《数学建模》课件:第10章-统计回归模型
《数学建模》课件:第十章 统计回归模型
回归和拟合比较相近,但并不一样。对拟合而言, 一个Y变量对应一个X变量,而回归分析的一个Y变 量则有可能对应多个X变量。从这个角度说,拟合 也属于回归的一种。
/view/0aa4c90c844769eae009ed7d.html? re=view (回归分析的基本理论及软件实现)
linear(线性): y 0 1 x1 m xm
purequadratic(纯二次):
y 0 1x1 m xm
n
jj
x
2 j
j1
interaction(交叉): y 0 1x1 m xm jk x j xk
1 jkm
quadratic(完全二次): y 0 1x1 m xm jk x j xk
6.80
0.55
9.26
问题分析
注意到牙膏是生活必需品,顾客在购买同类 产品时常常会更在意不同品牌之间的价格差异, 而不是他们价格本身。
因此,在研究各因素对销售量的影响时,用价 格差代替公司销售价格和其他厂家平均价格更为合 适。 下面建立牙膏销售量与价格差、广告费之间的关系 模型。
基本模型
y 10
(1) beta=nlinfit(X,Y,function,beta0) (2) [beta,r,J]=nlinfit(X,Y,function,beta0)
10.1 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型; 题 预测在不同价格和广告费用下的牙膏销售量.
收集了30个销售周期本公司牙膏销售量、价格、
1
xn1
xn2
M10-统计回归模型
x2
从输出 Export 可得 ˆ( ˆ0, ˆ1, ˆ2, ˆ3, ˆ4, ˆ5)
10.2 软件开发人员的薪金
建立模型研究薪金与资历、管理责任、教育程度的关系
分析人事策略的合理性,作为新聘用人员薪金的参考
46名软件开发人员的档案资料
编 薪金 资 管 教 编 薪金 资 管 教
号
历理育 号
历理育
01 13876 1 1 1 42 27837 16 1 2 02 11608 1 0 3 43 18838 16 0 2 03 18701 1 1 3 44 17483 16 0 1 04 11283 1 0 2 45 19207 17 0 2 46 19346 20 0 1
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
y ˆˆ0ˆ1 x 1ˆ2x 2ˆ3 x 2 2 8 .29(百3 万支3)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
3.80 4.00 3.85 4.25
广告费用 (百万元)
5.50 6.75 5.80 6.80
价格差 (元) -0.05
0.25 0.05 0.55
销售量 (百万支)
7.38 8.51 7.93 9.26
基本模型
y 10
y ~公司牙膏销售量
9.5
9
x1~其它厂家与本公司价格差
8.5
8
x2~公司广告费用
10844
4
1
2
a0+a2+a4+a6
第10章 统计模型-回归分析
有:
ˆ b 0 T 1 T ( X X ) X Y ˆ bk
ˆ b 0 62.40 ˆ b 1 1.55 ˆ 0.51 b 2 ˆ 0.10 b3 b ˆ 0.14 4
残 差
置 信 区 间
Y1 1 x11 Y 1 x 2 21 Y X ... ... ... Y n 1 x n1
x12 x 22 ... xn 2
... x1 p ... x 2 p ... ... ... x np
5 参数的区间估计(假设检验)
记: 则有:
CA cij i , j 0,
1
A X X
T
ˆ b i
2 ˆ N (bi , e cii )
ˆ t ˆ t 故bi的区间估计为: b ˆ ˆ c , b i 1 / 2 e ii i 1 / 2 e cii
若因素xi不重要,则有bi=0,即上述区间包含0。
4、预测及作图: z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')
Residuals
4 3 2 1 0 -1 -2 -3 -4 -5 2 4 6 8 10 Case Number 12 14 16
“有进有出”的逐步回归分析(组合优 化)
6 matlab多元线性回归
y 0 1 x1 ... p x p
[b, bint,r,rint,stats]=regress(Y,X,alpha)
回 归 系 数 的 区 间 估 计
ˆ 0 ˆ 1 b ... ˆ p
统计回归模型 PPT课件
25
20
A 15 10
5
0
0
2
4
6
8
10
12
25
20
B 15 10
5
0
0
2
4
6
8
10
12
35 30 25
C 20 15 10 5 0 0
5
10
15
三.回归分析
1.相关与回归分析的概念 回归的古典意义:
高尔顿遗传学的回归概念
父母身高与子女身高的关系: 无论高个子或低个子的子女 都有向人的平均身高回归的 趋势
二.方差分析法
1. 单因素方差分析
分析结果
方差来源 平方和 自由度均方和 F值 显著性
A
6.77 2 3.39 0.32 N
误差 223.73 21 10.65
总和 230.50 23
(F0.05(2,21)=3.47)
三.回归分析
