si4463dy数据手册
Si4x6x-C2A 和 Si4467 8-A2A EZRadioPRO 转换指南说明书
Rev. 0.1 4/15Copyright © 2015 by Silicon LaboratoriesAN897AND S I 4467/8-A2A1. IntroductionThis document provides assistance in transitioning from the Si4x6x-B1B to the Si4x6x-C2A or Si4467/8-A2A EZRadioPRO transceivers, transmitters, and receiver. The new radios and radio revisions represents the newest generation of the EZRadioPRO family with improved performance, new features and flexibility combined with simplicity and cost efficiency. The main differences between these radios are described in this document. It is highly recommended that the customer also read the corresponding data sheets and application notes when converting a design to a new radio.2. BenefitsVarious digital and packet handler related enhancements and auxiliary features are introduced in the new radio families that is going to be summarized in later chapters. The Si4x6x-C2A and Si4467/8-A2A improves performance in several key areas compared to the Si4x6x-B1B revision. Key among these are the extended power supply voltage to 3.8V, overall improved link budget to 153dB, extended ambient temperature to 125°C, blocking and adjacent channel rejection improvements.In order to determine the worst case parameters for the end application, both Si4x6x-C2A and Si4467/8-A2A data sheets specify minimum or maximum limits for the most critical characteristics. Maximum values are guaranteed across the recommended operating conditions of supply voltage and from –40 to +85°C unless otherwise stated.2.1. Comparison of DC CharacteristicsTable 1. DC Characteristics ComparisonParameter Si4x6x-B1B Si4x6x-C2A Si4467/8-A2A Supply voltage 1.8 to 3.6V 1.8 to 3.8V 1.8 to 3.8V Ambient Temperature–40 to 85°C –40 to 85°C –40 to 125°CStandby mode current consumption50nA 40nA 40nA Sleep current consumption (RC oscillator ON)900nA 740nA 740nA RX Tune mode current consumption 7.2mA 7.6mA 7.6mA TX Tune mode current consumption 8mA 7.8mA 7.8mA Low Power RX Mode current consumption 10.7mA 10.9mA 10.9mA Ready to TX/RX state transition timings 126 / 122μs100 / 100μs100 / 100μsRX Tune to RX state transition timing 74μs 60μs 60μs TX State to RX State transition timing 138μs 100μs 100μs RX state to TX state transition timing 130μs 100μs 100μs 30MHz XTAL Start-up Time 250μs 300μs 300 μs POR Reset Time5ms6ms6msAN897Both new radio families support the extended supply voltage that makes them ideal for Automatic Meter Reading applications, where the device is typically supplied from a lithium thionyl chloride battery without voltage conversion. The extended ambient temperature range allows to use the Si4467/8 devices in lighting applications.Faster turnaround times, lower standby and sleep current consumption make the Si4x6x-C2A and Si4467/8-A2A devices more desirable in battery-powered applications, compared to the previous radio family.2.2. Comparison of RF ParametersBoth Si4x6x-C2A and Si4467/8-A2A families cover the most common ISM bands, including the 390MHz frequency band that is useful for remote control applications.Table 2. Synthesizer Frequency Range ComparisonParameterSi4x6x-B1B Si4x6x-B1B Si4x6x-C2A Si4467/8-A2A Synthesizer Frequency Range850 to 1050MHz (28.6Hz res.)420 to 525MHz (14.3Hz res.)284 to 350MHz (9.5Hz res.)142 to 175MHz (4.7Hz res.)705 to 960MHz (28.6Hz res.)470 to 639MHz (19.1Hz res.)353 to 479MHz (14.3Hz res.)235 to 319MHz (9.5Hz res.)177 to 239MHz (7.1Hz res.)119 to 159MHz (4.7Hz res.)850 to 1050MHz (28.6Hz res.)420 to 525MHz (14.3Hz res.)350 to 420MHz (11.4Hz res.)284 to 350MHz (9.5Hz res.)142 to 175MHz (4.7Hz res.)AN897The sensitivity, selectivity, and blocking performance improvements make the Si4x6x-C2A devices more valuable in performance driven applications (FCC Part 90, ETSI Category 1, Wireless MBUS, etc.).The ultra-narrow RX bandwidth of the Si4467/8-A2A devices results in extremely good sensitivity and improved link budget.CW “lead-in” time prior to the start of the modulation has been reduced in Si4x6x-C2A and Si4467/8-A2A relative to Si4x6x-B1B.2.3. Wireless M-Bus supportThe Si4x6x-C2A and Si4467/8-A2A devices support all Wireless M-Bus modes per the latest specification of the EN13757-4 standard. This includes a much wider deviation error tolerance of ±30% and frequency error tolerance of ±4 kHz, short preamble support (16bit preamble for 2 and 4 level FSK modes) and 3 of 6 encoding/decoding support. Refer to application note, AN805: “Si446x Wireless MBUS Receiver” for more details of Wireless MBUS compliance and performance.Table 3. RX & TX Characteristics ComparisonParameterSi4x6x-B1B Si4x6x-C2A Si4467/8-A2A RX Channel Bandwidth1.1 to 850kHz 1.1 to 850kHz 0.2 to 850kHz Best receiver sensitivity using GFSK modulation –126dBm 1–129 dBm 2–133 dBm 3±1-Ch Offset Selectivity, 169MHz band –60dB –69dB –69dB ±1-Ch Offset Selectivity, 450MHz band –58dB –60dB –60dB ±1-Ch Offset Selectivity, 868/915MHz band –53dB –55dB –55dB Blocking 1MHz offset –75dB –79dB –79dB Blocking 8MHz offset–84dB –86dB –86dB Image Rejection (IF = 468.75kHz), without image rejection calibration –35dB–40dB–40dBTX RF Output Steps0.1dB 0.25dB 0.25dB TX RF Output Level Variation vs. Temperature 1dB 2.3dB 4 2.3dB 4TX RF Output Level Variation vs. Frequency0.5dB0.6dB 40.6dB 4Notes:1.Measured in the 450-470MHz frequency band, with 500bps, GFSK, BT = 0.5, ∆f=±250Hz.2. Measured in the 169MHz frequency band, with 500bps, GFSK, BT = 0.5, ∆f=±250Hz.3. Measured in the 169MHz