l 2重合或l 1∥l 2.(2)l 1与l 2都与x 轴垂直,通过数形结合知l 1∥l 2.(3)k 1=0-11-0=-1,k 2=0-32-(-1)=-1,k 1=k 2,数形结合知l 1∥l 2.(4)l 1的方程可变形为y =13x +23;l 2的方程可变形为y =13x +112.∵k =13,b 1=23,k 2=13,b 2=112,∵k 1=k 2且b 1≠b 2,∴l 1∥l 2.判断两条直线平行的方法1.根据下列给定的条件,判断直线l 1与直线l 2的位置关系. (1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1的倾斜角为60°,l 2经过点M (3,23),N (-2,-33). [解] (1)由题意知k 1=5-1-3-2=-45,k 2=-7-(-3)8-3=-45.因为k 1=k 2,且A ,B ,C ,D 四点不共线,所以l 1∥l 2. (2)由题意知k 1=tan 60°=3,k 2=-33-23-2-3= 3.因为k 1=k 2,所以l 1∥l 2或l 1与l 2重合.12(1)直线l 1:2x -4y +7=0,直线l 2:2x +y -5=0; (2)直线l 1:y -2=0,直线l 2:x -ay +1=0;(3)直线l 1经过点⎝ ⎛⎭⎪⎫0,54,⎝ ⎛⎭⎪⎫53,0,l 2经过点⎝ ⎛⎭⎪⎫0,-78,⎝ ⎛⎭⎪⎫76,0. 思路探究:利用两直线垂直的斜率关系判定. [解] (1)k 1=12,k 2=-2,∵k 1·k 2=12×(-2)=-1,∴l 1与l 2垂直.(2)当a =0时,直线l 2方程为x =-1,即l 2斜率不存在,又直线l 1的斜率为0,故两直线垂直.当a ≠0时,直线l 2的斜率为1a,又直线l 1的斜率为0,故两直线相交但不垂直.(3)k 1=0-5453-0=-34,k 2=0-⎝ ⎛⎭⎪⎫-7876-0=34.∵k 1·k 2≠-1,∴两条直线不垂直.1.判断两直线是否垂直的依据是:当这两条直线都有斜率的前提下,只需看它们的斜率之积是否等于-1即可,但应注意有一条直线与x 轴垂直,另一条直线与x 轴平行时,两直线也垂直.2.直接使用A 1A 2+B 1B 2=0判断两条直线是否垂直更有优势.2.判断下列各组中的直线l 1与l 2是否垂直:(1)l 1经过点A (-1,-2),B (1,2),l 2经过点M (-2,-1),N (2,1); (2)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(3)l 1经过点A (3,4),B (3,100),l 2经过点M (-10,40),N (10,40).[解] (1)直线l 1的斜率k 1=2-(-2)1-(-1)=2,直线l 2的斜率k 2=1-(-1)2-(-2)=12,k 1k 2=1,故l 1与l 2不垂直.(2)直线l 1的斜率k 1=-10,直线l 2的斜率k 2=3-220-10=110,k 1k 2=-1,故l 1⊥l 2.(3)l 1的倾斜角为90°,则l 1⊥x 轴. 直线l 2的斜率k 2=40-4010-(-10)=0,则l 2∥x 轴.故l 1⊥l 2.1.如图,设直线l 1与l 2的倾斜角分别为α1与α2,且α1<α2,斜率分别为k 1,k 2,若l 1⊥l 2,α1与α2之间有什么关系?为什么?[提示] α2=90°+α1.因为三角形任意一外角等于不相邻两内角之和.2.已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定四边形ABCD 的形状.[提示] 四边形ABCD 为直角梯形,理由如下: 如图,由斜率公式得k AB =5-32-(-4)=13,k CD =0-3-3-6=13, k AD =0-3-3-(-4)=-3,k BC =3-56-2=-12, ∵k AB =k CD ,AB 与CD 不重合.∴AB ∥CD ,又k AD ≠k BC ,∴AD 与BC 不平行. 