位置与坐标复习专题

合集下载

2024八年级数学上册期末复习4位置与坐标2易错专项训练习题课件新版北师大版

2024八年级数学上册期末复习4位置与坐标2易错专项训练习题课件新版北师大版
1234567
易错点3求点的坐标忽略分类讨论致错 4. [2024德州期末]在平面直角坐标系 xOy 中,已知线段 AB
与 x 轴平行,且 AB =5,若点 A 的坐标为(3,2),则点 B 的坐标是 (-2,2)或(8,2) .

1234567
5. 在直角坐标系中,点 P ( x , y )在第二象限且点 P 到 x 轴, y 轴的距离分别为2,5,则点 P 的坐标是 (-5,2) ;

若去掉点 P 在第二象限这个条件,则点 P 的坐标是 (5, ⁠
2)或(-5,2)或(5,-2)或(-5,-2) . ⁠
1234567
6. 一个正方形的一边上的两个顶点 O , A 的坐标为 O (0, 0), A (4,0),则另外两个顶点的坐标是什么. 解:设另外两个顶点为 B , C . 因为四边形 OABC 是正方 形, A (4,0),所以 OC = BA = BC = OA =4.
1234567
2. 在平面直角坐标系内,点 P (2 m +1, m -3)不可能在 (B) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
1234567
易错点2因混淆横、纵坐标的顺序而致错 3. [教材P71复习题T1变式]点 P 在第四象限,点 P 到 x 轴的距
离是2,到 y 轴的距离是3,则点 P 的坐标是 (3,-2) . ⁠
1234567
(1)如图①,当顶点 B 在第一象限时, B 点坐标为(4,4), C 点坐标为(0,4).
(2)如图②,当顶点 B 在第四象限时, B 点坐标为(4, -4), C 点坐标为(0,-4).
1234567
易错点4不能正确找出点的坐标的变化规律而致错

位置与坐标(七大类型)(题型专练)(原卷版)

位置与坐标(七大类型)(题型专练)(原卷版)