frequency band, with 100bps, GFSK, BT = 0.5, ∆f=±100Hz.4. Higher variation is caused by differences in the validation process only.AN8973. Hardware RecommendationsAll the Si4x6x-B1B, Si4x6x-C2A and Si4467/8-A2A devices are pin-to-pin compatible and packaged into the same 4x4mm 20-pin QFN package.The architecture of the Receiver and Transmitter blocks of all the radios are similar, the matching network topologies are the same for all application examples. The radios can support different TX matching network topologies. Refer to the following application notes for more detail and comparison on the different topologies (these documents contain information for all the Si4x6x-B1B, Si4x6x-C2A, and Si4467/8-A2A devices):⏹ AN643: “Si446x/Si4362 RX LNA Matching”⏹ AN627: “Si4060/Si4460/61/67 Low-Power PA Matching”⏹ AN648: “Si4063/4463/64/68 TX Matching”All the Si4x6x-B1B, Si4x6x-C2A, and Si4467/8-A2A devices can accommodate a wide range of crystal frequencies (25 to 32MHz). Refer to the AN785: “Crystal Selection Guide for the Si4x6x RF ICs” for more details on crystal or TCXO selection.4. Firmware Recommendations4.1. Configuration InterfaceAll the Si4x6x-B1B, Si4x6x-C2A, and Si4467/8-A2A devices can be configured through a standard SPI interface with up to 10MHz clock speed, utilizing the Application Programming Interface (API). The complete list of commands and their description are provided as an HTML document (available as the EZRadioPRO API Documentation ZIP file on the Silicon Labs web site).In general, any API used for the Si4x6x-B1B devices can be used and functional the same way on the Si4x6x-C2A and Si4467/8-A2A devices as well. In this matter the new devices are backward FW compatible with the previous product family, however, there are few additional properties and API commands implemented in the new devices. The following chapters provide a detailed overview of these.The radios are highly configurable. They have numerous properties that may need to be changed to achieve the desired operation. A PC GUI (WDS) is designed to help determine the necessary property settings. The user needs to set the desired configuration on a graphical user interface, and the tool provides example projects, batch files, or header files with the proper radio configurations. For more information about the WDS and the radio configurations, refer to the following application notes:⏹ AN632: “WDS User’s Guide for EZRadioPRO Devices”⏹ AN633: “Programming Guide for EZRadioPRO Si4x6x Devices”AN897 4.2. Power On Sequence4.2.1. IEEE 802.15.4 Boot ModeThe Si4467/8-A2A has two boot modes. One boot mode supports 802.15.4 functionality to enable standard-based, sub-GHz mesh networking with support for 802.15.4 MR-FSK PHY (15.4g) and key MAC (15.4) features (like clear channel assessment, CSMA/CA, Auto-acknowledgment, address filtering, etc.). In this mode, the device only processes 802.15.4 / 4g packets and no customization is possible at the packet level. This mode is supported by an 802.15.4 stack running on a Silicon Labs MCU or SoC. In this mode, the device only supports the packet format defined in the 802.15.4 standard.4.2.2. Packet Trace InterfaceThe Si4467/8-A2A integrates a true PHY-level Packet Trace Interface (PTI) for effective network-level debugging. PTI monitors all the PHY Tx and Rx packets without affecting their normal operation. This asynchronous interface provides a trace of all over-the-air packet data as well as packet status via a single user-selectable GPIO. PTI is supported in the 15.4 boot mode only and is supported by Silicon Labs Development tools.Please refer to the Si4467/8-A2A data sheet for more details regarding the 802.15.4 boot mode.4.2.3. EZRadioPRO Boot ModeThe second boot mode called EZRadioPRO boot mode supports Si4463/1/0-B1B compatibility and is intended to support proprietary solutions that require additional flexibility in configuring the device. This mode is software- and hardware-compatible with Si4463/1/0-B1B and also supports 802.15.4g PHY and WM-Bus operation. The boot mode selection is done using the POWER_UP command and is described in the API documentation.The power on sequence of the Si4x6x-B1B, Si4x6x-C2A devices and Si4467/8-A2A in EZRadioPRO boot mode are identical.4.3. Patching the Si4x6x-C2A DevicesFor the Si4x6x-C2A devices a software patch has to be used to update the internal FW of the chip for improved operation. The content of the firmware patch has to be downloaded into the radio chip each time after performing a power on reset but before issuing the POWER_UP command. Downloading the patch increases the time of the power-up sequence. For details see paragraph “9.6. Patching the Radio” of AN633:”Programming Guide for EZRadioPRO® Si4x6x Devices”.AN8974.4. Preamble Sense ModeThis mode of operation is suitable for extremely low power applications where power consumption is important.The preamble sense mode (PSM) takes advantage of the Digital Signal Arrival detector (DSA), which can detect a preamble within eight bit times with no sensitivity degradation. In PSM operation this fast detection of an incoming signal is combined with duty cycling of the receiver during the time the device is searching or sniffing for packets over the air. The average receive current is lowered significantly when using this mode. In applications where the timing of the incoming signal is unknown, the amount of power saving is primarily dependent on the data rate and preamble length as the Rx inactive time is determined by these factors. In applications where the timing of the incoming signal is known and the sleep time is fixed, the average current also depends on the signal detection time.The DSA can be combined with Low Duty Cycle mode, RX Hop and antenna diversity features to further reduce the current consumption in various Receive modes.The following WDS example projects support the PSM or DSA operation:⏹ Custom packet RX project supports the PSM operation. The user needs to define the length of thetransmitted preamble and the data rate only. The WDS will then calculate the corresponding properties and configure the radio duty cycling.