人教中考数学综合题专题复习【一元二次方程】专题解析附详细答案
中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题
一元二次方程一、选择题1. (某某某某,5,4分)—元二次方程x 2+2x +1=0的根的情况( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】B【逐步提示】先根据一元二次方程x 2+2x +1=0确定a 、b 、c 的值,再求判别式b 2-4ac 的值,最后根据判别式值的情况作出判断.【详细解答】解:一元二次方程x 2+2x +1=0中,a =1,b =2,c =1,所以b 2-4ac =22-4×1×1=0,故选择B .【解后反思】一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.【关键词】一元二次方程;一元二次方程根的判别式2. ( 某某省,14,2分)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为0【答案】B【逐步提示】本题考查了一元二次方程根的判别式,先化简不等式得到ac <0,进而判断出b 2-4ac 的符号,由此可知方程根的情况.【详细解答】解:∵(a -c )2>a 2+c 2,即a 2-2ac+c 2>a 2+c 2,∴ac <0,a ≠0.∴关于x 的方程ax 2+bx+c 是一元二次方程,且b 2-4ac >0,故该方程有两个不相等的实数根.【解后反思】1.一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.ax 2+bx +c =0来说,只有当a≠0时,这个方程才是一元二次方程.【关键词】不等式;根的判别式;一元二次方程的定义3. (某某省某某市,10,3分)关于x 的一元二次方程042=++k x x 有两个相等的实根,则k 的值为( )A.k =-4B.k =4C.4-≥kD.4≥k【答案】B【逐步提示】本题考查的是一元二次方程根的判别式,利用一元二次方程的根的情况得到判别式的大小是解题的关键.第一步,根据题目已知条件判断“0=∆”;第二步, 由ac b 42-=∆,列出含有字母k 的方程并求解即可得出答案。
中考数学——一元二次方程的综合压轴题专题复习含答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥(2)4 【解析】试题分析: 根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值.试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得 ()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.3.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到21344m?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB ,BC 分别是20米、20米.【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.7.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人. 设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.8.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.9.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.10.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a -=求解即可.试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=,∴x1=2,x 2=2。
中考数学专题复习分类练习 一元二次方程组综合解答题含答案解析
中考数学专题复习分类练习一元二次方程组综合解答题含答案解析一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21xx-÷(1+211x-)=22211 11 x xx x-+÷--=()() 2211 1x xxx x+-⋅-=x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3. y与x的函数关系式为:y=1.7x(x≤m);或( x≥m) ;4.从图象来看,该函数是一个分段函数,当0≤x≤m时,是正比例函数,当x>m时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.5.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.6.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 2.7.已知1x 、2x 是关于x 的方程222(1)50x m x m -+++=的两个不相等的实数根.(1)求实数m 的取值范围;(2)已知等腰ABC ∆的一边长为7,若1x 、2x 恰好是ABC ∆另外两边长,求这个三角形的周长.【答案】(1)m>2; (2)17【解析】试题分析:(1)由根的判别式即可得;(2)由题意得出方程的另一根为7,将x =7代入求出x 的值,再根据三角形三边之间的关系判断即可得.试题解析:解:(1)由题意得△=4(m +1)2﹣4(m 2+5)=8m -16>0,解得:m >2; (2)由题意,∵x 1≠x 2时,∴只能取x 1=7或x 2=7,即7是方程的一个根,将x =7代入得:49﹣14(m +1)+m 2+5=0,解得:m =4或m =10.当m =4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17; 当m =10时,方程的另一个根为15,此时不能构成三角形;故三角形的周长为17.点睛:本题主要考查判别式、三角形三边之间的关系,熟练掌握韦达定理是解题的关键.8.若关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根.(1)求a 的取值范围;(2)当a 为符合条件的最大整数,求此时方程的解.【答案】(1)a ≤174;(2)x =1或x =2 【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b 2﹣4ac≥0,建立关于a 的不等式,即可求出a 的取值范围;(2)根据(1)确定出a 的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x 的一元二次方程x 2﹣3x +a ﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a ﹣2)≥0,解得a ≤174; (2)由(1)可知a ≤174, ∴a 的最大整数值为4,此时方程为x 2﹣3x +2=0,解得x =1或x =2. 【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x 米2, 根据题意得:4600022000x -﹣46000220001.5x-= 4 解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x 米,根据题意得,(20﹣3x )(8﹣2x )=56 解得:x=2或x=263(不合题意,舍去). 答:人行道的宽为2米.10.已知关于x 的方程(x-3)(x-2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把2212123x x x x +=变形,化成和与乘积的形式,代入计算,得到一个关于p 的一元二次方程,解方程即可求解.【详解】证明:(1)(x ﹣3)(x ﹣2)﹣p 2=0,x 2﹣5x+6﹣p 2=0,△=(﹣5)2﹣4×1×(6﹣p 2)=25﹣24+4p 2=1+4p 2,∵无论p 取何值时,总有4p 2≥0,∴1+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)x 1+x 2=5,x 1x 2=6﹣p 2,∵2212123x x x x +=, ∴(x 1+x 2)2﹣2x 1x 2=3x 1x 2,∴52=5(6﹣p 2),∴p=±1.考点:根的判别式;根与系数的关系.11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法. 例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n 中黑点的个数分别是 、 .请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有 个圆圈;第n 个点阵中有 个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n 个;(1)61;3n 2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.12.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m),列出方程求解即可.试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m﹣m2=12,60m﹣3m2=192,m2﹣20m+64=0,m1=4,m2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.13.已知关于x的方程x2﹣(2k+1)x+4(k﹣12)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?【答案】(1)详见解析;(2)k=32或2.【解析】【分析】(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.【详解】(1)∵△=(2k+1)2﹣4×4(k﹣12)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)() 2k12k3 x=2±+﹣∴x1=2k﹣1,x2=2,∵a 、b 、c 为等腰三角形的三边,∴2k ﹣1=2或2k ﹣1=3,∴k =32或2. 【点睛】 本题考查了根的判别式以及等腰三角形的性质,分a 是等腰三角形的底和腰两种情况是解题的关键.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.【详解】(1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。
中考数学压轴题专题一元二次方程的经典综合题附答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.3.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.4.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n .【解析】【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解.【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n.【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.5.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.6.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.7.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +ba =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x 的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥1x x ⎛⎫-⋅-= ⎪⎝⎭2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++()411x x +⋅+5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥36x x⋅=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式x =求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =42±=, ∴x1=2,x 2=210.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.。