又∵k AB ·k AD =13×(-3)=-1,∴AB ⊥AD ,故四边形ABCD 为直角梯形.【例3】 已知点A (2,2)和直线l :3x +4y -20=0,求: (1)过点A 和直线l 平行的直线方程; (2)过点A 和直线l 垂直的直线方程.思路探究:利用两直线平行和垂直的条件求解或利用与已知直线平行与垂直的直线系方程求解.[解] 法一:∵3x +4y -20=0,∴k l =-34.(1)设过点A 与l 平行的直线为l 1.∵kl 1=k l =-34,∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0.(2)设过点A 与l 垂直的直线为l 2.∵k l kl 2=-1,∴⎝ ⎛⎭⎪⎫-34×kl 2=-1,∴kl 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0.法二:(1)设与直线l 平行的直线方程为3x +4y +m =0, 则6+8+m =0,∴m =-14,∴3x +4y -14=0为所求.(2)设与直线l 垂直的直线方程为4x -3y +n =0, 则8-6+n =0,∴n =-2, ∴4x -3y -2=0为所求.两直线平行或垂直的应用(1)求与已知直线平行或垂直的直线.此类问题有两种处理方法:一是利用平行与垂直的条件求斜率,进而求方程;二是利用直线系方程求解,与已知直线Ax +By +C =0平行的直线系方程为Ax +By +D =0(C ≠D ),垂直的直线系方程为Bx -Ay +D =0.(2)由直线平行或垂直求参数的值,此类问题直接利用平行和垂直的条件,列关于参数的方程求解即可.3.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD ; (2)已知直线l 1的斜率k 1=34,直线l 2经过点A (3a ,-2),B (0,a 2+1),且l 1⊥l 2,求实数a 的值.[解] (1)证明:由斜率公式得:k AB =6-310-5=35, k CD =11-(-4)-6-3=-53,则k AB ·k CD =-1,∴AB ⊥CD . (2)∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1, 解得a =1或a =3.1.本节课的重点是理解两条直线平行或垂直的判定条件,会利用斜率判断两条直线平行或垂直,难点是利用斜率判断两条直线平行或垂直.2.本节课要重点掌握的规律方法 (1)判断两条直线平行的步骤.(2)利用斜率公式判断两条直线垂直的方法. (3)判断图形形状的方法步骤.3.本节课的易错点是利用斜率判断含字母参数的两直线平行或垂直时,对字母分类讨论.1.下列说法正确的有( ) A .若两直线斜率相等,则两直线平行 B .若l 1∥l 2,则k 1=k 2C .若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D .若两直线斜率都不存在,则两直线平行C [A 中,当k 1=k 2时,l 1与l 2平行或重合,错误;B 中,若l 1∥l 2,则k 1=k 2或两直线的斜率都不存在,错误;D 中两直线可能重合.]2.过点(3,6),(0,3)的直线与过点(6,2),(2,0)的直线的位置关系为________. 垂直 [过点(3,6),(0,3)的直线的斜率k 1=6-33-0=2-3;过点(6,2),(2,0)的直线的斜率k2=2-06-2=3+ 2.因为k1·k2=-1,所以两条直线垂直.]3.已知直线(a-1)x+y-1=0与直线2x+ay+1=0平行,则实数a=________.2[由已知,得(a-1)a-2=0,解得a=-1或a=2,当a=-1时,两直线重合,故a =2.]4.已知直线l1:ax+3y=3,l2:x+2ay=5,若l1⊥l2,求a的值.[解]直线l1:ax+3y-3=0,直线l2:x+2ay-5=0.∵l1⊥l2,∴a×1+3×2a=0,即a=0.。