⏹ LDC Rx project can be combined with DSA. Low Duty Cycle mode cycles between sleep and activeReceive modes. Even though the active Receive time period is relatively short compare to the sleep time, the DSA can further reduce receive time to further reduce the average current consumption. In order to utilize this feature, the user need to enable the DSA for the LDC Rx project. WDS will configure the radio autonomously.⏹ Auto RX Hop project can be combined with DSA. Use of the DSA detector will reduce time spent to detect empty channel in order to reduce the average current consumption. In order to utilize this feature, the user need to enable the DSA for the Auto Rx Hop project. WDS will configure the radio accordingly.⏹ Antenna diversity can be enabled for various example projects. Any cases when the antenna diversity is enabled, the DSA is enabled as well. DSA helps to minimize time and the required preamble bits to evaluate the receive performances of the different antennas.Refer to the data sheet and the relevant application note for more details of the Preamble Sense Mode and Digital Signal Arrival detector.4.5. IEEE 802.15.4 PHY Support in EZRadioPRO Boot Mode4.5.1. Dual Sync Word DetectionThe Si4467/8-A2A devices are capable of simultaneously searching for two sync words with each sync word being user defined and up to four bytes long, in EZRadioPRO boot mode as well. One application of this is to detect packets that use forward error correction (FEC) as defined in IEEE 802.15.4g. The FEC is an optional feature in the standard and is indicated in the sync word. The transceiver does not natively support FEC. It can pass on the information on whether FEC is used or not to the host microcontroller for further processing.4.5.2. Alternative CRC EngineAn alternative CRC engine is introduced that runs in parallel with the primary CRC engine, and can be configured similarly. See ALT_CRC related fields in the API document.AN897 4.6. Legacy Packet Format SupportIn order to further enhance the flexibility of the Si4x6x-C2A and Si4467/8-A2A devices, the following improvements were made in the packet handler, PA, and modem.⏹ The devices autonomously handle the error case when a packet is received with packet length of 0.⏹ New UPDATE argument of START_TX and START_RX commands makes possible to update RXparameters (to be used by a subsequent packet) without entering TX/RX mode.⏹ Start RX on WUT expiry when LDC mode is not used is now supported. See START field of arguments ofthe START_TX command.⏹ Added new command to hop to a new frequency while in TX, called TX_HOP.⏹ Transmission of content of TX FIFO can be repeated by using NUM_REPEAT argument of START_TX.⏹ An added property bit (called PN_DIRECTION) can reverse the direction how bits are shifted duringwhitening operation. This improvement ensures that the radios can handle any kind of data whiteningoperation up to 16 bits natively by the packet handler. Refer to the API document for more details.⏹ A new 32 bit property PKT_CRC_SEED allows setting of CRC seed to any value.⏹ The resolution of the FIFO Almost Full / Empty detection is improved to 4 bytes compared to the previous 7bytes.⏹ Sync word length resolution is improved to 2 bits. Relevant API field is LENGTH_SUB of SYNC_CONFIG2.⏹ SYNC_ERROR_ONLY_BEGIN field of SYNC_CONFIG2 confines allowed sync bit errors to the beginningof the sync.⏹ CRC bit order can be controlled using CRC_BIT_ENDIAN field of PKT_CONFIG2.⏹ 3 of 6 encoding/decoding introduced. EN_3_OF_6 bit of PKT_CONFIG2 enables it for all five fields and theCRC.⏹ New LDC_MAX_PERIODS field of GLOBAL_WUT_R configures how many LDC periods to wait for anincoming packet to be received after preamble or sync has been detected.⏹ INFINITE_LEN field of PKT_LEN allows for an infinite length packet to be received.⏹ New property PA_DIG_PWR_SEQ_CONFIG provides for much slower ramp times of the internal PA.⏹ Ability to generate an interrupt on latched RSSI (RSSI_LATCH_PEND bit of MODEM_PEND) allowsautonomous RSSI evaluation in LDC mode.⏹ New properties MODEM_RSSI_HYSTERESIS, MODEM_RSSI_MUTE and MODEM_FAST_RSSI_DELAYallow improved RSSI operation.4.7. Si4x6x-B1B ErrataAll issues listed in the “Si4x6x-B1B and Si4438-B1C Errata” are fixed in the Si4x6x-C2A devices.DisclaimerSilicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.Trademark InformationSilicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.Silicon Laboratories Inc.400 West Cesar Chavez Austin, TX 78701USASimp li city StudioOne-click access to MCU tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!/simplicityMCU Portfolio /mcuSW/HW/simplicityQuality /qualitySupport and Community。
SI4490DY PDF规格书
*1: Surface Mounted on 1" x 1" FR4 board.