中考数学专题复习一元二次方程的综合题附答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.解方程:(x+1)(x ﹣3)=﹣1. 【答案】x 1=1+3,x 2=1﹣3 【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可. 试题解析:整理得:x 2﹣2x=2,配方得:x 2﹣2x+1=3,即(x ﹣1)2=3, 解得:x 1=1+3,x 2=1﹣3.3.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根. (1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值. 【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12. 【解析】 【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣26a a + ,x 1x 2=6aa + ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2. 【详解】(1)∵原方程有两实数根,∴,∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根, ∴x 1+x 2=﹣,x 1x 2=,∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣+1=﹣.∵(x 1+1)(x 2+1)是负整数, ∴﹣是负整数,即是正整数.∵a 是整数,∴a ﹣6的值为1、2、3或6, ∴a 的值为7、8、9或12. 【点睛】本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.4.发现思考:已知等腰三角形ABC 的两边分别是方程x 2﹣7x+10=0的两个根,求等腰三角形ABC 三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因. 涵涵的作业解:x 2﹣7x+10=0 a=1 b=﹣7 c=10 ∵b 2﹣4ac=9>0∴x=2b b 4ac 2a--=732±∴x 1=5,x 2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2. 当腰为2,底为5时,等腰三角形的三条边为2,2,5. 探究应用:请解答以下问题:已知等腰三角形ABC 的两边是关于x 的方程x 2﹣mx+m 2﹣14=0的两个实数根. (1)当m=2时,求△ABC 的周长; (2)当△ABC 为等边三角形时,求m 的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC 的周长为72;(2)当△ABC 为等边三角形时,m 的值为1. 【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5. (1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+34=0,∴x1=12,x2=32.当12为腰时,12+12<32,∴12、12、32不能构成三角形;当32为腰时,等腰三角形的三边为32、32、12,此时周长为32+32+12=72.答:当m=2时,△ABC的周长为72.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】6.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.7.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a12+×()b b12+×6=()()3ab a1b12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.8.阅读下面的例题, 范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0. 【答案】x 1=4,x 2=﹣5. 【解析】 【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5, 故原方程的根是x 1=4,x 2=﹣5. 【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.9.已知关于x 的一元二次方程x 2﹣mx ﹣2=0…①(1)若x =﹣1是方程①的一个根,求m 的值和方程①的另一根; (2)对于任意实数m ,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析. 【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断. (1)把x=-1代入得1+m-2=0,解得m=1 ∴2--2=0.∴∴另一根是2; (2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根10.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0. (1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根. 【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】 【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可. 【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15.将a=15代入原方程得24x2054x5-+-=,解得:x1=12,x2=2.∴a=15,方程的另一根为12;(2)①当a=1时,方程为2x=0,解得:x=0.②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0.当a=2时,原方程为:x2+2x+1=0,解得:x1=x2=-1;当a=0时,原方程为:-x2+2x-1=0,解得:x1=x2=1.综上所述,当a=1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.。
中考数学专题练习 一元二次方程(含解析)
一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。
中考数学专题练习 一元二次方程(含解析)
一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。
中考数学专题复习一元二次方程组的综合题含答案解析
中考数学专题复习一元二次方程组的综合题含答案解析一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2.(1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值. 试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2,∴k1=1,k2=-3.∵k≤12,∴k=-3.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用5.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.8.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1+2x 2=-1-22)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴1=-∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32. 9.关于x 的一元二次方程()22210x k x k +-+=有两个不等实根1x ,2x .(1)求实数k 的取值范围;(2)若方程两实根1x ,2x 满足121210x x x x ++-=,求k 的值.【答案】(1) k <14;(2) k=0. 【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,代入x 1+x 2+x 1x 2-1=0,即可求出k 值.【详解】解:(1)∵关于x 的一元二次方程x 2+(2k-1)x+k 2=0有两个不等实根x 1,x 2, ∴△=(2k-1)2-4×1×k 2=-4k+1>0,解得:k <14, 即实数k 的取值范围是k <14; (2)由根与系数的关系得:x 1+x 2=-(2k-1)=1-2k ,x 1•x 2=k 2,∵x 1+x 2+x 1x 2-1=0,∴1-2k+k 2-1=0,∴k 2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.10.已知:如图,在Rt ABC ∆中,90C ∠=︒,8AC =cm ,6BC =cm.直线PE 从B 点出发,以2 cm/s 的速度向点A 方向运动,并始终与BC 平行,与线段AC 交于点E .同时,点F 从C 点出发,以1cm/s 的速度沿CB 向点B 运动,设运动时间为t (s) (05t <<) .(1)当t 为何值时,四边形PFCE 是矩形?(2)当ABC ∆面积是PEF ∆的面积的5倍时,求出t 的值;【答案】(1)3011t =;(2)55t ±= 【解析】【分析】(1)首先根据勾股定理计算AB 的长,再根据相似比例表示PE 的长度,再结合矩形的性质即可求得t 的值.(2)根据面积相等列出方程,求解即可.【详解】解:(1)在Rt ABC ∆中,90,8,6C AC BC ︒∠===Q ,10AB ∴===102//,,1068PA PE AE t PE AE PE BC AB BC AC -∴==∴==Q 34(102),(102)55PE t AE t ∴=-=-,当PE CF =时,四边形PECF 是矩形, 3(102)5t t ∴-= 解得3011t = (2)由题意22424116825552t t =+=⨯⨯⨯整理得2t 550t -+=,解得t =52t ∴=,ABC ∆面积是PEF ∆的面积的5倍。
人教中考数学压轴题专题一元二次方程的经典综合题含详细答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.(1)求证:对任意实数m,方程总有2个不相等的实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【答案】(1)证明见解析;(2)m的值为±2,方程的另一个根是5.【解析】【分析】(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.【详解】(1)证明:∵(x﹣3)(x﹣4)﹣m2=0,∴x2﹣7x+12﹣m2=0,∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,∵m2≥0,∴△>0,∴对任意实数m,方程总有2个不相等的实数根;(2)解:∵方程的一个根是2,∴4﹣14+12﹣m2=0,解得m=±,∴原方程为x2﹣7x+10=0,解得x=2或x=5,即m的值为±,方程的另一个根是5.【点睛】此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.当△=b2-4ac>0时,方程有两个不相等的实数根;当△=b2-4ac=0时,方程有两个相等的实数根;当△=b2-4ac<0时,方程没有实数根.2.计算题(1)先化简,再求值:21xx-÷(1+211x-),其中x=2017.(2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值.【答案】(1)2018;(2)m=4【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -) =2221111x x x x -+÷-- =()()22111x x x x x+-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根,∴△=(﹣2)2﹣4×1×(m ﹣3)=0,解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.4.关于x 的方程(k -1)x 2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S的值为2∴S的值能为2,此时k的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.(1)求m的取值范围;(2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】【分析】(1)根据△≥0即可求解,(2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可. 【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0,解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0 解得:m 1=﹣1,m 1=3,由(1)知m≥-34, ∴m 1=﹣1应舍去,∴m 的值为3.【点睛】 本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.6.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