1.相关与回归分析的概念 变量间的相互关系
◆确定性的函数关系 Y=f (X) ◆不确定性的统计关系—相关关系
Y= f(X)+ε (ε为随机变量) ◆没有关系 变量间关系的图形描述:坐标图(散点图)
三.回归分析
1.相关与回归分析的概念 相关关系的类型
● 从涉及的变量数量看 简单相关 多重相关(复相关)
● 从变量相关关系的表现形式看 线性相关——散布图接近一条直线(左图) 非线性相关——散布图接近一条曲线(右图)
三.回归分析
1.相关与回归分析的概念
回归的现代意义
一个因变量对若干解释变量依存关系的研究 回归的目的(实质):由固定的自变量去估计因变量的平均
值
总 体
样
10统计回归模型
2 y 0 1 x2 2 x2
7.5 x 2
MATLAB 统计工具箱 模型求解 2 y 0 1 x1 2 x2 3 x2 由数据 y,x1,x2估计 [b,bint,r,rint,stats]=regress(y,x,alpha)
输入 y~n维数据向量
2 x= [1 x1 x2 x2 ] ~n4数 据矩阵, 第1列为全1向量
输出
b~的估计值
bint~b的置信区间
r ~残差向量y-xb
rint~r的置信区间
alpha(置信水平,0.05) 参数
0 1 2 3
参数估计值 置信区间 17.3244 [5.7282 28.9206] 1.3070 [0.6829 1.9311 ] -3.6956 [-7.4989 0.1077 ] 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0000
资历~ 从事专业工作的年数;管理~ 1=管理人员,0=非管理人 员;教育~ 1=中学,2=大学,3=更高程度
分析与假设
y~ 薪金,x1 ~资历(年)
1, 中学 x3 0 , 其它
x2 = 1~ 管理人员,x2 = 0~ 非管理人员
教 育
1=中学 2=大学 3=更高
1, 大学 x4 0 , 其它
10.1 牙膏的销售量
问 题
建立牙膏销售量与价格、广告投入之间的模型 预测在不同价格和广告费用下的牙膏销售量 收集了30个销售周期本公司牙膏销售量、价格、 广告费用,及同期其它厂家同类牙膏的平均售价
本公司价 格 (元 ) 3.85 3.75 其它厂家 价格(元) 3.80 4.00 广告费用 (百万元) 5.50 6.75 价格差 (元) -0.05 0.25 销售量 (百万支) 7.38 8.51
数学建模——回归分析模型 ppt课件
有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,
数学建模案例分析第十章统计回归模型
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。
数学建模之统计回归模型
数学建模大作业摘要某公司想用全行业的销售额作为自变量来预测公司的销售额,题目给出了1977—1981此公司的销售额和行业销售额的分季度数据表格。
通过对所给数据的简单分析,我们可以看出:此公司的销售额有随着行业销售额的增加而增加的趋势,为了更加精确的分析题目所给的数据,得出科学的结论,从而达到合理预测的目的。
我们使用时间序列分析法,参照课本统计回归模型例4,做出了如下的统计回归模型。
在问题一中,我们使用MATLB数学软件,画出了数据的散点图,通过观察散点图,发现公司的销售额和行业销售额之间有很强的线性关系,于是我们用线性回归模型去拟合,发现有很好的拟合性。
但是这种情况下,并没有考虑到数据的自相关性,所以我们做了下面几个问题的分析来对这个数学模型进行优化。
在问题二中,通过建立了公司销售额对全行业销售额的回归模型,并使用DW检测诊断随机误差项的自相关性。
通过计算和查DW表比较后发现随即误差存在正自相关,也就是说前面的模型有一定的局限性,预测结果存在一定的偏差,还有需要改进的地方。
在问题三中,因为在问题二中得出随即误差存在正自相关,为了消除随机误差的自相关性,我们建立了一个加入自相关后的回归模型。
并对其作出了分析和验证,我们发现加入自相关后的回归模型更加合理。
通过使用我们建立的模型对公司的销售额进行预测,发现和实际的销售额很接近,也就是说模型效果还不错。
关键词:销售额、回归模型、自相关性一、问题提出某公司想用全行业的销售额作为自变量来预测公司的销售额,下表给出了1977-1981年公司销售额和行业销售额的分季度数据(单位:百万元).(1)画出数据的散点图,观察用线性回归模型拟合是否合适。
(2)监理公司销售额对全行业销售额的回归模型,并用DW检验诊断随机误差项的自相关性。
二、基本假设假设一:模型中ε(对时间t )相互独立。
三、符号说明公司销售额:y (百万)行业销售额:x (百万) 概念介绍:1.自相关:自相关(auto correlation ),又称序列相关(serial correlation )是指总体回归模型的随机误差项之间存在的相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归小结
y 0 1x1 ... m xm
1、确定回归系数的点估计值:
b=regress( Y, X )
b
ˆ0 ˆ1 ...
ˆm
Y1
Y
Y2
...
Yn
1 Байду номын сангаас11 x12 ... x1m
X
1
x21
x22
...
x2m
... ... ... ... ...