Symbol VDS VGS
ID
IDM IAS
PD
RthJA RthJF
TJ Tstg
10S
Steady State
200
±20
4
2.85
3.2
2.3
40
15
3.1
1.56
Min Typ Max Unit
200
V
1 μA
5
±100 nA
2
V
65 80 mΩ
70 90
40
A
19
S
0.2 0.85 1.3 Ω
34 42
7.5
nC
12
14 20
20 30
32 50 ns
25 35
70 100
2.8 A
0.75 1.2 V
■ Typical Characterisitics
40 VGS = 10 V thru 6 V
2
1
40
80
21
150
-55 to 150
Unit V A
W ℃/W
℃
SI4490DY N-Channel MOSFET
■ Electrical Characteristics Ta = 25℃
Parameter Drain-Source Breakdown Voltage
Zero Gate Voltage Drain Current
I D - Drain Current (A) ID - Drain Current (A)
SI4336DY中文资料
FEATURESD Ultra Low On-Resistance Using High Density TrenchFET r Gen II Power MOSFET Technology D Q g Optimized D 100% R g TestedAPPLICATIONSD Synchronous Buck Low-Side −Notebook −Server−WorkstationD Synchronous Rectifier, POLVishay SiliconixN-Channel 30-V (D-S) MOSFETPRODUCT SUMMARYV DS (V)r DS(on) (W )I D (A)Q g (Typ)0.00325 @ V GS = 10 V 25300.0042 @ V GS= 4.5 V2236SO-8S D S D S D GD5678Top View2341Ordering Information:Si4336DYSi4336DY-T1 (with Tape and Reel)N-Channel MOSFETGDABSOLUTE MAXIMUM RATINGS (T A = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol10 secsSteady State UnitDrain-Source Voltage V DS 30Gate-Source VoltageV GS "20VT A = 25_C 2517Continuous Drain Current (T J = 150_C)a T A = 70_CI D 2013Pulsed Drain Current (10 m s Pulse Width)I DM 70AContinuous Source Current (Diode Conduction)a I S 2.91.3Avalanche CurrentL = 0.1 mH I AS 50Maximum Power Dissipation T A = 25_C 3.5 1.6aT A = 70_C P D 2.21W Operating Junction and Storage Temperature RangeT J , T stg−55 to 150_CTHERMAL RESISTANCE RATINGSParameterSymbol TypicalMaximumUnitM iJ ti t A bi t t v 10 sec 2935Maximum Junction-to-Ambient a Steady State R thJA 6780_Maximum Junction-to-Foot (Drain)Steady StateR thJF1316C/WNotesa.Surface Mounted on 1” x 1” FR4 Board.Vishay SiliconixSPECIFICATIONS (T J = 25_C UNLESS OTHERWISE NOTED)ParameterSymbol Test Condition Min Typ Max UnitStaticGate Threshold Voltage V GS(th)V DS = V GS , I D = 250 m A 1.03.0V Gate-Body LeakageI GSS V DS = 0 V, V GS = "20 V "100nAV DS = 30 V, V GS = 0 V 1Zero Gate Voltage Drain Current I DSS V DS = 30 V, V GS = 0 V, T J = 55_C5m A On-State Drain Current aI D(on)V DS w 5 V, V GS = 10 V 30A Drain-Source On-State Resistance V GS = 10 V, I D = 25 A 0.00260.00325a r DS(on)V GS = 4.5 V, I D = 22 A 0.00330.0042W Forward Transconductance a g fs V DS = 15 V, I D = 25 A 110S Diode Forward Voltage aV SDI S = 2.9 A, V GS = 0 V0.721.1VDynamic bInput Capacitance C iss 5600Output CapacitanceC oss V = 15 V, V GS = 0 V, f = 1 MHz860pF Reverse Transfer Capacitance C rss DS 415pTotal Gate Charge Q g 3650Gate-Source Charge Q gs V = 15 V, V GS = 4.5 V, I D = 20 A 18nC Gate-Drain Charge Q gd DS 10Gate Resistance R g 0.81.32.0WTurn-On Delay Time t d(on)2435Rise Timet r V 1625Turn-Off Delay Time t d(off)DD = 15 V, R L = 15 WI D ^ 1 A, V GEN = 10 V, R = 6 W90140ns Fall Timet f g 3250Source-Drain Reverse Recovery Timet rrI F = 2.9 A, di/dt = 100 A/m s 4570Notesa.Pulse test; pulse width v 300 m s, duty cycle v 2%.b.Guaranteed by design, not subject to production testing.