2022年中考数学真题-专题07 一元二次方程(1)(全国通用解析版)
专题07 一元二次方程一.选择题1. 关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,则这两根之积为( ) A. 13 B. 23 C. 1 D. 13- 【答案】D【解析】【分析】根据一元二次方程根与系数的关系即可求解. 【详解】解:关于x 的一元二次方程2320x x m -+=有两根,其中一根为1x =,设另一根为2x ,则223x x +=, 213x ∴=-, 213xx ∴=-, 故选:D【点睛】本题考查了一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.2. 方程2430x x ++=的两个根为( )A. 121,3x x ==B. 121,3x x =-=C. 121,3x x ==-D. 121,3x x =-=-【答案】D【解析】【分析】将243x x ++进行因式分解,243=(1)(3)x x x x ++++,计算出答案.【详解】∵243=(1)(3)x x x x ++++∴(1)(3)=0x x ++∴1213x x =-=-,故选:D .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握因式分解法解一元二次方程.3. 下列一元二次方程有实数解的是( )A. 2x 2﹣x +1=0B. x 2﹣2x +2=0C. x 2+3x ﹣2=0D. x 2+2=0 【答案】C【解析】【分析】判断一元二次方程实数根的情况用根的判别式进行判断.【详解】A 选项中,224(1)42170b ac =-=--⋅⋅=-<△,故方程无实数根; B 选项中,2(2)41240=--⋅⋅=-<△,故方程无实数根;C 选项中,2341(2)170=-⋅⋅-=>△,故方程有两个不相等的实数根;D 选项中,80=-<△,故方程无实数根;故选C .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程实数根情况的判定方法是解题的关键.4. 用配方法解方程x 2-2x =2时,配方后正确的是( )A. ()213x +=B. ()216x +=C. ()213x -=D. ()216x -= 【答案】C【解析】【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果.【详解】解:x 2-2x =2,x 2-2x +1=2+1,即(x -1)2=3.故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5. 若关于x 的方程260x x c ++=有两个相等的实数根,则c 的值是( )A. 36B. 36-C. 9D. 9- 【答案】C【解析】【分析】根据判别式的意义得到2640c ∆=-=,然后解关于c 的一次方程即可.【详解】解:∵方程260x x c ++=有两个相等的实数根∵26410c ∆=-⨯⨯=解得9c =故选:C .【点睛】本题考查了根的判别式:一元二次方程20(a 0)++=≠ax bx c 的跟与24b ac ∆=-的关系,关键是分清楚以下三种情况:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根. 6. 已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A. 2022-B. 0C. 2022D. 4044 【答案】B【解析】【分析】根据题意有2320220m m +-=,即有32320220m m m +-=,据此即可作答.【详解】∵m 为2320220x x +-=的根据,∴2320220m m +-=,且m ≠0,∴32320220m m m +-=,则有原式=322(32022)(32022)000m m m m m +--+-=-=,故选:B .【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m 为2320220x x +-=得到2320220m m +-=是解答本题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可. 【详解】抛物线2y x mx =+的对称轴为直线2x =,221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =【答案】B【解析】【分析】第一年共植树400棵,第二年植树400(1+x )棵,第三年植树400(1+x )²棵,再根据题意列出方程即可.【详解】第一年植树为400棵,第二年植树为400(1+x )棵,第三年400(1+x )²棵,根据题意列出方程:2400(1)625x +=.故选:B .【点睛】本题考查了一元二次方程的应用,属于增长率的常规应用题,解决此类题目要多理解、练习增长率相关问题.9. 一元二次方程22560x x -+=的根的情况为( )A. 无实数根B. 有两个不等的实数根C. 有两个相等的实数根D. 不能判定【答案】A【解析】【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:∵Δ=(−5)2−4×2×6=-23<0,∴方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10. 已知关于x 的方程()22210x m x m --+=的两实数根为1x ,2x ,若()()12113++=x x ,则m 的值为( )A. 3-B. 1-C. 3-或3D. 1-或3【答案】A【解析】【分析】利用根与系数的关系以及()22=2140∆--≥m m 求解即可. 【详解】解:由题意可知:1221221x x m x x m+=-⎧⎨⋅=⎩,且()22=2140∆--≥m m ∵()()121212111=3++=⋅+++x x x x x x ,∴()22113+-+=m m ,解得:3m =-或1m =,∵()22=2140∆--≥m m ,即14m ≤, ∴3m =-,故选:A 【点睛】本题考查根与系数的关系以及根据方程根的情况确定参数范围,解题的关键是求出14m ≤,再利用根与系数的关系求出3m =-或1m =(舍去). 11. 小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( )A. ()22001242x +=B. ()22001242x -= C.()20012242x += D. ()20012242x -=【答案】A【解析】【分析】平均增长率为x ,关系式为:第三天揽件量=第一天揽件量×(1+平均增长率)2,把相关数值代入即可.【详解】解:由题意得:第一天揽件200件,第三天揽件242件,∴可列方程为:()22001242x +=,故选:A .【点睛】此题考查一元二次方程的应用,得到三天的揽件量关系式是解决本题的突破点,难度一般.12. 关于x 的一元二次方程240x x k -+=无实数解,则k 的取值范围是( )A. 4k >B. 4k <C. 4k <-D. 1k > 【答案】A【解析】【分析】根据一元二次方程根的判别式小于0即可求解.【详解】解:∵关于x 的一元二次方程240x x k -+=无实数解,∴1640k ∆=-<解得:4k >故选:A∵【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.13. 临近春节的三个月,某干果店迎来了销售旺季,第一个月的销售额为8万元,第三个月的销售额为11.52万元,设这两个月销售额的月平均增长率为x ,则根据题意,可列方程为( )A. 8(12)11.52x +=B. 28(1)11.52x ⨯+=C. 28(1)11.52x +=D. ()28111.52x += 【答案】C【解析】 【分析】设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,即可得.【详解】解:设这两个月销售额的月平均增长率为x ,则第二个月的销售额是8(1+)x 万元,第三个月的销售额为28(1+)x 万元,∴28(1+)=11.52x故选C .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是能够求出第二个月的销售额和第三个月的销售额.14. 若关于x 的一元二次方程20x x k +-=有两个实数根,则k 的取值范围是( ) A. 14k >- B. 14k ≥- C. 14k <- D. 14k ≤- 【答案】B【解析】 【分析】根据关于x 的一元二次方程x 2+x -k =0有两个实数根,得出Δ=b 2-4ac ≥0,即1+4k ≥0,从而求出k 的取值范围.【详解】解:∵x 2+x -k =0有两个实数根,∴Δ=b 2-4ac ≥0,即1+4k ≥0,解得:k ≥-14, 故选:B .【点睛】本题考查一元二次方程根的判别式,掌握Δ>0⇔方程有两个不相等的实数根;Δ=0⇔方程有两个相等的实数根;Δ<0⇔方程没有实数根是本题的关键. 15. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A. ()316210x x -=B. ()316210x -=C. ()316210x x -=D. 36210x = 【答案】A【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210,故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16. 一元二次方程210x x +-=的根的情况是( )A. 有两个不相等的实数根B. 没有实数根C. 有两个相等的实数根D. 只有一个实数根【答案】A【解析】【分析】计算一元二次方程根的判别式进而即可求解.【详解】解:241450b ac ∆=-=+=>∴一元二次方程210x x +-=的根的情况是有两个不相等的实数根, 故选:A.【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.17. 已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( )A. 0B. -10C. 3D. 10【答案】A【解析】【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=10,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键. 18. 若关于x 的一元二次方程2210ax x 有两个不相等的实数根,则a 的取值范围是( )A. 0a ≠B. 1a >-且0a ≠C. 1a ≥-且0a ≠D. 1a >- 【答案】B【解析】【分析】根据一元二次方程的定义和根的判别式得出a ≠0,Δ=22-4a ×(-1)=4+4a >0,再求出即可.【详解】解:∵关于x 的一元二次方程ax 2+2x -1=0有两个不相等的实数根, ∴a ≠0,Δ=22-4a ×(-1)=4+4a >0,解得:a >-1且a ≠0,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2+bx +c =0(a 、b 、c 为常数,a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根;当b 2-4ac =0时,方程有两个相等的实数根;当b 2-4ac <0时,方程没有实数根.19. 关于x 的方程2320x kx --=实数根的情况,下列判断正确的是( )A. 有两个相等实数根B. 有两个不相等实数根C. 没有实数根D. 有一个实数根 【答案】B【解析】【分析】根据根的判别式直接判断即可得出答案.【详解】解:对于关于x 的方程2320x kx --=,∵()22341(2)980k k ∆=--⨯⨯-=+>,∴此方程有两个不相等的实数根.故选B .【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.20. 中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A. 2B. 32C. 12 【答案】A【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∵小正方形与每个直角三角形面积均为1, ∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0, ∴a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.二、填空题21. 请填写一个常数,使得关于x 的方程22+-x x ____________0=有两个不相等的实数根.【答案】0(答案不唯一) 【解析】【分析】设这个常数为a ,利用一元二次方程根的判别式求出a 的取值范围即可得到答案.