人教中考数学综合题专题复习【一元二次方程】专题解析附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程真题与模拟题分类汇编(难题易错题)
1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?
【答案】经过2秒后△PBQ的面积等于4cm2.
【解析】
【分析】
作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=1
2
×PB×QE,有P、Q点的移动速
度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】
解:
如图,
过点Q作QE⊥PB于E,则∠QEB=90°.
∵∠ABC=30°,
∴2QE=QB.
∴S△PQB=1
2
•PB•QE.
设经过t秒后△PBQ的面积等于4cm2,
则PB=6﹣t,QB=2t,QE=t.
根据题意,1
2
•(6﹣t)•t=4.
t2﹣6t+8=0.
t2=2,t2=4.
当t=4时,2t=8,8>7,不合题意舍去,取t=2.
答:经过2秒后△PBQ的面积等于4cm2.
【点睛】
本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.
2.解方程:
2
33
230 2121
x x
x x
⎛⎫⎛⎫
--=
⎪ ⎪
--
⎝⎭⎝⎭
.
【答案】x=15或x=1 【解析】 【分析】 设321
x y x =
-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321
x y x =
-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321
x x =-. 解得x=15
或x=1. 经检验:x=15
或x=1都是原方程的解. ∴原方程的解是x=
15或x=1. 【点睛】
考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.
3. y 与x 的函数关系式为:y=1.7x (x≤m );
或( x≥m) ;
4.已知两条线段长分别是一元二次方程28120x x -+=的两根,
(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。 (3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2)223)83
【解析】
【分析】
(1)求解该一元二次方程即可;
(2)先确定等腰三角形的边,然后求面积即可;
(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.
【详解】
解:(1)由题意得()()260x x --=,
即:2x =或6x =,
∴两条线段长为2和6;
(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3, 由勾股定理得:该等腰三角形底边上的高为:2231=22+
∴此等腰三角形面积为12222
⨯⨯=22. (3)设分为x 及6x -两段
()22226x x +=-
∴83
x =, ∴2823
x S ∆==, ∴面积为8
3.
【点睛】
本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.
5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.
【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析
【解析】
【分析】
根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.
【详解】
解:∵90B ∠=,10AC =,6BC =,
∴8AB =.
∴BQ x =,82PB x =-;
假设存在x 的值,使得四边形APQC 的面积等于216cm ,
则()1168821622
x x ⨯⨯--=, 整理得:2480x x -+=,
∵1632160=-=-<,
∴假设不成立,四边形APQC 面积的面积不能等于216cm .
【点睛】
本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.
6.用适当的方法解下列一元二次方程:
(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.
【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】
试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;
(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.
试题解析:(1)∵a=2,b=4,c=-1
∴△=b 2-4ac=16+8=24>0
∴x=2b a -±=41222-=-±⨯
∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0
[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0
即4y+1=0或-2y+3=0
解得y 1=-14,y 2=32
.
7.阅读下面的例题,
范例:解方程x 2﹣|x|﹣2=0,
解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2
请参照例题解方程x 2﹣|x ﹣10|﹣10=0.
【答案】x 1=4,x 2=﹣5.
【解析】
【分析】