专题10 位置与坐标(七大类型)【题型一:判断点所在的象限】【题型二:坐标轴上点的坐标特征】【题型三:点到坐标轴的距离】【题型四:平行与坐标轴点的坐标特征】【题型五:坐标确定位置】【题型六:点在坐标系中的平移】【题型七:两点间距离公式】【题型八:关于x轴、y轴对称的点】【题型九:关于原点对称】【题型十:坐标与图形的变化-对称】【题型一:判断点所在的象限】1.(2023春•中山市校级期中)点P的坐标为(8,﹣3),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023春•荣县校级期中)下列各平面直角坐标系的点,其中是第三象限的点是()A.(1,1)B.(2,﹣1)C.(﹣1,2)D.(﹣3,﹣1)3.(2023春•赵县月考)如果点M(m,﹣n)在第二象限,则点N(m﹣2,n ﹣2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2023春•新罗区期末)在平面直角坐标系中,点P(﹣2,﹣x2﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(2023春•赣县区期末)如图,小手盖住的点的坐标可能是()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)【题型二:坐标轴上点的坐标特征】6.(2022秋•长安区期末)若点A(n,﹣3)在y轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限7.(2023•柯城区校级一模)在平面直角坐标系中,点M(m﹣1,2m)在x轴上,则点M的坐标是()A.(1,0)B.(﹣1,0)C.(0,2)D.(0,﹣1)8.(2022秋•东港市期末)在平面直角坐标系中,点A(a+2,a﹣1)在y轴上,则点A的坐标为()A.(﹣3,0)B.(0,﹣3)C.(3,0)D.(0,3)9.(2023春•广平县期末)已知点P(m+2,2m﹣4)在y轴上,则点P的坐标为()A.(﹣8,0)B.(0,﹣8)C.(4,0)D.(0.4)【题型三:点到坐标轴的距离】10.(2023春•五莲县期末)已知点P位于y轴左侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)11.(2023春•文昌期中)在平面直角坐标系中,第四象限内有一点M(3,﹣4),它到x轴的距离为()A.3B.﹣3C.4D.﹣4 12.(2023春•鞍山期中)点P在x轴的下侧,y轴的右侧,距离x轴3个单位长度,距离y轴4个单位长度,则点P的坐标为()A.(﹣3,4)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)13.(2023春•兰山区期中)第四象限内的点P到x轴的距离是3,到y轴的距离是4,那么点P的坐标是()A.(﹣3,4)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)14.(2023春•江城区期中)已知点P在第四象限,且到x轴的距离是3,到y 轴的距离是8,则点P的坐标为()A.(8,﹣3)B.(3,﹣8)C.(8,3)D.(﹣8,3)15.(2022秋•市南区期末)在平面直角坐标系中,第一象限内的点P(a+3,a)到y轴的距离是5,则a的值为()A.﹣8B.2或﹣8C.2D.8 16.(2023春•宜城市期末)在平面直角坐标系中,点B在第二象限,并且到x 轴和y轴的距离分别是3和2,则点B坐标为()A.(3,﹣2)B.(2,﹣3 )C.(﹣3,2)D.(﹣2,3)17.(2023春•阳信县期末)在平面直角坐标系中,若点A(﹣2x,x﹣6)到x 轴、y轴的距离相等,则x的值是()A.2B.﹣6C.﹣2D.2或﹣6【题型四:平行与坐标轴点的坐标特征】18.(2023春•铁锋区期末)已知点A(﹣3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的距离等于4,则B点的坐标是()A.(﹣3,4)B.(﹣3,4)或(﹣3,﹣4)C.(4,2)D.(﹣4,2)或(4,2)19.(2023春•荆门期末)已知点M(3,2)与点N在同一条平行于x轴的直线上,且点N到y轴的距离等于4,那么点N的坐标是()A.(4,2)B.(3,﹣4)C.(4,2)或(﹣4,2)D.(3,4)或(3,﹣4)20.(2023春•江汉区期末)已知点M(3,4),若直线MN与x轴平行,则N 点坐标可能是()A.(3,5)B.(4,5)C.(5,3)D.(5,4)21.(2023春•石林县期末)若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()A.(4,﹣2)B.(3,﹣1)C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)22.(2023春•利川市期中)已知点P的坐标为(2x,x+3),点M的坐标为(x+1,2x),PM平行于x轴,则M点的坐标()A.(2,4)B.(2,2)C.(6,6)D.(4,6)23.(2023春•凉山州期末)过点M(a,﹣3)、N(6,﹣5)的直线与y轴平行,则点M关于x轴的对称点的坐标是.24.(2023春•葫芦岛期中)在平面直角坐标系xOy中,已知A(a,﹣2),B (1,b),线段A(a,﹣2),B(1,b)平行于x轴,且AB=3,则a+b=.【题型五:坐标确定位置】25.(2023春•罗定市校级期中)如图是雷达在一次探测中发现的三个目标,目标A的位置表示为A(4,60°),目标C的位置表示为C(5,150°),按照此方法可以将目标B的位置表示为()A.(﹣2,210°)B.(2,210°)C.(﹣4,210°)D.(4,210°)26.(2023春•科左中旗期末)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用(2,﹣1)表示“炮”的位置,那么“将”的位置应表示为()A.(﹣2,3)B.(0,﹣5)C.(﹣3,1)D.(﹣4,2)27.(2023春•白城期中)下列表述,能确定位置的是()A.北京市四环路B.东经118°,北纬40°C.北偏东30°D.红星电影院2排28.(2023春•德城区期末)“健步走”越来越受到人们的喜爱,一个健步走小组将自己的活动场地定在奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方),如图,假设在奥林匹克公园设计图上规定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为()A.(﹣2,﹣4)B.(2,﹣4)C.(﹣2,﹣3)D.(﹣2,3)29.(2023春•馆陶县期末)如图,用方向和距离描述少年宫相对于小明家的位置,正确的是()A.北偏东55°,2km B.东北方向C.北偏西35°,2km D.北偏东35°,2km30.(2023春•鞍山期末)如图,是某班级座位平面图,若小明的座位可以表示为(3,2),则小华的座位可以表示为()A.(3,5)B.(4,5)C.(3,6)D.(4,6)【题型六:点在坐标系中的平移】31.(2022•龙港市模拟)在平面直角坐标系中,将第四象限的点M(a,a﹣3)向上平移2个单位落在第一象限,则a的值可以是()A.1B.2C.3D.4 32.(2023春•顺德区校级期中)将点A(﹣4,﹣1)先向右平移5个单位,再向上平移3个单位得到点A1,则点A1的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)【题型七:两点间距离公式】33.(2023春•郯城县期末)在平面直角坐标系中,点P(1,2)到原点的距离是()A.1B.C.D.34.(2023春•西乡塘区校级期中)已知点A(﹣3,a+2)与点B(a﹣3,4)在同一平面直角坐标系中,且AB∥y轴,则A、B两点间的距离为.35.(2023•宿城区二模)点P(2,4)与点Q(﹣3,4)之间的距离是.【题型八:关于x轴、y轴对称的点】36.(2023春•港南区期末)在平面直角坐标系中,点P(﹣2,3)关于x轴对称点的坐标为()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(3,2)37.(2022秋•海州区校级期末)在平面直角坐标系中,点A(1,a﹣1)与B (﹣1,2)关于y轴对称,则a等于()A.3B.2C.0D.﹣1 38.(2023•辽阳三模)已知点P(m﹣1,4)与点Q(2,n+2)关于y轴对称,则n m的值为()A.﹣2B.C.﹣D.139.(2023春•云梦县期末)已知点P(m﹣1,n+2)与点Q(n﹣4,2m+1)关于y轴对称,则H(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限40.(2023春•汉阳区期末)如图,在平面直角坐标系xOy中,△ABC的顶点C (3,﹣1),则点C关于x轴、y轴对称的点的坐标分别为()A.(3,1),(﹣3,﹣1)B.(﹣3,1),(﹣3,﹣1)C.(3,1),(1,3)D.(﹣3,﹣1),(3,1)【题型九:关于原点对称】41.(2023•任丘市校级模拟)如果点P(x,y)关于原点对称的点在第四象限,则()A.x<0,y>0B.x>0,y≥0C.x>0,y<0D.x>0,y≤0 42.(2023春•砀山县校级期末)在平面直角坐标系中,若点P(2m,3)与点Q(﹣4,n)关于原点对称,则m﹣n的值为()A.2B.﹣5C.5D.﹣8 43.(2023春•滕州市期中)已知点A(a,1)与点B(5,b)关于原点对称,则a+b的值为()A.﹣6B.﹣4C.4D.6 44.(2023•凉山州)点P(2,﹣3)关于原点对称的点P′的坐标是()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(﹣2,3)45.(2023•祁东县校级模拟)若点M(2,b﹣3)关于原点对称点N的坐标是(﹣3﹣a,2),则a,b的值为()A.a=﹣1,b=1B.a=1,b=﹣1C.a=1,b=1D.a=﹣1,b=﹣1 46.(2023春•沈河区校级月考)已知点A(2,m)与B(﹣2,4)关于原点对称,则m=.【题型十:坐标与图形的变化-对称】47.(2023•新都区模拟)在平面直角坐标系中,点P(2,﹣3)关于直线y=x 对称的点的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(﹣2,﹣3)48.(2023•锦江区二模)已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)49.(2022•竞秀区二模)嘉嘉和淇淇下棋,嘉嘉执圆子,淇淇执方子.棋盘中心方子的位置用(1,0)表示,右下角方子的位置用(2,﹣1)表示.嘉嘉将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.则嘉嘉放的位置是()A.(1,2)B.(1,1)C.(﹣1,1)D.(﹣2,1)50.(2021秋•牡丹江期末)如图所示,在平面直角坐标系xOy中,△ABC关于直线y=1对称,已知点A的坐标是(3,4),则点B的坐标是()A.(3,﹣4)B.(﹣3,2)C.(3,﹣2)D.(﹣2,4)51.(新华区校级模拟)将△ABC的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形()A.与原图形关于y轴对称B.与原图形关于x轴对称C.与原图形关于原点对称D.向x轴的负方向平移了一个单位52.(2023春•鼓楼区校级期末)国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的随意一个,那么国王从格子(x1,y1)走到格子(x2,y2)的最少步数就是数学的一种距离,叫“切比雪夫距离”.在平面直角坐标系中,对于任意两点P1(x1,y1)与P2(x2,y2)的“切比雪夫距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与P2(x2,y2)的“切比雪夫距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点R1(x1,y1)与P2(x2,y2)的“切比雪夫距离”为|y1﹣y2|;(1)已知A(0,2),①若B的坐标为(3,1),则点A与B的“切比雪夫距离”为;②若C为x轴上的动点,那么点A与C“切比雪夫距离”的最小值为;(2)已知,N(1,﹣1),设点M与N的“切比雪夫距离”为d,若a≥0,求d(用含a的式子表示).。