2018学年高中数学必修2课件:2.1.3 两条直线的平行与垂直 精品

2018学年高中数学必修2课件:2.1.3 两条直线的平行与垂直 精品

[ 构建·体系]
1.下列说法正确的有________. ①若两直线斜率相等,则两直线平行; ②若 l1∥l2,则 k1=k2; ③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直 线相交; ④若两直线斜率都不存在,则两直线平行.
【解析】 ①中,当 k1=k2 时,l1 与 l2 平行或重合,错误;②中,斜率不存 在时,错误;④错误.只 再练一题] 1.根据下列给定的条件,判断直线 l1 与直线 l2 的位置关系. (1)l1 经过点 A(2,1),B(-3,5),l2 经过点 C(3,-3),D(8,-7); (2)l1 的倾斜角为 60°,l2 经过点 M(3,2 3),N(-2,-3 3).
【解】 (1)由题意知 k1=-5- 3-12=-45, k2=-78--3-3=-45. 因为 k1=k2,且 A,B,C,D 四点不共线,所以 l1∥l2. (2)由题意知 k1=tan 60°= 3,k2=-3-32- -23 3= 3. 因为 k1=k2,所以 l1∥l2 或 l1 与 l2 重合.
【解】 (1)直线 l1 的斜率 k1=21----21=2,直线 l2 的斜率 k2=12----12=12, k1k2=1,故 l1 与 l2 不垂直.
(2)直线 l1 的斜率 k1=-10,直线 l2 的斜率 k2=230--210=110,k1k2=-1,故 l1⊥l2.
(3)l1 的倾斜角为 90°,则 l1⊥x 轴. 直线 l2 的斜率 k2=104-0--4010=0,则 l2∥x 轴.故 l1⊥l2.
法二:(1)设与直线 l 平行的直线方程为 3x+4y+m=0, 则 6+8+m=0,∴m=-14,∴3x+4y-14=0 为所求. (2)设与直线 l 垂直的直线方程为 4x-3y+n=0, 则 8-6+n=0,∴n=-2,∴4x-3y-2=0 为所求.

高中数学必修二-两条直线平行与垂直的判定

高中数学必修二-两条直线平行与垂直的判定

顺德区容山中学__高二__年级__数学_学科活力课堂导学案课题 §3.1.2两条直线平行与垂直的判定设计者:__杨时香 黄宗勤_审核者:__叶建华 _日期:___10月15日____学习目标:1.知识目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. 使学生初步了解平面解析几何的研究方法.2.能力目标:通过探究两直线平行或垂直的条件,培养学生数形结合能力、运用已有知识分析问题、解决问题的能力.使学生体会数学中代数与几何的相互联系.3.情感目标:通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.通过演示归纳,加强学生对知识的理解和应用. 学习重点:1、根据斜率判定两条直线平行和垂直.2、初步了解平面解析几何的研究方法.学习难点:1、对学生运用知识分析、解决问题的能力的培养.2、两直线中有斜率不存在的情况时,两直线平行和垂直的判定.第一部分:个体自学(课本P86—P88)1.复习(1)一条直线的倾斜角 α (α≠900),则该直线的斜率k =(2)已知直线上两点1p (),11y x ,),(222y x p (21x x ≠)的直线的斜率公式:k =2.预习:两条直线平行与垂直的判定(1)对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,则有12//l l ⇔(2)如果两条直线1l 和2l 都有斜率且分别为1k 、2k ,则12l l ⊥⇔(3)若两直线的斜率均不存在,则它们 ;若一条斜率不存在,另一条斜率为0,则两直线 。