【详解】解:设这个常数为a , ∵要使原方程有两个不同的实数根, ∴()2=240a ∆-->, ∴1a <,∴满足题意的常数可以为0, 故答案为:0(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,熟知一元二次方程根的判别式是解题的关键.22. 方程2x 2+1=3x 的解为________. 【答案】1211,2x x == 【解析】【分析】先移项,再利用因式分解法解答,即可求解. 【详解】解:移项得:22310x x -+=, ∵()()2110x x --=, ∵210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.23. 若一元二次方程2240x x m -+=有两个相等的实数根,则m =________. 【答案】2 【解析】【分析】由方程有两个相等的实数根可知,利用根的判别式等于0即可求m 的值,【详解】解:由题意可知:2a =,4b =-,c m =240b ac =-=, ∴16420m -⨯⨯=, 解得:2m =. 故答案为:2.【点睛】本题考查了利用一元二次方程根的判别式24b ac =-△求参数:方程有两个不相等的实数根时,0>;方程有两个相等的实数根时,0=;方程无实数根时,△<0等知识.会运用根的判别式和准确的计算是解决本题的关键. 24. 若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是_________.【答案】【解析】【分析】由题意解一元二次方程2640x x -+=得到3x =+3x =-据勾股定理得到直角三角形斜边的长是【详解】解:一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,∴由公式法解一元二次方程2640x x -+=可得66322x ±===±∴==,故答案为:【点睛】本题考查勾股定理求线段长,根据题意解出一元二次方程的两根是解决问题的关键.25. 已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______. 【答案】1 【解析】【分析】由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式0=, ∴440k -=, 解得:1k =. 故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.26. 一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______. 【答案】1 【解析】【分析】将原方程2430x x -+=变形成与()22x k -=相同的形式,即可求解. 【详解】解:2430x x -+=243101x x -++=+2441x x -+=()221x -=∴1k = 故答案为:1.【点睛】本题主要考查解一元二次方程中的配方法,掌握配方法的解题步骤是解本题的关键.27. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,∴x 1•x 2=31=3.故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.28. 若关于x 的一元二次方程220x x k -+=有实数根,则实数k 的取值范围是_____. 【答案】1k ≤ 【解析】【分析】由关于x 的一元二次方程220x x k -+=有实数根,可得440,k 再解不等式可得答案.【详解】解: 关于x 的一元二次方程220x x k -+=有实数根, ∴()22410k ∆=--⨯⨯≥, 即440,k解得:1k ≤ . 故答案为:1k ≤.【点睛】本题考查的是一元二次方程根的判别式的应用,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根. 29. 已知实数12,x x 是方程210x x +-=的两根,则12x x =______. 【答案】1- 【解析】【分析】由一元二次方程根与系数的关系直接可得答案. 【详解】解: 实数12,x x 是方程210x x +-=的两根,1211,1x x故答案为:1-【点睛】本题考查的是一元二次方程根与系数的关系,掌握“12cx x a=”是解本题的关键.30. 某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x (0x >),则x =_________(用百分数表示). 【答案】30% 【解析】【分析】由题意:2019年的新注册用户数为100万,2021年的新注册用户数为169万,即可列出关于x 的一元二次方程,解方程即可.【详解】解:设新注册用户数的年平均增长率为x (0x >),则2020年新注册用户数为100(1+x )万,2021年的新注册用户数为100(1+x )2万户, 依题意得100(1+x )2=169,解得:x 1=0.3,x 2=-2.3(不合题意舍去), ∴x =0.3=30%,故答案为:30%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.31. 设1x ,2x 是方程2230x x +-=的两个实数根,则2212x x +的值为________.【答案】10 【解析】【分析】由根与系数的关系,得到122x x +=-,123x x =-,然后根据完全平方公式变形求值,即可得到答案. 【详解】解:根据题意,∵1x ,2x 是方程2230x x +-=的两个实数根, ∴122x x +=-,123x x =-,∴2212122212()2(2)2(3)10x x x x x x =+-=--⨯-=+;故答案为:10.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式变形求值,解题的关键是掌握得到122x x +=-,123x x =-.32. 如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为______cm (玻璃瓶厚度忽略不计).【答案】7.5 【解析】【分析】如详解中图所示,将题中主视图做出来,用垂径定理、勾股定理计算即可.【详解】如下图所示,设球的半径为r cm ,则OG =EG -r =EF -GF -r =EF -AB -r =32-20-r =(12-r )cm , ∵EG 过圆心,且垂直于AD , ∵G 为AD 的中点, 则AG =0.5AD =0.5×12=6cm , 在Rt OAG 中,由勾股定理可得,222OA OG AG =+, 即222(12)6r r =-+, 解方程得r =7.5, 则球的半径为7.5cm .【点睛】本题考查了主视图、垂径定理和勾股定理的运用,准确做出立体图形的主视图是解题的关键.33. 已知关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围是______. 【答案】1m < 【解析】【分析】根据判别式的意义得到22410m ∆=-⨯⨯>,然后解不等式求出m 的取值即可.【详解】解:根据题意得22410m ∆=-⨯⨯>, 解得1m <,所以实数m 的取值范围是1m <. 故答案为:1m <.【点睛】本题考查了根的判别式:一元二次方程()200++=≠ax bx c a 的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.34. 我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为______.【答案】289 【解析】【分析】设直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,由切线长定理可得,直角三角形的内切圆的半径等于2a b c+-,即6a b c +-=,根据小正方的面积为49,可得()249a b -=,进而计算2c 即22a b +即可求解.【详解】解:设四个全等的直角三角形的三边分别为,,a b c ,较长的直角边为,a 较短的直角边为,b c 为斜边,直角三角形的内切圆半径为3,小正方形的面积为49,∴()23492a b c a b +-=-=,, ∴6a b c +-=①,7a b -=②,131,22c c a b +-∴==, 222a b c +=③,22213122c c c +-⎛⎫⎛⎫∴+= ⎪ ⎪⎝⎭⎝⎭, 解得=17c 或5c =-(舍去), 大正方形的面积为2217289c ==, 故答案为:289.【点睛】本题考查了切线长定理,勾股定理,解一元二次方程,二元一次方程组,掌握直角三角形的内切圆的半径等于2a b c +-是解题的关键.35. 已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是________. 【答案】6 【解析】【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案. 【详解】∵a -b 2=4 ∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥ ∴4a ≥当a=4时,()213a --取得最小值为6 ∴222a a --的最小值为6 ∵22231422a a a b a --=-+- ∴22314a b a -+-的最小值6 故答案为:6.【点睛】本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.三、解答题36. 解方程:x 2-2x -3=0 【答案】121,3x x =-= 【解析】【分析】利用因式分解法解一元二次方程即可得. 【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=, 1x =-或3x =,故方程的解为121,3x x =-=.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的常用方法(配方法、因式分解法、公式法、换元法等)是解题关键. 37. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可; (2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.38. 建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【答案】(1)20% (2)18个【解析】【分析】(1)先设该市改造老旧小区投入资金的年平均增长率为x ,根据2019年投入资金2(1)x ⨯+=2021年投入的总资金,列出方程求解即可;(2)由(1)得出的资金年增长率求出2022年的投入资金,然后2022年改造老旧小区的总费用要小于等于2022年投入资金,列出不等式求解即可.【小问1详解】解:设该市改造老旧小区投入资金的年平均增长率为x ,根据题意得:21000(1)1440x +=,解这个方程得,10.2x =,2 2.2x =-,经检验,0.220%x ==符合本题要求.答:该市改造老旧小区投入资金的年平均增长率为20%.设该市在2022年可以改造y 个老旧小区,由题意得:80(115%)1440(120%)y ⨯+≤⨯+, 解得181823y ≤. ∵y 为正整数,∴最多可以改造18个小区.答:该市在2022年最多可以改造18个老旧小区.【点睛】此题考查了一元二次方程的应用,不等式的应用,解决此题的关键是找到相应的等量关系和相应的不等关系,列出正确的方程和不等式.39. 阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=b a -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= .(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n m m n +的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值. 【答案】(1)32;12- (2)132-(3或【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可;(3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t-进行变形求解即可. 【小问1详解】解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. 【小问2详解】∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- 【小问3详解】∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴2t s -=或2t s -=-,当2t s -=时,11212t s s t st --===-当t s -=时,11212t s s t st --===- 综上分析可知,11s t-或. 【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出2t s -=或2t s -=-,是解答本题的关键. 40. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【答案】(1)4月份再生纸的产量为500吨(2)m 的值20(3)6月份每吨再生纸的利润是1500元【解析】【分析】(1)设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨,然后根据该厂3,4月份共生产再生纸800吨,列出方程求解即可; (2)根据总利润=每一吨再生纸的利润×数量列出方程求解即可;(3)设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,根据总利润=每一吨再生纸的利润×数量列出方程求解即可;【小问1详解】解:设3月份再生纸产量为x 吨,则4月份的再生纸产量为()2100x -吨, 由题意得:()2100800x x +-=,解得:300x =,∴2100500x -=,答:4月份再生纸的产量为500吨;【小问2详解】 解:由题意得:500(1%)10001%6600002m m ⎛⎫+⋅+= ⎪⎝⎭, 解得:%20%m =或% 3.2m =-(不合题意,舍去)∴20m =,∴m 的值20;【小问3详解】解:设4至6月每吨再生纸利润的月平均增长率为y ,5月份再生纸的产量为a 吨,21200(1)(1)(125%)1200(1)y a y y a +⋅+=+⨯+⋅∴()2120011500y +=答:6月份每吨再生纸的利润是1500元.【点睛】本题主要考查了一元一次方程的应用,一元二次方程的应用,正确理解题意,列出方程求解是解题的关键.41. 已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x .(1)求k 的取值范围;(2)若125x x =,求k 的值.【答案】(1)34k >(2)2【解析】【分析】(1)利用一元二次方程根的判别式大于0建立不等式,解不等式即可得;(2)先利用一元二次方程的根与系数的关系可得21215x x k =+=,再结合(1)的结论即可得.【小问1详解】 解:关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根,∴此方程根的判别式()()2221410k k ∆=+-+>, 解得34k >. 【小问2详解】解:由题意得:21215x x k =+=,解得2k =-或2k =,由(1)已得:34k >, 则k 的值为2.【点睛】本题考查了一元二次方程根的判别式、以及根与系数的关系,熟练掌握一元二次方程的相关知识是解题关键.42. 已知关于x 的一元二次方程22230x x m --=.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.【答案】(1)见解析 (2)1m =±【解析】【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【小问1详解】()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; 【小问2详解】方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系.43. 阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。
2020年中考数学人教版专题复习:一元二次方程(组)
2020年中考数学人教版专题复习:一元二次方程(组)考点精析一元一次方程的定义只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是0ax b +=(,a b 是常数且0a ≠). 典例精析典例1 下列方程中,是一元一次方程的是 A .243x x -= B .0x = C .21x y +=D .11x x-=【答案】B【解析】对于A ,243x x -=的未知数的最高次数是2次,不是一元一次方程,故A 错误; 对于B ,0x =符合一元一次方程的定义,故B 正确; 对于C ,21x y +=是二元一次方程,故C 错误; 对于D ,11x x-=,分母中含有未知数,是分式方程,故D 错误. 故选B .【名师点睛】本题考查了一元一次方程,解答此题明确一元一次方程的定义是关键.一元一次方程是指只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程就叫做一元一次方程.据此逐项分析再选择即可. 拓展1.若()2316m m x --=是一元一次方程,则m 等于A .1B .2C .1或2D .任何数解一元一次方程解一元一次方程的主要步骤:去分母、去括号、移项、合并同类项、未知数的系数化为1. 典例精析典例2 x =-5是下列哪个方程的解 A .x -1=6B .2x -5=2C .2-3x =17D .x 2-1=26【答案】C【解析】把x=-5代入2-3x=17得:左边=2+15=17,右边=17,∵左边=右边,∴x=-5是方程2-3x=17的解,故选C.【名师点睛】本题主要考查方程的根,关键在于等式的性质应用.拓展2.如果30a+=,那么a的值是A.3B.3-C.13D.13-3.方程2y-12=12y-中被阴影盖住的是一个常数,此方程的解是53y=-.这个常数应是A.1 B.2C.3 D.4一元一次方程的应用列方程解实际应用题的一般步骤:(1)审:审清题意,分清题中的已知量、未知量;(2)设:恰当设出关键未知数;(3)列:找出适当等量关系,列方程;(4)解:解方程;(5)验:检验所解值是否正确或是否符合实际意义;(6)答:规范作答,注意单位名称.典例精析典例3 今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是A.4x-5=3(x-5)B.4x+5=3(x+5)C.3x+5=4(x+5)D.3x-5=4(x-5)【答案】D【解析】设今年儿子的年龄为x岁,则今年父亲的年龄为3x岁,依题意,得:3x-5=4(x-5).故选D .【名师点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 拓展4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 A .(22162)7x x =-B .(16222)7x x =-C .2162227()x x ⨯=-D .2221627()x x ⨯=-二元一次方程(组)的定义(1)二元一次方程应满足:①含有2个未知数;②含有未知数的项的次数都是1;③是整式方程.(2)由两个二元一次方程组成的方程组叫二元一次方程组. 典例精析典例4 下列方程中,是二元一次方程的是 A .345x y z += B .20xy += C .231y x+=D .142y x -=【答案】D【解析】A 、345x y z +=,不是二元一次方程,因为含有3个未知数; B 、20xy +=,不是二元一次方程,因为其最高次数为2;C 、231y x+=,不是二元一次方程,因为不是整式方程; D 、142y x -=,是二元一次方程.故选D .典例5 下列方程中,是二元一次方程组的是A .4237x y x y +=⎧⎨+=⎩B .23225412a b x c -=⎧⎨-=⎩C .245x x y ⎧=⎨+=⎩D .75x y xy +=⎧⎨=⎩【答案】A【解析】根据定义可以判断:A 、4237x y x y +=⎧⎨+=⎩,满足要求;B 、23225412a b x c -=⎧⎨-=⎩中含有a ,b ,c ,是三元方程;C 、245x x y ⎧=⎨+=⎩中含有2x ,是二次方程;D 、275x y x y +=⎧⎨-=⎩中含xy ,是二次方程.故选A .【名师点评】二元一次方程组的三个必需条件:(1)含有两个未知数;(2)每个含未知数的项次数为1;(3)每个方程都是整式方程. 拓展5.若方程234mx y x -=+是关于x y ,的二元一次方程,则m 满足 A .2m ≠- B .0m ≠ C .3m ≠D .4m ≠解二元一次方程组二元一次方程组的两种解法:①加减消元法;②代入消元法. 典例精析典例6 方程组3142x y y x +==⎧⎨⎩的解是_______________.【答案】24x y =⎧⎨=⎩【解析】3142x y y x +==⎧⎨⎩①②,把②代入①得614x x +=,解得2x =,把2x =代入②得4y =,故方程组3142x y y x +==⎧⎨⎩的解为24x y =⎧⎨=⎩.故填24x y =⎧⎨=⎩.典例7 方程组23738x y x y +=⎧⎨-=⎩的解是_______________.【答案】51x y =⎧⎨=-⎩【解析】23738x y x y +=⎧⎨-=⎩①②,用①+②得315x =,即5x =,把5x =代入②得538y -=,解得1y =-,所以方程组23738x y x y +=⎧⎨-=⎩的解为51x y =⎧⎨=-⎩,故填51x y =⎧⎨=-⎩.拓展6.二元一次方程组632x y x y +=⎧⎨-=-⎩的解是A .51x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .51x y =-⎧⎨=-⎩D .42x y =-⎧⎨=-⎩7.已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=-5202y x y x 的解,则3a b -=_______________. 二元一次方程组的应用由实际问题抽象出二元一次方程组的主要步骤: ①弄清题意;②找准题中的两个等量关系;③设出合适的未知数;④根据找到的等量关系列出两个方程并联立成二元一次方程组.典例精析典例8 母亲节那天,很多同学给自己的妈妈准备了鲜花和礼盒,由图中信息可知一束鲜花的价格是_______________元.【答案】15【解析】设一束鲜花x元,一个礼盒y元,由题意可得2552390x yx y+=⎧⎨+=⎩,解得1520xy=⎧⎨=⎩,所以一束鲜花15元.故填15.典例9 《九章算术》中记载:“今有善田一亩,价三百+器田七亩,价五百.今并买一頃,价钱一万.问善、恶田各几何?”其大意是:今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好,坏田1顷(1顷=100亩),价线10000钱.问好、坏田各买了多少亩?设好田买了x南,坏田买了y亩,根意可列方程组为A.300500100100007x yx y+=⎧⎪⎨+=⎪⎩B.100500300100007x yx y+=⎧⎪⎨+=⎪⎩C.3100500300100007x yx y+==⎧⎪⎨+=⎪⎩D.100300500100007x yx y+=⎧⎪⎨+=⎪⎩【答案】B【解析】1顷=100亩,设好田买了x亩,坏田买了y亩,依题意有:100500 300100007x yx y+=⎧⎪⎨+=⎪⎩.故选B.【名师点睛】考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组.拓展8.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为_______________.9.某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.I .请问1辆大货车和1辆小货车一次可以分别运货多少吨;Ⅱ.目前有46.4吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完.其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用? 同步测试1.若方程270a x --=是一元一次方程,则a 等于 A .3- B .3 C .3±D .02.已知等式325a b =+,则下列等式中不一定成立的是 A .352a b -=B .3126a b +=+C .325ac bc =+D .2533a b =+ 3.已知7x =是方程27x ax -=的解,则a = A .1B .2C .3D .74.如果230a +=,那么a 的值是A .32 B .32-C .23D .23-5.下列方程组中是二元一次方程组的是A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩CD6.若2153x -=与115kx -=的解相同,则k 的值为 A .8B .6C .-2D .27.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店 A .不赔不赚 B .赚了10元 C .赔了10元D .赚了50元8.用加减法解方程组4519433x y x y +=⎧⎨-=⎩消去未知数x 得到的方程是A .216y =B .222y =C .816y =D .822y =9.已知方程521m n -=,当m 与n 相等时,m 与n 的值分别是 A .22m n =⎧⎨=⎩B .33m n =-⎧⎨=-⎩C .11m n =-⎧⎨=-⎩D10.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x ay b =⎧⎨=⎩,则a -b 的值为A .1B .3C .14-D .7411.如果x my n =⎧⎨=⎩是方程20x y +=的一个解(0m ≠),那么 A .0m ≠,0n = B .m ,n 异号C .m ,n 同号D .m ,n 可能同号,也可能异号12.