初二数学位置和坐标练习题

初二数学位置和坐标练习题

初二数学位置和坐标练习题考察知识点:位置和坐标练习一:1. 小明家在一栋高楼的正上方,楼高150米,小明家离地面的高度是100米。

请问小明家的位置坐标是多少?2. 在一个平面直角坐标系中,A点的横坐标是5,纵坐标是-3。

请问A点的位置在第几象限?3. 在一个平面直角坐标系中,有一条线段:起点A (-2, 1),终点B (3, 4)。

请问线段AB的长度是多少?4. 在一个平面直角坐标系中,有一个点P (5, -2)。

请问点P到与x 轴平行的直线的距离是多少?练习二:1. 平面直角坐标系中,有一个点A (4, 3),点B (10, 7)。

请问连接AB的线段的斜率是多少?2. 在一个平面直角坐标系中,有两个点A (2, -3) 和 B (-5, 6)。

请问直线AB的斜率是正数还是负数?为什么?3. 某坐标系中,有一条线段:起点A (1, 2),终点B (-3, 5)。

请问线段AB与x轴的夹角是多少度?4. 平面直角坐标系中,有一条直线L,过点A (3, -1),且与y轴垂直。

请写出直线L的方程。

练习三:1. 在一个平面直角坐标系中,有一个点A (-6, 4),点B (9, -2)。

请问直线AB的中点的坐标是多少?2. 在一个平面直角坐标系中,有一个点C (-2, 5),点D (6, 7)。

请问线段CD的中点的坐标是多少?3. 在坐标系中,有一条直线L,方程为y = 2x + 3。

请问直线L与x轴的交点的坐标是多少?4. 在一个平面直角坐标系中,有三个点A (1, 4),B (5, 8),C (3, -6)。

请问点D在BC中点上,坐标是多少?解答:练习一:1. 小明家的位置坐标是(0, 100)。

2. A点的位置在第二象限。

3. 线段AB的长度可以通过使用勾股定理计算:AB = √[(x₂ - x₁)²+ (y₂ - y₁)²] = √[(3 - (-2))² + (4 - 1)²] = √[5² + 3²] = √34 ≈ 5.83。

初三中考数学复习 用坐标确定位置 专题复习练习题 含答案

初三中考数学复习 用坐标确定位置 专题复习练习题 含答案

2019 初三中考数学复习用坐标确定位置专题复习练习题1.如图所示, 若在象棋盘上建立平面直角坐标系, 使“将”位于点(1, -2), “象”位于点(3, -2), 则“炮”位于点( )A. (1,3)B. (-2,0)C. (-1,2)D. (-2,2)2.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A. 景仁宫(4,2)B. 养心殿(-2,3)C. 保和殿(1,0)D. 武英殿(-3.5, -4)3.能够准确表示我国首都北京这个地点位置的是( )A. 北纬39.92度B. 东经116.46度C. 河北衡水的正北方向D. 东经116.46度, 北纬39.93度4.如图,以小岛作为参照点,渔船A的位置应该表示为( )A. 北偏东40°方向上, 距离小岛25km的位置B. 北偏东50°方向上, 距离小岛25km的位置C. 东偏北40°方向上, 距离小岛25km的位置D. 南偏东40°方向上, 距离小岛25km的位置5.如图,小明在操场上的点B处看位于点A处的小亮的位置时,下列说法正确的是( )A. 点A在点B的北偏东40°方向25m处B. 点A在点B的南偏东50°方向25m处C. 点A在点B的南偏西40°方向25m处D. 点A在点B的南偏西50°方向25m处6.如图,在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A. A点B. B点C. C点D. D点7.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果用(-40,-30)表示点M的位置,那么(10,20)表示的位置是( )A. 点AB. 点BC. 点CD. 点D8.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°方向上,外婆家到学校与小明家到学校距离相等,则学校在小明家的( )A. 南偏东50°方向上B. 南偏东40°方向上C. 北偏东50°方向上D. 北偏东40°方向上9. 如图, 在菱形ABCD中, 点A在x轴上, 点B的坐标为(8,2), 点D的坐标为(0,2), 则点C的坐标为.10.如图, A点的位置应表示为.11.若(2,4)表示教室里第2列第4排的位置,则(4,2)表示教室里第列第排的位置.12.在方格纸上有A.B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为(3,4). 若以点A为原点建立平面直角坐标系,则点B的坐标为.13. 如图, 在平面直角坐标系中, △A1A2A3, △A3A4A5, △A5A6A7, △A7A8A9, …, 都是等边三角形, 且点A1, A3, A5, A7, A9的坐标分别为A1(3,0), A3(1,0), A5(4,0), A7(0,0), A9(5,0), 依据图形所反映的规律, 则A100的坐标为 .14.如图, 长方形ABCD的长为6, 宽为4, 建立平面直角坐标系, 使其中B点的坐标为(-3, -2), 并写出其他三个顶点的坐标.15.如图所示是某学校周边环境示意图,对于学校来说:(1)正北方向有哪些设施?正西方向呢?要明确这些设施相对于学校的位置, 还需要哪些数据?(2)离学校最近的设施是什么?在学校的哪个方向上?这一方向还有其他的设施吗?怎么区分?16.. 如图是某学校的平面示意图,试回答下列问题:(1)若(4,3)表示A教学楼的位置, 则校门、B教学楼、实验楼及宿舍楼的位置如何表示?(8,7)表示哪座建筑的位置?(2)若每格为50m, 则小王进校门后先到B教学楼拿书, 然后到实验楼做实验, 他该怎么走?他走的路程总和是多少?(顺着方格线走)参考答案:1—8 BBDAD BBD9. (4,4)10. 北偏60°约3km11. 4 212. (-3, -4)13. ( , - )14. 解:∵B(-3, -2), 且BC=6, BC∥x轴, ∴C(3, -2), 同理D(3,2), A(-3,2).15. 解: (1)正北方有工厂,正西方有酒店,要明确这些设施对于学校的位置,还需要学校到它们的距离;(2)距学校最近的是公园, 在学校的正东方向, 离学校一个单位长, 这一方向还有运动场, 离学校两个单位长.16. 解:(1)校门(7,1),B教学楼(10,4),实验楼(3,6),宿舍楼(6,11),(8,7)表示图书馆;(2)(7,1)→(10,1)→(10,4)→(10,6)→(3,6)或从校门向北走150米, 再向东走150米到达B教学楼, 从B教学楼向北走100米, 再向西走350米到实验楼, 共走750米.。

