场效应管与晶体三极管的比较

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应管与晶体三极管的比较

场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.

晶体三极管与场效应管工作原理完全不同,但是各极可以近似对

应以便于理解和设计:

晶体管:基极发射极集电极

场效应管:栅极源极漏极

要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.

6V),场效应管源极电位比栅极电位高(约0.4V)。

场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器

件.

有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵

活性比晶体管好.

场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用.

一、场效应管的结构原理及特性场效应管有结型和绝缘栅两种

结构,每种结构又有N沟道和P沟道两种导电沟道。

1、结型场效应管(JFET)

(1)结构原理它的结构及符号见图1。在N型硅棒两端引出漏极D和源极S两个电极,又在硅棒的两侧各做一个P区,形成两个P N结。在P区引出电极并连接起来,称为栅极Go这样就构成了N型

沟道的场效应管

图1、N沟道结构型场效应管的结构及符号由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,从图1中可见,当漏极电源电压ED一定时,如果栅极电压越负,PN结交界面所形成的耗尽区就越厚,则漏、源极之间导电的沟道越窄,漏极电流ID就愈小;反之,如果栅极电压没有那么负,则沟道变宽,ID变大,所以用栅极电压EG可以控制漏极电流ID的变化,就是说,场效应管是电压控制元件。

(2)特性曲线

1)转移特性

图2(a)给出了N沟道结型场效应管的栅压---漏流特性曲线,称为转移特性曲线,它和电子管的动态特性曲线非常相似,当栅极电压VGS=0时的漏源电流。用IDSS表示。VGS变负时,ID逐渐减小。I D接近于零的栅极电压称为夹断电压,用VP表示,在0≥VGS≥VP的区段内,ID与VGS的关系可近似表示为:

ID=IDSS(1-|VGS/VP|)

其跨导gm为:gm=(△ID/△VGS)|VDS=常微(微欧)|

式中:△ID------漏极电流增量(微安)

------△VGS-----栅源电压增量(伏)

图2、结型场效应管特性曲线

2)漏极特性(输出特性)

图2(b)给出了场效应管的漏极特性曲线,它和晶体三极管的输

出特性曲线很相似。

①可变电阻区(图中I区)在I区里VDS比较小,沟通电阻随栅压VGS而改变,故称为可变电阻区。当栅压一定时,沟通电阻为定值,ID随VDS近似线性增大,当VGS<VP时,漏源极间电阻很大(关断)。IP=0;当VGS=0时,漏源极间电阻很小(导通),ID=IDSS。这一特

性使场效应管具有开关作用。

②恒流区(区中II区)当漏极电压VDS继续增大到VDS>|VP|时,漏极电流,IP达到了饱和值后基本保持不变,这一区称为恒流区或饱和区,在这里,对于不同的VGS漏极特性曲线近似平行线,即ID与VGS成线性关系,故又称线性放大区。

③击穿区(图中Ⅲ区)如果VDS继续增加,以至超过了PN结所能承受的电压而被击穿,漏极电流ID突然增大,若不加限制措施,

管子就会烧坏。

2、绝缘栅场效应管

它是由金属、氧化物和半导体所组成,所以又称为金属---氧化物---半导体场效应管,简称MOS场效应管。

(1)结构原理

它的结构、电极及符号见图3所示,以一块P型薄硅片作为衬底,在它上面扩散两个高杂质的N型区,作为源极S和漏极D。在硅片表

覆盖一层绝缘物,然后再用金属铝引出一个电极G(栅极)由于栅极与其它电极绝缘,所以称为绝缘栅场面效应管。

图3、N沟道(耗尽型)绝缘栅场效应管结构及符号在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。

场效应管的式作方式有两种:当栅压为零时有较大漏极电流的称为耗散型,当栅压为零,漏极电流也为零,必须再加一定的栅压之后

才有漏极电流的称为增强型。

(2)特性曲线

1)转移特性(栅压----漏流特性)

图4(a)给出了N沟道耗尽型绝缘栅场效应管的转移行性曲线,图中Vp为夹断电压(栅源截止电压);IDSS为饱和漏电流。

图4(b)给出了N沟道增强型绝缘栅场效管的转移特性曲线,图中Vr为开启电压,当栅极电压超过VT时,漏极电流才开始显著增

加。

2)漏极特性(输出特性)

图5(a)给出了N沟道耗尽型绝缘栅场效应管的输出特性曲线。

图5(b)为N沟道增强型绝缘栅场效应管的输出特性曲线。

图4、N沟道MOS场效管的转移特性曲线

图5、N沟道MOS场效应管的输出特性曲线此外还有N衬底P沟道(见图1)的场效应管,亦分为耗尽型号

增强型两种,

各种场效应器件的分类,电压符号和主要伏安特性(转移特性、输出特性)二、场效应管的主要参数

1、夹断电压VP

当VDS为某一固定数值,使IDS等于某一微小电流时,栅极上所

加的偏压VGS就是夹断电压VP。

2、饱和漏电流IDSS

在源、栅极短路条件下,漏源间所加的电压大于VP时的漏极电

流称为IDSS。

3、击穿电压BVDS

表示漏、源极间所能承受的最大电压,即漏极饱和电流开始上升

进入击穿区时对应的VDS。

4、直流输入电阻RGS

在一定的栅源电压下,栅、源之间的直流电阻,这一特性有以流过栅极的电流来表示,结型场效应管的RGS可达1000000000欧而绝缘栅场效应管的RGS可超过10000000000000欧。

5、低频跨导gm

漏极电流的微变量与引起这个变化的栅源电压微数变量之比,称

为跨导,即

gm= △ID/△VGS

相关文档
最新文档