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.0.00.51.01.52.02.53.03.54.00.00.40.81.21.62.0V DS − Drain-to-Source Voltage (V)V GS − Gate-to-Source Voltage (V)Vishay SiliconixTYPICAL CHARACTERISTICS (25_C UNLESS NOTED)0100020003000400050006000700006121824300.0000.0010.0020.0030.0040.0051020304050012345651015202530354045−50−250255075100125150Gate ChargeOn-Resistance vs. Drain Current− G a t e -t o -S o u r c e V o l t a g e (V )Q g − Total Gate Charge (nC)V DS − Drain-to-Source Voltage (V)C − C a p a c i t a n c e (p F )V G S − O n -R e s i s t a n c e (r D S (o n )W )I D − Drain Current (A)CapacitanceOn-Resistance vs. Junction TemperatureT J − Junction Temperature (_C)1.01.20.0000.0030.0060.0090.0120.0152468100.110500.000.20.40.60.8Source-Drain Diode Forward Voltage− O n -R e s i s t a n c e (r D S (o n )W )V SD − Source-to-Drain Voltage (V)V GS − Gate-to-Source Voltage (V)− S o u r c e C u r r e n t (A )I S 1r D S (o n ) − O n -R e s i i s t a n c e (N o r m a l i z e d )Vishay SiliconixTYPICAL CHARACTERISTICS (25_C UNLESS NOTED)210.10.01Normalized Thermal Transient Impedance, Junction-to-FootN o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c eVishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?72417.。
si4463无线模块详细规格书
调制速率 0.123
1 Mbps (G)FSK,4(G)FSK,MSK,OOK,ASK
发射功率范围 1
20 dBm
接收灵敏度
-126
dBm @data=500bps,Fdev=30kHZ
第3页
深圳市华凯微技术开发有限公司
五、 典型应用电路
第4页
SI4463
NC
六、 脚位定义
玩具控制 传感器网络 轮胎气压监测 健康监测 无线 PC 外围设备 标签读写器
四、 性能参数
参数
最小 典型 最大 单位
条件
运行条件
工作电压范围 工作温度范围
1.8 3.3 3.6 V
-20
75 ℃
电流消耗
接收电流 发射电流
13
mA
90
mA
射频参数
@20dBm
频率范围
425 433 525 MHZ 850 868 1050 MHZ
常用天线有如下表所示:
弹簧天线 特点:体积小、成本低、方便嵌入
SMA 胶棒天线(可选) 特点:体积适中、成本低、增益高
小吸盘天线(可选) 特点:增益高、含有磁性底座,适用于铁箱外 壳设备、安装方便
第7页
深圳市华凯微技术开发有限公司
常见故障及排除方法
故障现象
故障原因和排除方法
数据不通 距离太近
成都泽耀科技有限公司 AS10 -M4463D -SMA 用户手册说明书
AS10-M4463D-SMA 用户使用手册v4.0AS10-M4463D-SMAAS10-M4463D-SMA是一款433MHz,100mW,高稳定性,绕射性能强,穿墙能力优秀的工业级的无线收发一体数传模块。
采用美国芯科实验室原装进口的SI4463射频芯片设计开发,具有接收灵敏度高,抗干扰能力强的特点。
采用SMA接口方便匹配高性能天线,并严格计算设计了精确的阻抗匹配网络,使得模块发射功率足,频谱特性好,谐波小,频道串扰小,体积小。
感容器件全部采用村田B档料,配以10ppm高精度晶振,工业级标准的典范。
AS10-M4463D-SMA序号参数名称参数值摘要1 射频芯片SI4463Silicon Labs2 模块尺寸24*16不含SMA3 模块重量 3.4g含SMA4 工作频段425M~525MHz 可通过软件调节,模块采用30M晶振5 生产工艺无铅环保工艺6 接口方式2*6*2.54mm直插7 供电电压 1.8 ~ 3.6VDC 注意:高于3.6V电压,将导致模块永久损毁8 通信电平0.7VCC ~ 3.6V VCC 指模块供电电压9 实测距离2000m 晴朗空旷,最大功率,高度1.5m,1k空中速率10 发射功率最大20dBm 约100mW11 空中速率0.123k ~ 1Mbps 软件可调,建议尽量使用低空速12 关断电流0.5uA 处于掉电模式13 发射电流80mA@100dBm 供电能力必须大于200mA14 接收电流13mA 平均值15 通信接口SPI 最高速率可达10Mbps16 发射长度单个数据包1~64字节单个数据包17 接收长度单个数据包1~64字节单个数据包18 RSSI 支持支持详见芯片手册19 天线接口SMA-KE外螺纹内孔,50Ω特性阻抗20 工作温度-40 ~ +85℃ 工业级21 工作湿度10% ~ 90% 相对湿度,无冷凝22 储存温度-40 ~ +125℃ 工业级23 接收灵敏度-126dBm@1kbps 详见芯片手册引脚序号引脚名称引脚方向引脚用途1 GND 地线,连接到电源参考地2 SDN 模块工作使能控制引脚,工作时为低电平(详见SI4463)3 GPIO3 输出连接模块内部射频开关的发射,可不连接,由SI4463智能控制4 GPIO2 输出连接模块内部射频开关的接收,可不连接,由SI4463智能控制5 nSEL 输入模块片选引脚,用于开始一个SPI通信6 MOSI 输入模块SPI数据输入引脚7 MISO 输出模块SPI数据输出引脚8 SCK 输入模块SPI时钟引脚9 IRQ 输出模块中断引脚10 GPIO1 输出模块信息输出引脚(详见SI4463 手册)11 GPIO0 输出模块信息输出引脚(详见SI4463 手册)12 VCC 供电电源,必须1.8 ~ 3.6V之间★ 关于模块的引脚定义、软件驱动及通信协议详见Silicon Labs 官方《SI4463 Datasheet》★注意事项AS10-M4463D-SMA 序号类别注意事项1静电高频模拟器件具有静电敏感特性,请尽可能避免人体接触模块上的电子元件(我司生产过程全部按照IC厂商官方防静电标准执行)。
采用SI4463射频芯片的无线数传解决方案
深圳市安美通科技有限公司 DVER 1.40 APC320低功耗小功率无线数传模块APC320模块是高度集成低功耗半双工小功率无线数据传输模块,其嵌入高速低功耗单片机和高性能射频芯片SI4463,创新的采用高效的循环交织纠检错编码,抗干扰和灵敏度都大大提高,APC320模块提供了多个频道的选择,可在线修改串口速率,收发频率,发射功率,射频速率等各种参数。
APC320模块工作电压为2.1-3.6V,可定制3.5-5.5V工作电压,在接收状态下仅消耗15mA。
APC320模块四种工作模式,各模式之间可任意切换,在1SEC周应用:z无线水气热表z无线传感器z集装箱信息管理z自动化数据采集z工业遥控、遥测z POS系统,资产管理z楼宇小区自动化与安防z机器人控制z电力高压高温监测z气象,遥感期轮询唤醒省电模式(Polling mode)下,接收仅仅消耗几十uA,一节3.6V/3.6AH时的锂亚电池可工作数年,非常适合电池供电的系统。
特点:z2000米传输距离(1Kbps)z频率410-440MHz,或868MHz,915MHzz-121dBm@1Kbps 高灵敏度z100mW发射功率(可设置)z多频道可设,双256Bytes数据缓冲区 z零等待唤醒,具有空中唤醒功能z高效的循环交织纠错编码z四种工作模式,待机电流2.5uAz内置watchdogAPC320模块是新一代的多通道嵌入式无线数传模块,可设置多个频道,步进为1KHz,发射功率最大100mW,体积32.1mm x 18.3mm x 7.0mm,很方便客户嵌入系统之内,APC320模块具有较低的功耗,非常适合于电池供电系统。
APC320模块创新的采用了高效的循环交织纠检错编码,其编码增益高达近3dBm,纠错能力和编码效率均达到业内的领先水平,远远高与一般的前向纠错编码,抗突发干扰和灵敏度都较大的改善。
同时编码也包含可靠检错能力,能够自动滤除错误及虚假信息,真正实现了透明的连接。
Si446x中文API文档
0X10 FUNC_INFO
0x11 SET_PROPERTY
0X12 GET_PROPERTY
0X13 GPIO_PIN_CFG
0X15 FIFO_INFO
0X20 GET_INT_STATUS
0X33 REQUEST_DEVICE_STATE 0X34 CHANGE_STATE 0×44 READ_CMD_BUFF 0x50 FRR_A_READ 0X51 FRR_B_READ 0x53 FRR_C_READ 0x57 FRR_D_READ
PKT_RX_FIELD_2_LENGTH 0X26 0X27 PKT_RX_FIELD_2_CONFIG 为0x28 PKT_RX_FIELD_2_CRC_CONFIG 0X29
PKT_RX_FIELD_3_LENGTH 0X2A 0x2B中 PKT_RX_FIELD_3_CONFIG 0X2C PKT_RX_FIELD_3_CRC_CONFIG 0X2D PKT_RX_FIELD_4_LENGTH 0X2E
0X18 PROTOCOL_CFG
0X21 GET_PH_STATUS
0x23 GET_CHIP_STATUS
写入数据字节(s)到TX FIFO。 RX_COMMANDS 简介
返回最后接收到的数据包有关的变量字段的长度信息,以及(可选)覆盖字段 的长度。 返回调制解调器中断组(包括状态和暂挂)的中断状态。任选地,它可以被用 来清除锁存(待定)中断事件。 切换到RX状态,并开始数据包的接收。 手动跳变到一个新的频率,而在RX模式。 从RX FIFO中读取数据字节(s)。
组 0X20 0X20
数
名称
0x00 MODEM_MOD_TYPE
0X01 MODEM_MAP_CONTROL
SI4464DY中文资料
Threshold Voltage
0.8
50
0.4
40
ID = 250 mA
0.0
30
-0.4
20
Single Pulse Power
VGS(th) Variance (V) Power (W)
-0.8
10
-1.2 -50 -25
0 25 50 75 100 125 150 TJ - Temperature (_C)
Maximum Power Dissipationa
Operating Junction and Storage Temperature Range
TA = 25_C TA = 70_C
L = 0.1 mH
TA = 25_C TA = 70_C
VDS VGS
ID
IDM IAS EAS IS
PD
TJ, Tstg
0
ID = 2.2 A
2
4
6
8
10
VGS - Gate-to-Source Voltage (V)
3
元器件交易网
Si4464DY
Vishay SiliconiTERISTICS (25_C UNLESS NOTED)
Qg Qgs Qgd RG td(on)
tr td(off)
tf trr
Notes a. Pulse test; pulse width v 300 ms, duty cycle v 2%. b. Guaranteed by design, not subject to production testing.