2024八年级数学上册期末复习4位置与坐标3常考题型专练习题课件新版北师大版

2024八年级数学上册期末复习4位置与坐标3常考题型专练习题课件新版北师大版

1
2
3
4
5
6
7
8
9
10
11
10. 如图,在平面直角坐标系中,已知点 A (-4,1), B (1,
1), C (-3,3).
(2)点 C 关于 x 轴的对称点C'的坐标为 (-3,-3)


(3)已知点 P 是 y 轴上一点,若 S△ ABC = S△ ABP ,则点 P 的
坐标是 (0,3)或(0,-1)
1), C (-3,3).
(1)①画出△ ABC ;
②判断△ ABC 的形状;
1
2
3
4
56Βιβλιοθήκη 78910
11
解:(1)①图略.
②因为 AB2=[1-(-4)]2=25, AC2=(-3+4)2+(3-1)2=5,
BC2=(-3-1)2+(3-1)2=20,
所以 AC2+ BC2= AB2.
所以△ ABC 是直角三角形.
1
2
3
4
5
6
7
8
9
10
11
解:(2)设点 P 的坐标为( t ,0),由题意得 OA = + =
2 .
当 OP = OA 时,点 P 的坐标为(-2 ,0)或(2 ,0);当
AP = AO 时,点 P 的坐标为(4,0);
当 PO = PA 时,点 P 的坐标为(2,0).
综上所述,点 P 的坐标为(-2 ,0)
1
2
3
4
5
6
.