[b,bint,r,rint,stats]=regress(Y,X, alpha)
Y为观察得到的因变量,X为自变量矩阵。若回归 系数中包含常数,则X的第一列应全部为1,Y与X的 行数相等,X的列数等于回归系数的个数。alpha为 输出各种置信区间用的显著性水平。
输出结果有5项: b是参数的点估计;
0
显 著 性 水 平
间 估
值、与F对应的概率p,s2的估 计值。
05 )
计
相关系数 R2 越接近 1,说明回归方程越显著;
F > F1-α(m,n-m-1)时拒绝 H0,F 越大,说明回归方程越显著;
与 F 对应的概率 p 时拒绝 H0,回归模型成立.
3、画出残差及其置信区间: rcoplot(r,rint) 4、作预测及求预测区间: rstool(x,y,’linear’)
bint为参数的区间估计;
r为残差的点估计;
rint为残差的区间估计,当点估计落在区间估计之外 时,拒绝原假设; stats中包含四个项: R2是回归方程的相关系数R的平方; s2的估计值
F是回归方程的F统计量,F F(m, n m 1) ;
P是拒绝原假设的概率,当P<alpha时拒绝假设 H0 :1 2 m 0 ,即接受y与x有线性关系。
根据自变量个数和经验函数形式的不同,回归 分析可以分为一元回归、多元回归、线性回归、多 项式(完全二次、交叉二次等)回归等许多类别。
回归和拟合比较相近,但并不一样。对拟合而言, 一个Y变量对应一个X变量,而回归分析的一个Y变 量则有可能对应多个X变量。从这个角度说,拟合 也属于回归的一种。
/view/0aa4c90c844769eae009ed7d.html? re=view (回归分析的基本理论及软件实现)
回归分析的一般步骤
1. 确定回归方程中的因变量和自变量;
2. 设定回归模型; 基于数据画散点图,通过观察散点图设出因变量和自变量 之间的关系(线性、非线性等),含待定参数。
3. 求得回归方程并进行检验; 利用数学软件(MATLAB)求相关参数即回归系数,得到确定 的回归方程,并对回归方程进行检验( 比如计算R2,F, p, s2 对模型进行整体评价, 观察回归系数置信区间是否含零点 来检验回归系数对因变量的影响是否显著等)。
第十章 统计回归模型
重点: 1.熟悉建立统计回归模型的基本方法和步骤; 2.熟练运用Matlab作回归分析、预测等。
内容:回归分析的基本理论;用MATLAB求解回归分 析问题;牙膏的销售量
数学建模的基本方法
机理分析
测试分析
由于客观事物内部规律的复杂及人们认识程度的限制, 无法分析实际对象内在的因果关系,建立合乎机理规 律的数学模型.
通过对数据的统计分析,找出与数据拟合最好的模型. 回归模型是用统计分析方法建立的最常用的一类模型.
回归分析---研究一个变量与其他变量之间相互关系 的一种数学工具,它是在一组试验或观测数据的基 础上,寻找被随机性掩盖的变量之间的依存关系。 粗略的讲,可以理解为用一种确定的函数关系去近 似代替比较复杂的关系,这个函数被称为回归函数 (回归方程、经验函数)。
2.多 项 式 回 归
(一)一元多项式回归 1、回归:
线性回归:
b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) 输入: Y~因变量 (列向量), X~1与自变量组成的矩阵,
alpha~显著性水平(缺省时设定为0.05) 输出:b=(ˆ0, ˆ1, , ˆ)n ),bint: b的置信区间,
/view/139ec687b9d528ea81c779dd.ht ml (多元线性回归课件)
/link?url=Dg3KGri5Xa3U0DoyFHMYf2YNPHKjsH0EGjgoCq9H_WvRwtJrz Rgvi5xDaOTLILlMumX9juMsbMwn8HGdl0B14isoDnUAE4Re rXD1XcSQ_G (回归分析MATLAB工具箱)
4. 若检验通过,利用回归方程进行预测(借助MATLAB); 若不通过,则改进模型(如增添二次项、交互项等)。
统计工具箱中的回归分析命令
1、多元线性回归 2、多项式回归 3、非线性回归
1.多元线性回归
y 0 1x1 ... m xm
线性回归: regress 调用格式:
(1) b=regress(Y,X) (2) [b,bint]=regress(Y,X) (3) [b,bint,r]=regress(Y,X) (4) [b,bint,r,rint]= regress(Y,X) (5) [b,bint,r,rint,stats]= regress(Y,X) (6) [b,bint,r,rint,stats]=regress(Y,X,alpha)
r:残差向量,rint: r的置信区间
stats: 4个检验统计量:决定系数R2;F统计量值;
F残(m差,n-的m-1方)分差布s大2 (这于里F值s称的剩概余率标p,准p差<)的时估回计归.模型有效;
rcoplot(r,rint) 残差及其置信区间作图
常用调用格式
b=regress(Y,X, alpha) 或
1
xn1
xn2
...
xnm
对于一元线性回归,取m=1即可。
2、求回归系数的点估计和区间估计并检验回归模型: [b, bint,r,rint,stats]=regress(Y,X,alpha)
回 归 系 数 的 区
置
残 差
信 区 间
用于检验回归模型的统计量, 有 四个数值:相关系数R2、F
.
(
缺 省 时 为