Continuous Drain Current (TJ = 150_C)a Pulsed Drain Current Single Avalanch Current Single Avalanch Energy Continuous Source Current (Diode Conduction)a
SI4431DY中文资料
(Note 2)
Aቤተ መጻሕፍቲ ባይዱV
–0.76
–1.2
Notes: 1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθCA is determined by the user's board design.
Si4431DY Rev A
元器件交易网
Si4431DY
Typical Characteristics
40 VGS = -10.0V -6.0V -ID, DRAIN CURRENT (A) 32 RDS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE -5.0V -4.5V -4.0V 24 -3.5V 16 -3.0V
VDS = VGS, ID = –250 µA ID = –250 µA, Referenced to 25°C VGS = –10 V, ID = –7.0 A ID = –5.5 A VGS = –4.5 V, VGS = –10 V, ID = –7.0A, TJ=125°C VGS = –10 V, VDS = –10 V, VDS = –5 V ID = –7.0 A
SI4463SPI接口模块使用说明
SI4463SPI接口模块使用说明深圳市瑞诺信息技术有限公司RON1300产品说明书公司简介深圳市瑞诺信息技术有限公司是专业从事无线通讯产品开发、生产、销售、工程、与售后的综合企业,经过多年所有员工的不懈的努力取得了今日成绩,公司一直致力于高频无线智能产品及系统的研发、生产和销售。
无线产品的开发和ODM的项目维持了公司不断成长和壮大,公司在香港有专门的物流部门,深圳有专门的射频研发和生产,研发部备有完整的测试和调试仪器。
从频谱和信号源到网络分析仪全部具备,有专业的屏蔽室,有专业的静电测试仪器和高低温测试设备。
公司涉及领域:无线数传组网技术、无线射频识别技术UHF(超高频)、RFID标签(tag)和读取器(reader)技术、智能家居系统,射频模拟前端和数字基带终端设计。
公司有专业射频研发高级工程师,从事多年无线产品开发。
有着多年的产品开发经验。
产品的稳定性和一致性是产品推广的基础,公司在产品的性能和功能上做了非常的大努力。
目录1.RON1300系列模组简介 (3)1.1.模组说明 (3)1.2.性能性能 (3)1.3.应用市场 (3)1.4.产品图片 (3)2.RON1300系列模组电器参数 (4)2.1.模组接线图及引脚描述 (4)2.2.模组电器参数 (4)3.RON1300系列模组使用说明 (6)3.1.RON1300模组软件编写和WDS使用说明 (7)4.RON1300系列模组参考软件 (9)5.RON1300模块原理图 (10)1.RON1300系列模组简介1.1模组接线图及引脚描述RON1300系列无线模组是专门用于远距离、小数据的无线数据传输系统。
它具有高数据传输速率和更远的传输距离。
该系列模组可以嵌入到现有产品或系统的设计当中,使通信可以更加容易、简洁。
客户只需在原有的微控制器件编译简单的通讯协议,即可激活双向通信实现数据传输。
RON1300系列模组RF部分是采用SILINCON LAB的Si4463设计,提供非常高的发射功率和接收灵敏度,可以让客户从现在有线系统在短时间内实现无线的转换。
Si4463芯片使用小结
Si4463芯片使用小结一、芯片介绍Silicon Labs 的 Si4463芯片是高性能的低电流收发器,其覆盖了 119MHz 至 1050 MHz 的Sub-1GHz频段。
还是 EZRadioPRO系列的一部分,该系列包含覆盖各种应用的完整发射器、接收器和收发器产品线。
所有器件都具有杰出的灵敏度 -126 dBm,同时实现了极低的活动和休眠电流消耗。
二、功能实现1、引脚说明Si4463有20个引脚,主要引脚功能可以分为两大类:硬件引脚和软件引脚。
硬件引脚主要由电源、射频部分组成,软件引脚主要分为SPI、芯片使能以及GPIO。
硬件引脚在原理图、PCB设计部分需要注意,此处主要是介绍芯片的程序操作,硬件部分就此带过。
下表列举了si4463的21个引脚(包括芯片正下方的Exposed pad引脚)的具体引脚号和功能简述:表1 Si4463引脚简述Si446xPin Number Pin Name Pin Function Exposed pad, 18 GND Ground 6, 8 VDD Supply input2,3 Rxp,Rxn used for Rx4,7 Tx,TXRamp used for Tx16,17 Xin,Xout crystal11 NIRQ Interrupt output, active low1 SDN Shutdown input, active high15 NSEL SPI select input12 SCLK SPI clock input14 SDI SPI data input13 SDO SPI data output9 GPIO0 GPIO10 GPIO1 GPIO19 GPIO2 GPIO20 GPIO3 GPIO2、功能实现1)SPI操作芯片的12-15脚为SPI引脚,最大支持速率达到10MHz.芯片支持标准的SPI总线协议,操作方便。
整个芯片的所有SPI操作都可以分成两种方式:写命令和读数据。
基于Si4463的无线信号质量检测仪的设计
第卷第4期2018年4月自动化仪表PROCESS AUTOMATION INSTRUMENTATIONVol. 39 No. 4Apr. 2018基于S i4463的无线信号质量检测仪的设计严冬,董腾,王平,陈俊宇(重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065)摘要:无线网络主要以空气作为传输介质,依靠电磁波和红外线等作为载体来传输所需要的数据。
无线网络虽然灵活、方便,但复杂的物理与电磁环境会对其产生较大的影响。
研究了由于多路径效应、信号衰减以及其他无线电波信号干扰所造成的无线信号不稳定现象,设计并制作了一款基于Si4463的无线信号质量检测仪。
该无线信号质量检测仪可方便、快捷地分析现场环境中的无线信号强度。
其主要包括微控制器单元(MCU)、接收机、供电和串口4部分。
无线信号强度主要由接收信号强度指示(RSSI)来反映。
详细介绍了各部分的设计电路,并通过罗德与施瓦茨公司的SMB100A信号发生器验证了该无线信号质量检测仪的准确度。
该检测仪可用于复杂工业现场中的电磁环境预测与评估,具有一定的可靠性,并对便携式仪器仪表的研究与设计具有良好的示范作用。