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为 A .4804804(150%)x x -=+B .4804804(150%)x x -=- C .4804804(150%)x x-=+ D .4804804(150%)x x-=-13.如图,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为A .153x y x y+=⎧⎨=⎩B .1523x y x y+=⎧⎨=⎩C .1523x y x x y -=⎧⎨=+⎩D .21523x y x x y -=⎧⎨=+⎩14.古代“绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.则绳索和竿长分别为 A .30尺和15尺 B .25尺和20尺 C .20尺和15尺D .15尺和10尺15.若33125m n x y --=﹣是二元一次方程,则m =_______________,n =_______________.16.方程2x -4=0的解是__________.17.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_______________元.18.若方程x -y =-1的一个解与方程组221x y kx y -=⎧⎨-=⎩的解相同,则k 的值为__________.19.为配合枣庄市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小丽同学不买卡直接购书,则她需付款__________元. 20.已知234||x y -+与25)2(x y -+互为相反数,则2017()y x -=_______________.21.植树节这天有20名同学共种了52棵树苗,其中男生每人种树苗3棵,女生每人种树苗2棵,则男同学的人数为__________人.22.若二元一次方程组232x y mx y m+=+⎧⎨+=⎩的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为_______________.23.对于方程123x x--=1,某同学解法如下:解:方程两边同乘6,得3x-2(x-1)=1①,去括号,得3x-2x-2=1②,合并同类项,得x-2=1③,解得x=3④,∴原方程的解为x=3⑤,(1)上述解答过程中的错误步骤有__________(填序号);(2)请写出正确的解答过程.24.解方程组:(1)52311x yx y+=⎧⎨+=⎩;(2)⎩⎨⎧=-=+331yxyx;(3)34150275x yx y+=⎧⎨+=⎩;(4)7541x yx y-=⎧⎨+=-⎩.25.某书店购进甲、乙两种图书共100本,甲、乙两种图书的进价分别为每本15元、35元,甲、乙两种图书的售价分别为每本20元、45元.(1)若书店购书恰好用了2300元,求购进的甲、乙图书各多少本?(2)销售时,甲图书打8.5折,乙图书不打折.若甲、乙两种图书全部销售完后共获利15,求购进的甲、乙图书各多少本?。
中考数学一元二次方程与分式方程专题练习含解析
一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。
人教中考数学一元二次方程综合经典题附答案
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?【答案】(1)PQ=62cm;(2)85s或245s;(3)经过4秒或6秒△PBQ的面积为12cm2.【解析】试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.则根据题意,得EQ=16-2×3-2×2=6(cm),PE=AD=6cm;在Rt△PEQ中,根据勾股定理,得PE2+EQ2=PQ2,即36+36=PQ2,∴cm ;∴经过2s 时P 、Q 两点之间的距离是;(2)设x 秒后,点P 和点Q 的距离是10cm .(16-2x-3x )2+62=102,即(16-5x )2=64,∴16-5x=±8,∴x 1=85,x 2=245; ∴经过85s 或245sP 、Q 两点之间的距离是10cm ; (3)连接BQ .设经过ys 后△PBQ 的面积为12cm 2.①当0≤y≤163时,则PB=16-3y , ∴12PB•BC=12,即12×(16-3y )×6=12, 解得y=4;②当163<x≤223时, BP=3y-AB=3y-16,QC=2y ,则12BP•CQ=12(3y-16)×2y=12, 解得y 1=6,y 2=-23(舍去); ③223<x≤8时, QP=CQ-PQ=22-y ,则12QP•CB=12(22-y )×6=12, 解得y=18(舍去).综上所述,经过4秒或6秒△PBQ 的面积为 12cm 2.考点:一元二次方程的应用.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34 ; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)是否存在实数k ,使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)当k≤14时,原方程有两个实数根(2)不存在实数k ,使得x 1·x 2-x 12-x 22≥0成立 【解析】试题分析:(1)根据一元二次方程根的判别式列出不等式,解之即可;(2)本题利用韦达定理解决.试题解析:(1)∆= ()()2221420k k k +-+≥,解得14k ≤ (2)由2212120x x x x --≥得 2121230x x x x ()-+≥, 由根与系数的关系可得:2121221,2x x k x x k k +=+=+代入得:22364410k k k k +---≥,化简得:()210k -≤,得1k =.由于k 的取值范围为14k ≤, 故不存在k 使2212120x x x x --≥.4.已知x=﹣1是关于x 的方程x 2+2ax+a 2=0的一个根,求a 的值.【答案】1【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.试题解析:把x=﹣1代入x2+2ax+a2=0得1﹣2a+a2=0,解得a1=a2=1,所以a的值为1.5.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.6.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量m (单位:件)是关于时间t(单位:天)的一次函数,调研所获的部分数据如下表:时间t/天131020日销售量m/件98948060这20天中,该产品每天的价格y(单位:元/件)与时间t的函数关系式为:1254y t=+(t为整数),根据以上提供的条件解决下列问题:(1)直接写出m关于t的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠a 元(4a <)给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间t 的增大而增大,求a 的取值范围.【答案】(1)2100m t =-+;(2)在第15天时日销售利润最大,最大利润为612.5元;(3)2.54a ≤<.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:98=k b 94=3k b +⎧⎨+⎩解得:k=-2,b=100∴m 关于t 的函数关系式为:2100m t =-+.(2)设前20天日销售利润为W 元,由题意可知,()1210025204W t t ⎛⎫=-++- ⎪⎝⎭ 21151002t t =-++ ()2115612.52t =--+ ∵102<,∴当15t =时,612.5W =最大. ∴在第15天时日销售利润最大,最大利润为612.5元. (3)由题意得:()1210025204W t t a ⎛⎫=-++--⎪⎝⎭ ()211525001002t a t a =-+++-, ∴对称轴为:152t a =+,∵每天扣除捐赠后的日销利润随时间t 的增大而增大,且120t ≤≤,∴15220a +≥,∴ 2.5a ≥,∴2.54a ≤<.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.7.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.(1)如果这艘船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15﹣15h 就会进入台风影响区;(3)215小时.【解析】【分析】(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.【详解】解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,当B′C′=200时,将受到台风影响,根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,整理得到:t2﹣30t+210=0,解得t15由此可知,如果这艘船不改变航向,那么它会进入台风影响区.(2)由(1)可知经过(15﹣15)h就会进入台风影响区;(3)由(1)可知受到台风影响的时间为:15+15﹣(15﹣15)=215h.【点睛】此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.8.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时:∵(a b-)2=a﹣2ab+b≥0∴a+b≥2ab,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x>0时,x+1x的最小值为.当x<0时,x+1x的最大值为;(2)若y=27101x xx+++,(x>﹣1),求y的最小值;(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.【解析】【分析】(1)当x>0时,按照公式a+b ab a=b时取等号)来计算即可;当x<0时,﹣x>0,1x->0,则也可以按公式a+b ab a=b时取等号)来计算;(2)将y27101x xx++=+的分子变形,分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;(3)设S△BOC=x,已知S△AOB=4,S△COD=9,由三角形面积公式可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥=2; 当x <0时,﹣x >0,1x ->0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.9.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
部编数学九年级上册专题21.1一元二次方程的定义及解【八大题型】(人教版)(解析版)含答案
专题21.1 一元二次方程的定义及解【八大题型】【人教版】【题型1 一元二次方程的识别】 (1)【题型2 由一元二次方程的定义求字母的取值范围】 (3)【题型3 由一元二次方程的定义求字母的值】 (4)【题型4 一元二次方程的一般形式】 (5)【题型5 由一元二次方程的解求字母的值】 (7)【题型6 由一元二次方程的解求代数式的值】 (8)【题型7 由一元二次方程的解求代数式的值(降次)】 (9)【题型8 已知一元二次方程的根求另一方程的根】 (10)【知识点1 一元二次方程的定义】【题型1 一元二次方程的识别】【例1】(2021秋•恩施市期末)下列方程中,一定是一元二次方程的是( )①3x2+7=0:②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x−1x=0.A.①B.①②C.①②③D.①②③④【分析】根据一元二次方程的定义判断即可,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:①3x2+7=0一定是一元二次方程;②ax2+bx+c=0,当a=0时不是一元二次方程;③(x﹣2)(x+5)=x2﹣1整理得,3x﹣9=0,是一元一次方程;④3x−1x=0是分式方程.故选:A.【变式1-1】(2021秋•蓬溪县期末)下列方程中,一元二次方程有( )①3x2+x=20;②2x2﹣3xy+4=0;③x2−1x=4;④x2=1;⑤x2−x3+3=0A.2个B.3个C.4个D.5个【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选:B.【变式1-2】(2021秋•荥阳市校级月考)下列方程中,一定是关于x的一元二次方程的有( )①x2=0;②ax2+bx+c=0;③a2+a﹣x=0;④(x+1)2=2x2﹣9;⑤x2﹣y2=3.A.2个B.3个C.4个D.5个【分析】利用一元二次方程的定义判断即可.【解答】解:①x2=0是一元二次方程,符合题意;②ax2+bx+c=0(a≠0)是一元二次方程,不符合题意;③a2+a﹣x=0是二元二次方程,不符合题意;④(x+1)2=2x2﹣9是一元二次方程,符合题意;⑤x2﹣y2=3是二元二次方程,不符合题意意.故选:A.