第二部分:合作探究探究任务1:判定两条直线平行的条件为了在平面直角坐标系内表示直线的倾斜程度,我们引入了直线倾斜角的概念,进而又引入了直线的斜率,并导出了计算斜率的公式,即把几何问题转化成了代数问题.那么我们能否通过直线的斜率,来判断两条直线的位置呢?(代数问题转化成几何问题)我们设两条直线1l 、2l 的斜率分别为1k 、2k ,倾斜角分别为βα、.问题:⒈两条直线的倾斜角相等,这两条直线平行吗?反过来成立吗?⒉若两090≠=βα,则21tan tan k k ===βα成立吗?为什么?⒊由<1>、<2>你能得到什么结论?结论:⑴两条不同的直线1l 、2l 的斜率都存在,分别为1k 、2k ,⇔21//l l . 思考:①若直线1l 和2l 可能重合时,我们能得到什么结论?(这是我们用斜率证明三点共线时的依据)②当两条直线的倾斜角都是直角时,也即斜率不存在时,我们又能得到什么结论呢?探究任务2:判定两条直线垂直的条件思考:⒋若两条直线21l l ⊥时,1k 和2k 应满足什么关系呢?试证明之;⒌上述结论反过来成立吗?由此我们可以得到什么结论?结论:(2)两条直线1l 、2l 的斜率分别为1k 、2k ,⇔⊥21l l ,则 ,思考:若其中一条直线的斜率不存在时,且21l l ⊥,则另一条直线的斜率怎样?第三部分:展示分享例1.已知A (2,3),B (-4,0),P (-3,1),Q (-1,2),试判断直线BA 与PQ 的位置关系,并证明你的结论。

高中数学 2.1.3 两条直线的平行与垂直1教案 北师大版必修2

高中数学 2.1.3 两条直线的平行与垂直1教案 北师大版必修2

2.1.3 两条直线的平行与垂直(1)教学目标:1.正确掌握两条直线平行的判定方法及其应用2.理解用直线方程中的量来刻划两条直线的平行关系3.用分类讨论的思想方法培养学生全面思考问题的思维方式教学重点:两条直线平行的判断教学难点:用两条直线平行的判定方法解决有关问题教学过程:1.前面我们已经学过了直线的倾斜角、斜率,它们是什么关系?是不是每一条直线都有倾斜角和斜率?(多媒体演示,引导学生回答问题)2.对于两条直线,若倾斜角相等,那么这两条直线的位置关系如何?(多媒体演示,引导学生得出结论:121212,l l l l αα=⎫⇔⎬⎭不重合) 3.若两条直线斜率相等,那么这两条直线的位置关系如何?(引导学生得出结论:12121212,,l l k k l l l l =⎧⎫⇔⎬⎨⎭⎩不重合都有斜率) 4.上面的结论是当1l 、2l 斜率存在时得到的。

当1l 、2l 斜率不存在时,12l l 需要什么条件?5.阅读教材8081P -,回答问题:教材上的有关结论与刚才获得的结论有什么区别? (形式不同,实质一致)6.例题讲解例1.已知两条直线1:2470l x y -+=,2:250l x y -+=,求证:12l l(师生共同探究,侧重分析)例2.求证:顺次连结()()()72,3,5,,2,3,4,42A B C D ⎛⎫--- ⎪⎝⎭四点所得四边形为梯形。

侧重分析:要证四边形ABCD 为梯形,需要证明什么?(引导学生回答:一组对边平行且不等,或一组对边平行,另一组对边不平行)用第二种方法进行证明 证明:()7312526AB k ---==--,73132256BC k ⎛⎫-- ⎪⎝⎭==--, 431426CD k -==---,()347246DA k --==---, AB CD k k ∴=,BC DA k k ≠,则AB CD ,且BC //﹨DA ,则四边形为梯形。