7
8
9
10
11
11. 【新视角·动点探究题】如图,在平面直角坐标系中,

八年级数学上册第三章位置与坐标课时练习题及答案

八年级数学上册第三章位置与坐标课时练习题及答案

八(上)第三章位置与坐标分节练习题和本章复习题带答案第1节确定位置1、【基础题】下列数据不能确定物体位置的是()★A. 4楼8号B.北偏东30度C.希望路25号D.东经118度、北纬40度2、【基础题】如左下图是某学校的平面示意图:如果用(2:5)表示校门的位置:那么图书馆的位置如何表示?图中(10:5)处表示哪个地点的位置?★3、【基础题】如右上图:雷达探测器测得六个目标A、B、C、D、E、F:目标C、F的位置表示为C(6:120°)、F(5:210°):按照此方法在表示目标A、B、D、E的位置时:其中表示不正确的是()★A.A(5:30°)B.B(2:90°)C.D(4:240°)D.E(3:60°)30方向:距学校1000m处:则学校在小明家的_______. ★4、【综合题】小明家在学校的北偏东○第2节平面直角坐标系5、【基础题】写出左下图中的多边形ABCDEF各个顶点的坐标. ★★★6、【基础题】在右上图的平面直角坐标系中:描出下列各点:A(-5:0):B(1:4):C(3:3):D(1:0):E(3:-3):F(1:-4). ★★★6.1【基础题】在右边的直角坐标系中描出下列各组点:并将各组内的点用线段依次连接起来:并观察这几组点所连的线段合在一起像什么? ★第一组:(0:0)(6:0)(6:7)(0:7)(0:0) 第二组:(1:4)(2:6) 第三组:(4:6)(5:5) 第四组:(2:0)(2:3)(4:3)(4:0) 7、【综合题】如左上图:若点E 的坐标为(-2:1):点F 的坐标为(1:-1):则点G 的坐标为______. ★ 8、【基础题】如右图:对于边长为4的正△ABC :建立适当的直角坐标系:写出各个顶点的坐标. ★ 9、【基础题】在平面直角坐标系中:下面的点在第一象限的是( ) ★ A. (1:2) B. (-2:3) C. (0:0) D. (-3:-2) 【综合题】若023=++-b a :则点M (a :b )在( ) ★ A.第一象限 B.第二象限 C.第三象限 D.第四象限10、【基础题】在平面直角坐标系中:点P (1:2-m )在第四象限:则m 的取值范围是_________. ★10.1【基础题】点),(b a P 是第三象限的点:则( ) ★(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <011、【基础题】点P 在第二象限:若该点到x 轴的距离为3:到y 轴的距离为1:则点P 的坐标是______. ★★★11.1【基础题】已知点)68(,-Q :它到x 轴的距离是____:它到y 轴的距离是____:它到原点的距离是_____. ★ 12、【提高题】在平面直角坐标系中:点A 的坐标为(-3:4):点B 的坐标是(-1:-2):点O 为坐标原点:求△AOB 的面积. ☆第3节 轴对称与坐标变化13、【基础题】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是_______:关于x 轴的对称点的坐标是_______:关于原点的对称点的坐标是_______:点M 到原点的距离是_______. ★★★13.1【综合题】如右图:在直角坐标系中:△AOB 的顶点O 和B 的坐标分别是O (0:0):B (6:0):且∠OAB =90°:AO =AB :则顶点A 关于x 轴的对称点的坐标是 ( ) ★(A )(3:3) (B )(-3:3)(C )(3:-3) (D )(-3:-3)O AB y14、【综合题】△ABC 在平面直角坐标系中的位置如图所示. ★★★ (1)作出△ABC 关于x 轴对称的△A 1B 1C 1:并写出点A 1的坐标: (2)作出将△ABC 绕点O 顺时针旋转180°后的△A 2B 2C 2: (3)求S △ABC .15、【提高题】 在如图所示的直角坐标系中:四边形ABCD 的各个顶点的坐标分别是A (0:0):B (2:5):C (9:8):D (12:0):求出这个四边形的面积. ★本章复习题一、选择题1、一只七星瓢虫自点(-2:4)先水平向右爬行3个单位:然后又竖直向下爬行2个单位:则此时这只七星瓢虫的位置是 ( ) (A )(-5:2) (B )(1:4) (C )(2:1) (D )(1:2)2、若点P 的坐标为)0,(a :且a <0:则点P 位于 ( )(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴 3、若点P ),(b a 在第四象限:则Q ),1(b a -+在 ( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限4、点M (-2:5)关于x 轴的对称点是N :则线段MN 的长是 ( ) (A )10 (B )4 (C )5 (D )25、如右图:把矩形OABC 放在直角坐标系中:OC 在x 轴上:OA 在y 轴上:且OC=2:OA=4:把矩形OABC 绕着原点顺时针旋转90°得到矩形OA ′B ′C ′:则点B ′的坐标为( ) A 、(2:3) B 、(-2:4) C 、(4:2) D 、(2:-4)二、填空题6、如右下图:Rt △AOB 的斜边长为4:一直角边OB 长为3:则点A 的坐标是_____:点B 的坐标是_____.DCBAyx123459678101112108769543217、如右图:∠OMA =90°:∠AOM =30°:AM =20米:OM =203米:站在O 点观察点A :则点A 的位置可描述为:在北偏东_____度的方向上:距离点O_____米.8、点A )2,(a 和点B ),3(b 关于x 轴对称:则ab =_____.9、将点P (2:1)绕原点O 按顺时针方向旋转90°到点Q :则点Q 的坐标是_____. 10、(2012山东泰安)如左下图:在平面直角坐标系中:有若干个横坐标分别为整数的点:其顺序按图中“→”方向排列:如(1:0):(2:0):(2:1):(1:1):(1:2):(2:2)…根据这个规律:第2012个点的横坐标为 .三、解答题11、 如图:每个小方格都是边长为1的正方形:在平面直角坐标系中.(1)写出图中从原点O 出发:按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标: (2)按图中所示规律:标出下一个点F 的位置. 12、(1)在左下的直角坐标系中作△ABC :使点A 、B 、C 的坐标分别为(0:0):(-1:2):(-3:-1): (2)作出△ABC 关于x 轴和y 轴的对称图形.13、在右上的平面直角坐标系中作点A (4:6):B (0:2):C (6:0):并求△ABC 的周长和面积.AOM北A B C DO E x y 11题八(上) 第三章位置与坐标 分节练习答案第1节确定位置 答案 1、【答案】 选B 2、【答案】 图书馆的位置表示为(2:9):图中(10:5)表示旗杆的位置. 3、【答案】 选D 4、【答案】 南偏西○30方向:距小明家1000 m 处.第2节平面直角坐标系 答案 5、【答案】 A (-2:0): B (0:-3): C (3:-3): D (4:0): E (3:3): F (0:3). 6、【答案】略. 6.1【答案】 囧 (注意:右眉毛短一点) 7、【答案】 (1:2) 8、【答案】 略 9、【答案】 选A 9.1【答案】 选 D10、【答案】 2<m 10.1【答案】 选C 11、【答案】 (-1:3) 11.1【答案】 6:8:10. 12、【答案】 △AOB 的面积是5.第3节 轴对称与坐标变化 答案 13、【答案】点M 的坐标是(-3:4):则点M 关于y 轴的对称点的坐标是(3:4):关于x 轴的对称点的坐标是 (-3:-4):关于原点的对称点的坐标是(3:-4)::点M 到原点的距离是5. 13.1【答案】 选C 14、【答案】(1)A 1的坐标是(-2:-3)(2)关于原点对称的点的横、纵坐标都互为相反数. (3)S △ABC 15、【答案】本章复习题 答案 一、选择题 答案 1、【答案】 选D 2、【答案】 选B 3、【答案】 选A 4、【答案】 选A 5、【答案】 选 C 二、填空题 答案6、【答案】 )7,0( (3:0)7、 【答案】 60 408、【答案】 -69、【答案】 (1:-2) 10、【答案】 45 三、解答题11、【答案】 (1)A(1:0):B(1:2):C(-2:2):D(-2: -2):E(3:-2):(2)F (3:4).12、【答案】 略13、【答案】 周长是24104+:面积是16.。