【变式1-3】(2021秋•义马市期中)下列方程:①y2+2x=0;②x2=0;③(x2﹣1)2=1;④3y2﹣2y=﹣1;⑤2x2﹣5xy+3y2=0;⑥ax2+bx+c=0(a,b,c是常数);⑦1x2+1x−2=0;⑧(x+1)(x﹣1)=x2﹣1.其中属于一元二次方程的有( )个.A.2B.3C.4D.6【分析】只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:①y2+2x=0含有两个未知数,不是一元二次方程;②x2=0是一元二次方程;③(x2﹣1)2=1,未知数的最高次数是4次,不是一元二次方程;④3y2﹣2y=﹣1是一元二次方程;⑤2x2﹣5xy+3y2=0含有两个未知数,不是一元二次方程;⑥ax2+bx+c=0(a,b,c是常数),当a=0时,不是一元二次方程;⑦1x2+1x−2=0是分式方程;⑧(x+1)(x﹣1)=x2﹣1,整理后不含未知数,不是一元二次方程.所以属于一元二次方程的有②④,共2个.故选:A.【题型2 由一元二次方程的定义求字母的取值范围】【例2】(2021秋•龙岗区校级期末)关于x的方程(a2+1)x2+2ax﹣6=0是一元二次方程,则a的取值范围是( )A.a≠±1B.a≠0C.a为任何实数D.不存在【分析】直接利用一元二次方程的定义分析得出答案.【解答】解:∵关于x的方程(a2+1)x2+2ax﹣6=0是一元二次方程,可得a2+1不可能为0,∴a为任何实数.故选:C.【变式2-1】(2021秋•河口县期末)已知(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,则( )A.m≠0,n=2B.m≠2,n=2C.m≠0,n=3D.m≠2,n≠0【分析】根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.【解答】解:∵(m﹣2)x n﹣3nx+2=0是关于x的一元二次方程,∴m﹣2≠0,n=2,解得m≠2,n=2.故选:B.【变式2-2】(2021秋•龙江县期末)若方程ax2+2x﹣1=2x2是关于x的一元二次方程,则a的取值范围是 .【分析】先化成一元二次方程的一般形式,根据一元二次方程的定义得出a﹣2≠0,求出即可.【解答】解:ax2+2x﹣1=2x2,(a﹣2)x2+2x﹣1=0,∵关于x的方程ax2+2x﹣1=2x2是一元二次方程,∴a﹣2≠0,即a≠2,故答案为:a≠2.【变式2-3】(2022•湘桥区一模)若方程(m﹣1)x2+x=1是关于x的一元二次方程,则m的取值范围是 .【分析】直接利用一元二次方程的定义得出关于m的不等式,进而得出答案.【解答】解:∵方程(m﹣1)x2x=1是关于x的一元二次方程,∴m≥0且m﹣1≠0,∴m≥0且m≠1,故答案为:m≥0且m≠1.【题型3 由一元二次方程的定义求字母的值】【例3】(2022春•琅琊区校级月考)若(m+3)x|m|﹣1﹣(m﹣3)x﹣5=0是关于x的一元二次方程,则m 的值为( )A.3B.﹣3C.±3D.±2【分析】根据一元二次方程的定义即可求出答案.【解答】解:由题意可知:|m|−1=2 m+3≠0,解得:m=3,故选:A.【变式3-1】(2021秋•望城区期末)若关于x的方程(m−2)x m2−2+4x−7=0是一元二次方程,则m的值为( )A.m≠2B.m=±2C.m=﹣2D.m=2【分析】只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.【解答】解:∵关于x的方程(m−2)x m2−2+4x−7=0是一元二次方程,∴m−2≠0m2−2=2,解得:m=﹣2.故选:C.【变式3-2】(2021秋•太平区期末)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是( )A.﹣1B.2C.﹣1或3D.3【分析】根据一元二次方程的定义得出a﹣3≠0且|a﹣1|=2,再求出a即可.【解答】解:∵关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,∴a﹣3≠0且|a﹣1|=2,解得:a=﹣1,故选:A.【变式3-3】(2022•张家港市一模)已知x=1是关于x的一元二次方程(m+2)x m2−2−3x−2a=0的解,则m﹣1+a的值为 .【分析】根据一元二次方程的定义可得m的值,再将x=1代入原方程即可得出a的值,然后代入所求式子计算即可.【解答】解:由题意得:m+2≠0m2−2=2,解得m=2,故关于x的一元二次方程为4x2﹣3x﹣2a=0,因为x=1是关于x的一元二次方程(m+2)x m2−2−3x−2a=0的解,所以4﹣3﹣2a=0,解得a=1 2,所以m﹣1+a=2−1+12=12+12=1.故答案为:1.【知识点2 一元二次方程的一般形式】一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a,b,c是常数,a≠0).这项.【题型4 一元二次方程的一般形式】【例4】(2021秋•双峰县期末)将一元二次方程2x2+3x=1化成一般形式时,它的二次项、一次项系数和常数项分别为( )A.2x2,﹣3,1B.2x2,3,﹣1C.﹣2x2,﹣3,﹣1D.﹣2x2,3,1【分析】根据一元二次方程的一般形式,ax2+bx+c=0(a,b,c是常数,a≠0)判断即可.【解答】解:将一元二次方程2x2+3x=1化成一般形式为:2x2+3x﹣1=0,∴它的二次项、一次项系数和常数项分别为:2x2,3,﹣1,故选:B.【变式4-1】(2021秋•黔西南州期末)若(1﹣m)x m2+1+3mx﹣2=0是关于x的一元二次方程,则该方程的一次项系数是( )A.﹣1B.±1C.﹣3D.±3【分析】先根据一元二次方程的定义求m,再求系数.【解答】解:由题意得:1−m≠0 m2+1=2解得:m=﹣1.∴该方程的一次项系数为:3m=﹣3.故选:C.【变式4-2】(2021春•花山区校级月考)一元二次方程2x2﹣(a+1)x=x(x﹣1)﹣1化成一般形式后,二次项系数为1,一次项系数为﹣1,则a的值为( )A.﹣1B.1C.﹣2D.2【分析】方程整理为一般系数,根据二次项系数为1,一次项系数为﹣1,即可确定出a的值.【解答】解:方程整理得:x2﹣ax+1=0,∵结果一次项系数为﹣1,∴﹣a=﹣1,即a=1.故选:B.【变式4-3】(2021秋•宝山区校级月考)若m2x2﹣(2x+1)2+(n﹣3)x+5=0是关于x的一元二次方程,且不含x的一次项,则m ,n= .【分析】先将已知方程整理为一元二次方程的一般形式,然后根据一元二次方程的定义得到:二次项系数不为0;结合不含x的一次项知,一次项系数为0.【解答】解:由m2x2﹣(2x+1)2+(n﹣3)x+5=0知,(m2﹣4)x2+(n﹣7)x+4=0.根据题意知,m2﹣4≠0,n﹣7=0,解得m≠±2,n=7.故答案是:≠±2,7.【知识点3 一元二次方程的解】【题型5 由一元二次方程的解求字母的值】【例5】(2022春•温州期中)若关于x的方程x2+2ax+4a=0有一个根为﹣3,则a的值是( )A.9B.4.5C.3D.﹣3【分析】把x=﹣3代入方程得9﹣6a+4a=0,然后解关于a的一次方程即可.【解答】解:把x=﹣3代入方程得9﹣6a+4a=0,解得a=4.5.故选:B.【变式5-1】(2021秋•五常市期末)若方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为x=0,则k的值是( )A.7B.316C.4D.﹣7【分析】把x=0代入方程中,就可以求出k的值.【解答】解:∵方程8x2﹣(k﹣1)x﹣k﹣7=0的一个根为0,∴把x=0代入此方程,有:﹣k﹣7=0,∴k=﹣7.故选:D.【变式5-2】(2021秋•海淀区校级期末)若一元二次方程(k﹣1)x2+3x+k2﹣1=0有一个解为x=0,则k 为( )A.±1B.1C.﹣1D.0【分析】把x=0代入方程(k﹣1)x2+3x+k2﹣1=0得方程k2﹣1=0,解关于k的方程,然后利用一元二次方程的定义确定k的值.【解答】解:把x=0代入方程(k﹣1)x2+3x+k2﹣1=0得方程k2﹣1=0,解得k1=1,k2=﹣1,而k﹣1≠0,所以k=﹣1.故选:C.【变式5-3】(2021秋•封丘县期末)关于x的一元二次方程x2+(k﹣2)x+k2﹣1=0的一个根是0,则k的值是( )A.1B.﹣1C.±1D.2【分析】把x=0代入方程计算即可求出k的值.【解答】解:把x=0代入方程得:k2﹣1=0,解得:k=1或k=﹣1,故选:C.【题型6 由一元二次方程的解求代数式的值】【例6】(2021秋•开州区期末)已知a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为 9 .【分析】把x=a代入方程求得a2﹣a的值,然后根据6a2﹣3a=3(2a2﹣a)即可求解.【解答】解:把x=a代入方程得:2a2﹣a﹣3=0,则2a2﹣a=3,则6a2﹣3a=3(2a2﹣a)=9.故答案是:9.【变式6-1】(2021秋•莲池区期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为 .【分析】把x=﹣1代入方程ax2+bx﹣1=0(a≠0)得a﹣b=1,再把2022﹣2a+2b变形为2022﹣2(a﹣b),然后利用整体代入的方法计算.【解答】解:把x=﹣1代入方程ax2+bx﹣1=0(a≠0)得a﹣b﹣1=0,∴a﹣b=1,∴2022﹣2a+2b=2022﹣2(a﹣b)=2022﹣2×1=2022﹣2=2020.故答案为:2020.【变式6-2】(2021秋•盱眙县期末)若a是方程3x2﹣4x﹣3=0的一个根,则代数式a2−43a+6的值为 .【分析】根据方程解的定义得到3a2﹣4a﹣3=0,变形得到a2−43a=1,然后利用整体代入的方法计算.【解答】解:根据题意得3a2﹣4a﹣6=0,∴a2−43a=1,∴a2−43a+6=1+6=7.故答案为:7.【变式6-3】(2022•桂林模拟)已知m是一元二次方程x2﹣4x+2=0的一个根,则8m﹣2m2+2的值是( )A.4B.6C.8D.10【分析】先利用一元二次方程根的定义得到m2﹣4m=﹣2,再把8m﹣2m2+2变形为﹣2(m2﹣4m)+2,然后利用整体代入的方法计算.【解答】解:∵m是一元二次方程x2﹣4x+2=0的一个根,∴m2﹣4m+2=0,∴m2﹣4m=﹣2,∴8m﹣2m2+2=﹣2(m2﹣4m)+2=﹣2×(﹣2)+2=6.故选:B.【题型7 由一元二次方程的解求代数式的值(降次)】【例7】(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为( )A.﹣2022B.0C.2022D.4044【分析】将方程的根代入方程,化简得m2+3m=2022,将代数式变形,整体代入求值即可.【解答】解:∵m为方程x2+3x﹣2022=0的根,∴m2+3m﹣2022=0,∴m2+3m=2022,∴原式=m3+3m2﹣m2﹣3m﹣2022m+2022=m(m2+3m)﹣(m2+3m)﹣2022m+2022=2022m﹣2022﹣2022m+2022=0.故选:B.【变式7-1】(2022春•庐阳区校级期中)若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2021的值为( )A.2020B.﹣2020C.2021D.﹣2021【分析】先利用一元二次方程解的定义得到a2=a+1,再用a表示a3得到a3=2a+1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a2=a+1,∴a3=a(a+1)=a2+a=a+1+a=2a+1,∴﹣a3+2a+2021=﹣(2a+1)+2a+2021=﹣2a﹣1+2a+2021=2020.故选:A.【变式7-2】(2021秋•泉州期末)已知实数a是一元二次方程x2+x﹣8=0的根,则a4+a3+8a﹣1的值为( )A.62B.63C.64D.65【分析】把方程的解代入方程得到关于a的等式,然后利用等式对代数式进行化简求值.【解答】解:∵a是一元二次方程x2+x﹣8=0的一个根,∴a2+a﹣8=0∴a2+a=8,∴a4+a3+8a﹣1=a2(a2+a)+8a﹣1=8a2+8a﹣1=64﹣1=63,故选:B.【变式7-3】(2021秋•石鼓区期末)已知a是方程x2﹣x﹣1=0的一个根,则a4﹣3a﹣2的值为 .【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=a代入方程可得,a2﹣a﹣1=0,即a2=a+1,∴a4﹣3a﹣2=(a2)2﹣3a﹣2=(a+1)2﹣3a﹣2=a2﹣a﹣1=0.【题型8 已知一元二次方程的根求另一方程的根】【例8】(2021秋•曲靖期末)已知关于x的一元二次方程12022x2+3=2x2+b的根为±3,那么关于y的一元二次方程12022(y2+1)+3=2(y2+1)+b的解y= .【分析】根据关于x的一元二次方程12022x2+3=2x2+b的两个根为±3,可得y2+1=x2=9,于是得到结论.