例3.求过点()1,4A -,且与直线2350x y ++=平行的直线方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 两条直线的平行与垂直
重难点:能熟练掌握两条直线平行和垂直的条件并灵活运用,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.
经典例题:已知三角形的两个顶点是B (2,1)、C (-6, 3), 垂心是H (-3, 2), 求第三个顶A的坐标.
当堂练习:
1.下列命题中正确的是()
A.平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角相等
C.斜率相等的两直线一定平行D.两直线平行则它们在y轴上截距不相等
2.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为,则m,n的值分别为()
A.4和3 B.-4和3 C.-4和-3 D.4和-3
3.直线:kx+y+2=0和:x-2y-3=0, 若,则在两坐标轴上的截距的和()
A.-1 B.-2 C.2 D.6
4.两条直线mx+y-n=0和x+my+1=0互相平行的条件是()
A. m=1 B.m= 1 C.D.或
5.如果直线ax+(1-b)y+5=0和(1+a)x-y-b=0同时平行于直线x-2y+3=0,则a、b的值为()
A.a=, b=0 B.a=2, b=0 C.a=-, b=0 D.a=-, b=2
6.若直线ax+2y+6=0与直线x+(a-1)y+(a2-1)=0平行但不重合,则a等于()
A.-1或2 B.-1 C.2 D.
7.已知两点A(-2,0),B(0,4),则线段AB的垂直平分线方程是()
A.2x+y=0 B.2x-y+4=0 C.x+2y-3=0 D.x-2y+5=0
8.原点在直线上的射影是P(-2,1),则直线的方程为()
A.x+2y=0 B.x+2y-4=0 C.2x-y+5=0 D.2x+y+3=0
9.两条直线x+3y+m=0和3x-y+n=0的位置关系是()
A.平行B.垂直C.相交但不垂直D.与m,n的取值有关
10.方程x2-y2=1表示的图形是()
A.两条相交而不垂直的直线B.一个点
C.两条垂直的直线D.两条平行直线
11.已知直线ax-y+2a=0与直线(2a-1)x+ay+a=0互相垂直,则a等于()
A.1 B.0 C.1或0 D.1或-1
12.点(4,0)关于直线5x+4y+21=0对称的点是()
A.(-6,8)B.(-8,-6)C.(6,8)D.(-6,-8)
13.已知点P(a,b)和点Q(b-1,a+1)是关于直线对称的两点,则直线的方程为()A.x+y=0 B.x-y=0 C.x+y-1=0 D.x-y+1=0
14.过点M(3,-4)且与A(-1,3)、B(2,2)两点等距离的直线方程是__________________.15.若两直线ax+by+4=0与(a-1)x+y+b=0垂直相交于点(0, m),则a+b+m的值是_____________________.
16.若直线1:2x-5y+20=0和直线2:mx-2y-10=0与坐标轴围成的四边形有一个外接圆,则实数m的值等于________.
17.已知点P是直线上一点,若直线绕点P沿逆时针方向旋转角(00<<900)所得的直线方程是x-y-2=0, 若将它继续旋转900-,所得的直线方程是2x+y-1=0, 则直线
的方程是___________.
18.平行于直线2x+5y-1=0的直线与坐标轴围成的三角形面积为5,求直线的方程.19.若直线ax+y+1=0和直线4x+2y+b=0关于点(2,-1)对称,求a、b的值.
20.已知三点A(1,0),B(-1,0),C(1,2),求经过点A并且与直线BC垂直的直线的方程.
21.已知定点A(-1,3),B(4,2),在x轴上求点C,使AC BC.
参考答案:
经典例题:
解:AC BH,, 直线AB的方程为y=3x-5 (1)
AB CH,, 直线AC的方程为y=5x+33 (2)
由(1)与(2)联立解得A点的坐标为(-19,-62).
当堂练习:
1.B;
2.C;
3.C;
4.D;
5.C;
6.B;
7.C;
8.C;
9.B; 10.C; 11.D; 12.D; 13.D; 14. x+3y+9=0 或13x+5y-19=0; 15. 2或-1; 16. -5; 17. x-2y-3=0;
18. 解:依题意,可设的方程为2x+5y+m=0, 它与x,y轴的交点分别为(-,0),
(0,-),由已知条件得:,m2=100, 直线的方程为2x+5y 10=0.
19. 解:由4x+2y+b=0,即2x+y+=0, 两直线关于点对称,说明两直线平行,a=2.
在2x+y+1=0上取点(0,-1),这点关于(2,-1)的对称点为(4,-1),
又(4,-1)满足2x+y+=0, 得b= -14, 所以a=2, b= -14.
20. 解:kBC==1,kl =-1, 所求的直线方程为y= -(x-1),即x+y-1=0.
21. 解:设C(x,0)为所求点,则kAC=, kBC=AC BC,kAC kBC=-1,
即x=1或x=2, 故所求点为C(1,0)或C(2,0).。

相关文档
最新文档