第三章位置与坐标复习教案

第三章位置与坐标复习教案
二、核心素养目标
1.培养学生运用坐标系描述物体位置和运动的能力,强化空间观念和几何直观。
2.提升学生分析坐标与图形位置关系,发展逻辑推理和问题解决能力。
3.激发学生探索位置变换规律,增强创新意识和实践操作技能。
4.培养学生将坐标系应用于实际问题,提高数学建模和数学应用素养。
本章节核心素养目标依据新教材要求,注重培养学生的空间想象力、逻辑思维、创新意识和实际应用能力,使学生在掌握位置与坐标知识的基础上,提升数学学科核心素养,为学生的终身发展奠定基础。
-图形变换后坐标的确定:图形在坐标系中进行平移、旋转等变换后,学生需要能够准确找到变换后图形上关键点的坐标。
-实际问题中的坐标系应用:学生需学会将现实问题转化为数学问题,利用坐标系进行分析和解决。
举例:在讲解位置变换中的坐标计算时,教师可通过动态图示、实际操作等方式,帮助学生理解坐标在平移、旋转过程中的变化规律。如平移时,坐标点(x, y)的变换公式为(x+a, y+b),其中a、b表示沿x轴、y轴的平移量;旋转时,坐标点(x, y)绕原点逆时针旋转θ角的变换公式为(x*cosθ - y*sinθ, x*sinθ + y*cosθ)。
小组讨论环节,学生们积极参与,提出了不少有创意的想法。我感到欣慰的是,他们在讨论中不仅分享了知识,还学会了倾听和尊重他人的意见。不过,我也观察到个别小组在讨论时主题有些偏离,未来我需要在这方面给予更多的指导,确保讨论内容紧扣教学目标。
实践活动中,学生通过分组讨论和实验操作,将理论知识与实际操作相结合,这样的教学方式明显提高了学生的动手能力和问题解决能力。但我也发现,在操作过程中,学生对实验结果的记录和展示还不够规范,这一点需要在今后的教学中加强指导。
(四)学生小组讨论(用时10分钟)

北师大版数学八年级上册第3章位置与坐标复习课课件

北师大版数学八年级上册第3章位置与坐标复习课课件

7. 在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴 对称,则a+b的值是____4_____. 8. 若点P(-2a,a-1)在y轴上,则点P的坐标为__(__0_,__-_1_)___, 点P关于x轴对称的点的坐标为__(__0_,__1_)____.
9.已知点P(a-1,-b+2)关于x轴的对称点为M,关于y轴的对称 点为N,若点M与点N的坐标相同. (1)求a,b的值; (2)猜想点P的位置并说明理由.
的点的坐标是( C )
A. (2,3)
B. (-3,2)
C. (-3,-2)
D.(-2,-3)
3. 如图Z3-6,将点A(-1,2)关于x轴作轴对称变换,则变换后 点的坐标是( C ) A.(1,2) B.(1,-2) C.(-1,-2) D.(-2,-1)
பைடு நூலகம்
4.已知△ABC在直角坐标系中的位置如图Z3-7,若△A′B′C′与
7. 已知:如图Z3-5,在△ABC中,AC=BC=5,AB=6,请以点A为原 点,以AB所在的直线为x轴建立平面直角坐标系,并求出△ABC的 各顶点的坐标.
解:建立的直角坐标系如答图Z3-1.
过点C作CD⊥AB于点D,如答图Z3-1.
因为AC=BC=5,AB=6,
所以BD=AD= AB= ×6=3.
第三章 位置与坐标
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1.坐标与图形位置: (1)结合实例进一步体会有序数对可以表示物体的位置. (2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给 定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出 它的坐标. (3)在实际问题中,能建立适当的直角坐标系,描述物体的位置 .

2024八年级数学上册期末复习4位置与坐标1考点梳理与达标训练习题课件新版北师大版

2024八年级数学上册期末复习4位置与坐标1考点梳理与达标训练习题课件新版北师大版

3
1
.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
11. 已知点 P 的坐标为(1- a ,2 a +4),且点 P 到两坐标轴的
距离相等,则点 P 的坐标是 (2,2)或(6,-6) .

点拨:因为点 P 的坐标为(1- a ,2 a +4),所以点 P 到 y
轴的距离为 − ,点 P 到 x 轴的距离为 + .
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17. (12分)如图,直线 AB 与 x 轴, y 轴分别相交于点 A (6,
0), B (0,8), M 是 OB 上一点,若将△ ABM 沿 AM 折
叠,则点 B 恰好落在 x 轴上的点B'处.求:
(2)△ ABM 的面积.
1
2
3
4
5
6
7
8
9
10
同学所在的景点.
解:张明在游乐场,王励在望春亭,
李华在湖心亭.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16. (12分)已知点 A ( a ,3), B (-4, b ),试根据下列条件求
出 a , b 的值.
(1) A , B 两点关于 y 轴对称;
解:(1)因为 A , B 两点关于 y 轴对称,

位置与坐标知识点总结与经典题型归纳

位置与坐标知识点总结与经典题型归纳

位置与坐标知识点一确定位置1.平面内确定一个物体的位置需要2个数据。

2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、歹U,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。

(2)方位角距离定位法:方位角和距离。

(3)经纬定位法:它也需要两个数据:经度和纬度。

(4)区域定位法:只描述某点所在的大致位置。

如“解放路22 号”。

知识点二平面直角坐标系L定义在平面内,两条互相且具有公共的数轴组成平面直角坐标系.其中水平方向的数轴叫或,向为正方向;竖直方向的数轴叫或,向为正方向;两条数轴交点叫平面直角坐标系的.3.平面内点的坐标对于平面内任意一点P,过P分别向X轴、y轴作垂线轴上的垂足对应的数a叫P的—坐标轴上的垂足对应的数b叫P的坐标。

有序数对(),叫点P的坐标。

若P的坐标为(),则P到X轴距离为,到y轴距离为.注意:平面内点的坐标是有序实数对,(a, b)和(b, a)是两个不同点的坐标.4.平面直角坐标系内点的坐标特征:⑴坐标轴把平面分隔成四个象限。

根据点所在位置填表⑵坐标轴上的点不属于任何象限,它们的坐标特征1①在X轴上的点坐标为0;②在y轴上的点坐标为0 .(3)P()关于X轴、y轴、原点的对称点坐标特征①点Po关于X轴对称点R;②点PO关于y轴对称点P2;③点PO关于原点对称点P:,.5.平行于X轴的直线上的点坐标相同;平行于y轴的直线上的点坐标相同.知识点三轴对称与坐标变化⑴若两个图形关于X轴对称,则对应各点横坐标,纵坐标互为.⑵若两个图形关于y轴对称,则对应各点纵坐标,横坐标互为.⑶将一个图形向上(或向下)平移n(n>0)个单位,则图形上各点横坐标,纵坐标加上(或减去)n个单位.(4)将一个图形向右(或向左)平移n (n>0)个单位,则图形上各点纵坐标,横坐标加上(或减去)n个单位.(5)纵坐标不变,横坐标分别变为原来的a倍,则图形为原来横向伸长的a倍(a>l)或图形横向缩短为原来的a倍(0<a<l)o (6)横坐标不变,纵坐标分别变为原来的a倍,则图形为原来纵向伸长的a倍(a>l)或图形纵向缩短为原来的a倍(0<a<l)o (7)横坐标与纵坐标同时变为原来的a倍,则图形被放大,形状不变(a>l)o题型一坐标系的理解1.平面内点的坐标是()A 一个点B 一个图形C 一个数D 一个有序数对2.在平面内要确定一个点的位置,一般需要个数据;在空间内要确定一个点的位置,一般需要个数据.3.在平面直角坐标系内,下列说法错误的是OA 原点。