【解答】解:∵关于x 的一元二次方程12022x 2+3=2x 2+b 的两个根为±3,∴关于y 的一元二次方程12022(y 2+1)+3=2(y 2+1)+b 可得y 2+1=x 2=9,解得y =﹣故答案为:﹣【变式8-1】(2022•启东市二模)若关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,则一元二次方程a 2(x +2)2+bx +2b =1必有一根为( )A .2020B .2021C .2022D .2023【分析】一元二次方程a 2(x +2)2+bx +2b =1变形为a (x +2)2+2b (x +2)﹣2=0,由于关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,则关于(x +2)的一元二次方程a (x +2)2+2b (x +2)﹣2=0的一个根是x =2022,于是可判断一元二次方程a 2(x +2)2+bx +2b =1必有一根为2020.【解答】解:一元二次方程a 2(x +2)2+bx +2b =1变形为a (x +2)2+2b (x +2)﹣2=0,所以此方程可看作关于(x +2)的一元二次方程,因为关于x 的一元二次方程ax 2+2bx ﹣2=0的一个根是x =2022,所以关于(x +2)的一元二次方程a (x +2)2+2b (x +2)﹣2=0的一个根是x =2022,即x +2=2022,解得x =2020,所以一元二次方程a 2(x +2)2+bx +2b =1必有一根为2020.故选:A .【变式8-2】(2022春•淄川区期中)若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)有一根为2022,则方程a (x +1)2+b (x +1)=﹣5必有根为( )A .2022B .2020C .2019D .2021【分析】对于一元二次方程a (x +1)2+b (x +1)=﹣5,设t =x +1得到at 2+bt +5=0,利用at 2+bt +5=0有一个根为t =2022得到x +1=2022,从而可判断一元二次方程a (x +1)2+b (x +1)=﹣5必有一根为x =2021.【解答】解:由a (x +1)2+b (x +1)=﹣5得到a (x +1)2+b (x +1)+5=0,对于一元二次方程a (x +1)2+b (x +1)=﹣5,设t=x+1,所以at2+bt+5=0,而关于x的一元二次方程ax2+bx+5=0(a≠0)有一根为x=2022,所以at2+bt+5=0有一个根为t=2022,则x+1=2022,解得x=2021,所以一元二次方程a(x+1)2+b(x+1)=﹣5有一根为x=2021.故选:D.【变式8-3】(2021秋•泉州期末)若关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一个根为x=2021,则方程a(x﹣1)2+bx﹣3=b必有一根为( )A.2019B.2020C.2021D.2022【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)﹣3=0,设t=x﹣1得到at2+bt﹣3=0,利用at2+bt﹣3=0有一个根为t=2021得到x﹣1=2021,从而可判断一元二次方程a(x﹣1)2+bx﹣3=b必有一根为x =2022.【解答】解:对于一元二次方程a(x﹣1)2+bx﹣3=b即a(x﹣1)2+b(x﹣1)﹣3=0,设t=x﹣1,所以at2+bt﹣3=0,而关于x的一元二次方程ax2+bx﹣3=0(a≠0)有一根为x=2021,所以at2+bt﹣3=0有一个根为t=2021,则x﹣1=2021,解得x=2022,所以一元二次方程a(x﹣1)2+bx﹣3=b必有一根为x=2022.故选:D.。
人教版九年级数学上册:《一元二次方程的解法》课后练习及详解
专题:一元二次方程的解法(1)重难点易错点解析题一:题面:已知,关于x 的方程12)5(2=-+ax x a 是一元二次方程,则a金题精讲题一:题面:方程x (x -2)+x -2=0的解是( )A.2B. -2,1C. -1D.2, -1满分冲刺题一: 题面:解下列方程:24(3)(3)0x x x ---=题二: 题面:在一大片空地上有一堵墙(线段AB ),现有铁栏杆40m ,准备充分利用这堵墙建造一个封闭的矩形花圃.(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?(2)如果墙AB =8m ,那么又要如何设计可使矩形花圃的面积最大?课后练习详解重难点易错点解析题一:答案:.5-=/a详解:方程12)5(2=-+ax x a 既然是一元二次方程,必符合一元二次方程的定义,所以未知数的最高次数是2,因此,二次项系数,05=/+a 故.5-=/a 金题精讲题一:答案:D 。
详解:先利用提公因式因式分解,再化为两个一元一次方程,解方程即可 由x (x -2)+(x -2)=0,得(x -2)(x +1)=0,∴x -2=0或x +1=0,∴x 1=2,x 2= -1。
故选D 。
满分冲刺题一:答案:4,321==x x .详解:(3)[4(3)]0,x x x ---=03,0)123)(3(=-=--x x x 或,0123=-x 解得4,321==x x题二:答案:(1)矩形的面积最大是200m 2(2)矩形花圃面积最大是144m 2 详解:(1)设DE =x ,那么面积S=x (20 - 2x ) = 22x -+20x = 12-(x -20)2+200 ∴当DE =20m 时,矩形的面积最大是200m 2(2)讨论①设DE =x ,那么面积S=x (20-2x )(0<x ≤8)=12-(x-20)2+200∴当DE=8m时,矩形的面积最大是128m2.②延长AB至点F,作如图所示的矩形花圃设BF=x,那么AF=x+8,AD=16-x那么矩形的面积S=(x+8)(16-x) = -x2+8x+128= -(x-4)2+144∴当x=4时,面积S的最大值是144.∴按第二种方法围建的矩形花圃面积最大是144m2专题:一元二次方程的解法(2)重难点易错点解析一元二次方程ax 2+bx+c=0,a ≠0的条件。
人教中考数学专题题库∶一元二次方程的综合题含答案解析
一、一元二次方程 真题与模拟题分类汇编(难题易错题) 1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值.【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-,解得:k=-1或k=13(舍去),∴k=﹣13.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F 作FH ⊥AC 于点H ,设AD=x , 由②知DH=3,FH=,则HC=.在Rt △CFH 中,根据勾股定理,得.∵以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边, ∴,即,解得.④设AD=x ,易知,即. 而,当时,;当时,.∴△FCD 的面积s 的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.关于x 的方程()2204kkx k x +++=有两个不相等的实数根. ()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【解析】 【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围.()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404kk k =+-⋅>, 1k ∴>-, 又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204kkx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x kx x +⎧+=-⎪⎪⎨⎪=⎪⎩,又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-,由()1知,1k >-,且0k ≠,43k ∴=-不符合题意,因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根. 【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.2.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.3. y 与x 的函数关系式为:y=1.7x (x≤m );或( x≥m) ;4.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2)223)83【解析】【分析】(1)求解该一元二次方程即可;(2)先确定等腰三角形的边,然后求面积即可;(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.【详解】解:(1)由题意得()()260x x --=,即:2x =或6x =,∴两条线段长为2和6;(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3, 由勾股定理得:该等腰三角形底边上的高为:2231=22+∴此等腰三角形面积为12222⨯⨯=22. (3)设分为x 及6x -两段()22226x x +=-∴83x =, ∴2823x S ∆==, ∴面积为83.【点睛】本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm ,则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0解得y 1=-14,y 2=32.7.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x <10时,原方程化为x 2+x ﹣20=0,解得x 3=4,x 4=﹣5,故原方程的根是x 1=4,x 2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.8.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.9.已知:关于x 的一元二次方程221(1)204x m x m +++-=. (1)若此方程有两个实数根,求没m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3【解析】【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值.【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根, ∴221(1)41(2)04m m ∆=+-⨯⨯-≥,∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-; (2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=,解得:3m =或5m =-; ∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12b x x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.10.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵(a b -)2=a ﹣2ab +b ≥0∴a +b ≥2ab ,当且仅当a =b 时取等号.请利用上述结论解决以下问题:(1)请直接写出答案:当x >0时,x +1x 的最小值为 .当x <0时,x +1x的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值; (3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.【解析】【分析】(1)当x >0时,按照公式a +b ab a =b 时取等号)来计算即可;当x <0时,﹣x >0,1x->0,则也可以按公式a +b ab a =b 时取等号)来计算; (2)将y 27101x x x ++=+的分子变形,分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,由三角形面积公式可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.【详解】(1)当x >0时,x 1x +≥1x x⋅=2; 当x <0时,﹣x >0,1x->0.∵﹣x 1x -≥=2,∴则x 1x +=-(﹣x 1x -)≤﹣2,∴当x >0时,x 1x +的最小值为 2.当x <0时,x 1x +的最大值为﹣2. 故答案为:2,﹣2.(2)∵x >﹣1,∴x +1>0,∴y 27101x x x ++=+()2(1)5141x x x ++++=+=(x +1)41x +++5=4+5=9,∴y 的最小值为9. (3)设S △BOC =x ,已知S △AOB =4,S △COD =9 则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,∴x :9=4:S △AOD ,∴S △AOD 36x =,∴四边形ABCD 面积=4+9+x 36x +≥=25. 当且仅当x =6时,取等号,∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.。