高一数学必修一题型总结

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修(一)题型总结

-、集合的概念与表示:

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”

2. 进行集合的交、并、补运算时,不要忘记集合本身和空集⑺的特殊情况

注重借助于数轴和文氏图解集合问题。

3. 注意下列性质:集合9i, a2, , a n .的所有子集的个数是2n;

4. 对于集合的元素是不等式的,画数轴确定两集合的关系例题:

1. 满足关系{1,2} A {1,2,3,4,5}的集合的个数是( )

A: 4 B: 6 C: 8 D: 9

2 3 :3

2. 以实数X , - x , |x|, x , -

「k 1 ] f k 1 1

3. M=』x|x=—+ — ,k€Z],

N=d x|x=—+—,k E Z 贝U ( )

(A M =N (B) M N (C) N M (D) M』N

4. 已知A={(x,y)|y=x 2-4x+3},B=[(x,y)|y=-x 2-2x+2}, A n B= ______________

5. 某班考试中,语文、数学优秀的学生分别有30人、28人,语文、数学至少有一科优秀的

学生有38人,求:(1)语文、数学都优秀的学生人数(2)仅数学成绩优秀的学生人数

2 2 2

6.设A={x|x -ax a -19=0} , B ={x| x-5x 6 =0},且A B,求实数a 的值.

二、函数的三要素(定义域、值域、对应法则) 如何比较两个函数是否相同?

1. 定义域的求法:

分母、开偶次方、对数(保证它们有意义)

2 .值域的求法:

①判断函数类型(一次、二

次、反比例、指数、对数、幕函数)由函数的单调性与图像确定当x为何值时函数有最大值(最高点)和最小值(最低点) ,

②对于一个没有学过的函数表达式,需要将它

变成一个学过的函数来解决(换元法、

图像变换法)

3表达式的求法:O1已知函数类型待定系数法

②已知f(x)求f(2x+1)整体代换法,已知f(2x+1)求f(x)换元法。

③形如f(x)+ f(-x)= 2x+1或f(x)+ f(1/x)= 2x+1的取x相反数或倒数消元得到f(x)

3.函数y = f (x)的定义域是[0,2] ,则函数g (x)=

f(2x)

x — 1

的定义域是

A . [0,1] B

.[0,1)

[0,1)U(1,4]

.(0,1)

4. (1)已知 f(2x+1)=x 2

(2)已知 f(x)=x :2

+x ,,求 f(x) +x ,,求 f(2x+1)

的表达式 的表达式 5 (1)已知f(2x+1)定义域(0, 6),求f(x)定义域

(2)已知f(x)定义域(0, 6),求f(2x+1)定义域

2

2

x

6.已知函数 f(x -3)= l g-^

(1)

x -6

求f(x)表达式及定义域 ;(2)判断f(x)的奇偶性.

1

X 一

7、设0W x w 2,则函数f(x)=4 2-3・2x +5的最大值是 _________________ ,最小值是 _______ 三、函数的单调区间与单调性:

(想想两者的区别)

1•函数在区间上单调性的证明步骤:一设

二做差三因式分解最后判断正负号

2.确定一个函数的单调区间,基本函数通过类型看它的图像,

复杂的通过换元利用复合函数的方法(同增异减) 没思路的通过分析 y 随x 的增大而 .................................... 得到

3 .利用单调性解不等式:关键在于将不等式两边的形式化相同 1.下列四个函数中,在(0,+g )上为增函数的是

2

1

A.f(x)=3-x

B.f(x)=x -3x

C.f(x)=-

D.f(x)=-| x|

X +1

2

2.函数f(x)=x +2(a — 1)x+2在区间(-g ,4]上递减,则a 的取值范围是

A. [ -3,+g]

B.(-g ,-3)

C.(-g ,5]

D. [ 3,+g )

例:函数y 二的定义域是

lg(x _3)

2. 下列四组函数中,表示同一函数的是(

A . y = x -1与y 二(x -1)2

B.

y = J x -1与 y = x — 1

J x —1

, 2

C. y = 4 lg x 与 y = 2 lg x

D.

一 x 八1gx — 2与二

lg ^

3.判断函数f(x)=x —丄在0, •::上的单调性并证明

x

5.设函数f(x)是定义在R 上的奇函数,若当 x € (0,+ °时),f(x)=lgx ,则满足f(x)>0的x 的取

'ax + 2 + a

6若函数f(x) -Uog’Zx + A)°为定义域上的单调函数,则

a 的范围是 __________

2

四、函数的奇偶性问题

若f(_x)二「f(x)总成立:=f(x)为奇函数=函数图象关于原点对称

( )

若f(-x) =f(x)总成立:二f(x)为偶函数二函数图象关于y 轴对称(

)

判别函数y 二f (x)奇偶性的方法: 1. 利用x 的奇次幕偶次幕快速判断

2. 利用定义;①求出函数定义域 A ;判别定义域是否关于原点对称,

若A 不关于原点对称,

则f (x)为非奇非偶函数;③计算 f(-x),-f(x);④判别记偶性:若 f(-x) = f(x), 为偶函数;若f(-x)二-f(x)为奇函数;若两式均不成立,则为非奇非偶函数;

注意如下结论:

(1) 在公共定义域内:奇*奇得偶;偶*偶得偶;奇*偶得奇。 (2)

为既奇又偶函数(如 y=0 )。

1、如果奇函数 f (x)在[3,7]上是增函数且最小值是 5,那么f(x)在[-7,-3]上是(

)

A .增函数且最小值是

-5

B 增函数且最大值是 - 5 .

2.若函数f(x)为奇函数,且当x ・0时,f(x)=10x ,则f(-2)的值是()

1

A . -100

B .

C. 100

100

x

―x

x

x

3•若函数f(x)=3 3与g(x)=3 -3的定义域均为R ,则( )

C.减函数且最小值是

- 5

D .减函数且最大值是 -5

D.-—

100

A . f (x)与g (x)均为偶函数

B . f (x)为奇函数,g(x)为偶函数

C . f (x)与g(x)均为奇函数

D . f (x)为偶函数,g(x)为奇函数

相关文档
最新文档