《位置与坐标》复习题

《位置与坐标》复习题

《位置与坐标》一、填空题1.点P 到x 轴的距离是2,到y 轴的距离是3,p 点在y 轴的左侧,则P 点的坐标是________.2.点(1A -,2)a 关于x 轴对称点P 的坐标是(3b ,4),则___a =,___b =.3.点(3P ,4)到x 轴的距离是 ,到y 轴的距离是 .到原点的距离是____4.某学校的平面示意图如图所示,如果实验楼所在位置的坐标为(23)--,,教学楼所在位置的坐标为(12)-,,那么图书馆所在位置的坐标为 .5.长方形ABCD 中,A 、B 、C 三点的坐标分别是(0,0)、(6,0)、(6,4),则点D 的坐标是6.已知线段 MN=4,MN ∥y 轴,若点M 坐标为(-1,2),则N 点坐标为 .7.若点)(b a M ,在第二象限,则点)(a b b N --,在第________象限. 8.若点A (a+1,3+2a )在y 轴上,则点A 的坐标是____________ 9. 在平面直角坐标系中,点A (2,3),B (2,-3)和原点O 围成的△AOB 的面积是_______10. 如果M (3,2y )与N (x ,y-1)关于y 轴对称,则x+y=_________二、选择题11.在平面直角坐标系中,下列各点在第三象限的是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-3)12.若x轴上的点P到y轴的距离为3,则点P的坐标为()A(3,0) B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)13. 点P(m+3,m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)14.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A. 在x轴上B. 在y轴上C. 是坐标原点D. 在x轴上或在y轴上15.如果点A(a,b)在第三象限,则点B(-a+1,3b-5)关于原点的对称点是在( )A.第一象限B.第二象限C.第三象限D.第四象限16.如果点P(5,y-2)在第四象限,则y的取值范围是()A.2y D.2-≤≥y><y B.2y C.217.若点P(a,b),且ab>0,a+b<0,则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限18.已知a>0,b<0,则点P(a,b)在()A.第一象限B. 第二象限C. 第三象限D. 第四象限19.若0-ba,则点M(a,b)在()2++3=A.第一象限B.第二象限C.第三象限D.第四象限三、解答题20. 如图是小明所在学校的平面示意图,请你用适当的方法描述食堂位置(建立平面直角坐标系)。

2024年北师大版八年级上册数学期末复习专题六 坐标系中的图形面积

2024年北师大版八年级上册数学期末复习专题六 坐标系中的图形面积


面积的一半,点 P 的坐标为(0, )或(0,- ).
的距离为5,

所以△ ABC 的面积= ×4×5=10.

1
2
3
4
5
6
专题
(2)若点 P (0, m )在 y 轴上,试用含 m 的代数式表示△
ABP 的面积;


【解】当 m >0时,△ ABP 的面积= ×4 m =2 m ;

当 m <0时,△ ABP 的面积= ×4×(- m )=-2 m .
面积” S .
【解】三点的“水平底” a =1-(-3)=4,“铅垂
高” h =5-1=4.所以 “矩面积” S = ah =4×4=16.
1
2
3
4
5
6
专题
(2)若点 A (1,2), B (-3,1), P (0, t )的“矩面积” S 为
12,求点 P 的坐标.
【解】三点的“水平底” a =1-(-3)=4,“矩面
积” S 为12.当1≤ t ≤2时, h =2-1=1,则“矩面
积” S =1×4=4≠12,不合题意;当 t >2时, h = t -
1,则4( t -1)=12,解得 t =4,所以点 P 的坐标为(0,
4).当 t <1时, h =2- t ,则4(2- t )=12,解得 t =
-1,所以点 P 的坐标为(0,-1).
坐标差的最大值,“铅垂高” h :任意两点纵坐标差的最
大值,则“矩面积” S = ah .
1
2
3
4
5
6
专题
例如:三点坐标分别为 A (1,2), B (-3,1), C (2,-

位置与坐标复习.

位置与坐标复习.

4、在直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依
次连接起来形成一个图案 是
N

5、矩形的两条边长分别为8、6,建立适当的直角坐标系,并写出它的四个顶点的坐标。
5、矩形的两条边长分别为8、6,建立适当的直角坐标系,并写出 它的四个顶点的坐标。
(0,6) B A (8,6)
一、确定平面上点的位置的常用方法
1、如图,A、B、C是棋子在方格纸上摆出的三个位置,如果用(2,5) (1,4) (4,4) 表示A的位置,则B表示为___________ ,C表示为____________ 。 两 个数据来确定,它们是 2、如图是灯塔A的方位图,A的位置需要_____ 方位角 ,A与O点的距离 ____________________ 。 两 个数据来确定,用 3、如图,某一小区的平面简图,☆的位置需要_____ B2 适当的方法表示☆所在区域__________ 。
(5)、F点由A 点向下平移3个单位得到.
请分别写出B、C、D、E、F的坐标.
解:B(2 ,-1),C(-2,1),D(-2,-1),E(-3,1), F(2,-2)
三、图形的变换与坐标变换
例1. 将图中的点(3,0),(7,0),(2,2) (3,2),(7,2),(8,2),(5,4)做 如下变化,画出图形,说说变化前后图形的关系。 1 (1)纵坐标不变,横坐标缩小为原来的 ; 2
图形坐标变化与图形平移、轴对称、伸长、压缩之间的关系。
带着问题复习
1、在平面内,确定点的位置一般需要几个数据?举例说明。 2、在直角坐标系中,如何确定给定点的坐标?
3、在直角坐标系中,横、纵坐标轴上的点的坐标各有什么特点?
4、在直角坐标系中,将图形沿坐标轴方向平移,变化前后的对应点的坐标有什 么异同? 5、在直角坐标系中,将图形上各点的横坐标或纵坐标加上一个数(或乘-1), 变化前后的图形有什么关系?

八年级上册数学第三章位置与坐标 知识点复习

八年级上册数学第三章位置与坐标 知识点复习

在x轴上的点的坐标特征是在y轴上的点的坐标特征是3.一、三象限角平分线上的点的特征是二、四象限角平分线上的点的特征是4.关于x轴对称的两点的坐标特征关于y轴对称的两点的坐标特征关于原点对称的两点的坐标特征5.与x轴平行的直线上的点的特征是与y轴平行的直线上的点的特征是6.点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于1.平行于y轴的直线上任意两点的坐标关系是()A、纵坐标相等,横坐标不相等B、横坐标相等,纵坐标不相等C、横坐标和纵坐标都相等D、横坐标和纵坐标都不相等2.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A、平行于y轴B、平行于x轴C、与y轴相交D、与y轴垂直3.已知点B的坐标为(3,-4),而直线AB平行于y轴,那么A点坐标可能为()A、(3,-2)B、(2,4)C、(-3,2)D、(-3,-4)4.已知A(-3,m),B(n,4),若AB∥x轴,则m=,并确定n的取值范围5.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为6.已知点A(3,2),AC⊥x轴,垂足为C,则C点的坐标为7.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B坐标为8.已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为9.已知AB∥x轴,A点的坐标为(-3,2),并且AB=4,则B点的坐标为10.在平面直角坐标系中,若点M(-1,3)与点N(x,3)之间的距离是5,则x 的值是11.正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为1.在坐标系中若点P到x轴的距离为3,到y轴的距离为4,则点P坐标是2.已知点m到x轴的距离为3,到y轴距离为2,且在第四象限内,则点m的坐标为3.如果点p在第一象限,p到x轴的距离是4,到y轴的距离是3,那么点p的坐标是4.已知点p在平面直角坐标系中的第二象限内,且点p到x轴的距离为4,到y 轴的距离为3,则点p的坐标为5.若点P在第二象限,到x轴的距离为a,到y轴的距离为b,则点P坐标(用a,b式子表示)5.已知点M(3,-2)与点N(a,b)在同一条平行于x轴的直线上,且点N到y 轴的距离等于4,则点N的坐标是6.已知平面直角坐标系中A(-5,12),则点A到x轴的距离为,到y轴距离为,到原点的距离为7.若点P(a,5)在第二象限,且到原点的距离是7,则a=8.若点P(m,n)在x轴上,且与点Q(3,4)的连线平行于y轴,则点(n-5,m+9)到原点的距离为9.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为10.已知点P在y轴的右侧,点P到x轴的距离为6,且它到y轴的距离是到x 轴距离的一半,则P点的坐标是11.已知点p的坐标为(2m+1,m-4)并且满足点p到到x轴、y轴的距离相等,则点p的坐标为12.已知点M(3a-2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到两坐标轴的距离相等.13.已知点A(1,2a-1),点B(-a,a-3).①若点A在第一、三象限角平分线上,求a值.②若点B到x轴的距离是到y轴距离的2倍,求点B所在的象限.14.已知平面直角坐标系中有一点M(2m-3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,-1)且MN∥x轴时,求点M的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则顶点M、N的坐标分别是

❖ 等腰梯形的各点坐标为B(-1,0),
A(0,2),C(4,0),则点D的坐标为

面积问题
平面直角坐标系中,A(-3,4),B(-1,2), O为原点,如图所示.求三角形AOB的面积.
谢谢
3、如果B(m+1,3m-5)到x轴的距离与它到y轴 的距离相等, 求(1)m.值,(2)求它关于原点的对称点
1、 在直角坐标系中,A(1,0),B(-1,0), △ABC为等边三角形,则C点的坐标是_______ 。
2、如图所示,在平面直角坐标系中,MNPO是
平行四边形且OP=OM,顶点P坐标是(3,4),
2、若点P( 1 a ,2b2),则点P所在的象 限是 ( )
A、第一象限 C、第三象限
B、第二象限 D、第四象限
3、在平面直角坐标系内,已知点P ( a , b ),
且a b < 0 , 则点P的位置在_________象限
知识点2 坐标轴上点的特点题型
1、点A在x轴上,距离原点4个单位长度,则A点 的坐标是 ____________。
第三章 位置与坐标
复习专题
学习目标:
1、直角坐标系中每一个象限特点 2、坐标轴上点的特点 3、象限角平分线特点 4、两点连线与坐标轴平行问题 5、关于坐标轴对称问题 6、点到坐标轴的距离
知识点1 象限特点题型
1、如果点P(5,y)在第四象限,则y的 取值范围是( )
A.y<0 B.y>0 C.y≤0 D.y≥0
2、若点(5-a,a-3)在第一、三象限角平
分线上,则a=
.
3、若点(5+a,a-3)在第二、四象限角平
分线上,则a=
.
1、已知点A(m,-2),点B(3 ,m-1),且 直线AB∥x轴,则m的值为 。
2、已知:A(1,2),B(x,y),AB∥y轴,且1、点 M(- 8,12)到 x轴的距离是_____, 到 y轴的距离是_____. 2、若点P在第三象限且到x轴的距离2,到y轴 的距离为1.5,则点P的坐标是________。
2、实数 x,y满足 (x-1)2+ |y| = 0,则点 P( x,y)
在【 】.
(A)原点
(B)x轴正半轴
(C)第一象限 (D)任意位置
3、若点M(a+1,3-2a)在y轴上,则点M坐标
为______。
知识点3 象限角平分线题型
1、若点P(1-2a,a)在第二象限角平分 线上,则点P的坐标是( , )。
相关文档
最新文档