关键词:无线网络;无线信号;Si4463;接收信号强度指示;信号发生器中图分类号:TH83;TP33 文献标志码:A DOI&10. 16086/j. cnki. issn1000-0380. 2017090023Designof the Wireless Signal Quality DetectorBasedOnSi4463YAN Dong,DONG Teng,WANG Ping,CHEN Junyu(Key Laboratory of Network Control & Intelligent Instrument,Ministry 〇0 Education,Chongqing University of Post and Telecommunications,Chongqing 400065,China)Abstra c t:W ireless n etw ork is m ain ly w ith a ir a s th e tran sm ission m ediu m an d relies carrier to tra n sfer required d a ta. A lth ou gh w ireless n etw ork is flexible an d convenient,th e com plexity of physical a n delectrom agnetic en viron m en t m a y h ave a greater im pact on it. T he stu d y on th e u n stable phenom enon of w ireless sign als caused bym u ltip a th effect,sign al atten u a tion an d oth er rad io in terference is carried out; an d a w ireless sign al qu a lity detector based onSi4463 is designed an d developed,w hich can dectect th e w ireless sign al stre n g th of field en viron m en t quickly an d easily. T h edetector m ain ly includes th e m icrocontrol u n it ( MCU),th e receiver,th e pow er su pply an d serial p orts. T he stre n g tli of w irelesssign al is m ain ly reflected by th e received sign al stre n g tli indication ( RSSI). T he details of each circuit p a rt of th is design a re introduced. T he correctrus of t h iis detector is verified th rou g h th e sign al gen erator SM B100A of R ohde & S ch w a rz. T he stu d y canbe used to predict an d evalu ate th e electrom agnetic en viron m en t u n der com plex in d u strial site s ;an d achieves reliability. It also h a s a good d em on stration in research an d design of portable in stru m en ta tion.K e ywords :W ireless netw ork; W ireless signal; Si4463; Received sign al stre n g th indication (RSSI); S ign a l gen erator〇引言在传统的网络中,有线传输链路性能比较稳定,一 般情况下,不会造成大量丢包。
SI4463DY中文资料
VDS = –10 V, f = 1.0 MHz
V GS = 0 V,
4481 1532 540
pF pF pF
Switching Characteristics
td(on) tr td(off) tf Qg Qgs Qgd Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge Gate–Drain Charge
TJ, TSTG
Operating and Storage Junction Temperature Range
°C
Thermal Characteristics
RθJA RθJC Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case
–0.6
–0.8 3 10 14 13
–1.5
V mV/°C
12 17.5 18
mΩ
ID(on) gFS
–50 49
A S
Dynamic Characteristics
Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance
Applications
• Power management • Load switch • Battery protection
D D
D
D
5 6 4 3 2 1
SO-8
SI4463无线数传电台E30-DTU-100技术文档(433M兼容SI4438)_202001081638451
序号 产品特点
特点描述
即空中唤醒功能,降低接收整体功耗:
1
超低功耗 当模块处于省电模式下即模式 2 时,配置模块的接收响应延时时间可调节模块的整机功耗;
模块可配置的最大接收响应延时为 2000ms。
支持地址功能,主机可发射数据到任意地址、任意信道的模块,达到组网、中继等应用方式:
例如:模块 A 需要向模块 B(地址为 0x00 01,信道为 0x80)发射数据 AA BB CC,
1kbps
8 级可调(1、2、5、8、10、15、20、25kbps)
14mA
模式 3(电源电压 12V)
106mA@20dBm
电源必须提供 300mA 以上电流输出能力
31mA
模式 0
RS232/RS485
8N1、8E1、8O1,1200~115200 共 8 种波特率(默认 9600)
RS232/RS485
4.1 出厂默认参数............................................................................................................................................. 6 4.2 参数设置指令............................................................................................................................................. 7 4.3 工作参数读取............................................................................................................................................. 8 4.4 版本号读取................................................................................................................................................. 8 4.5 复位指令..................................................................................................................................................... 8 .五. 参数配置........................................................................................................................................................... 9 .六. 定制合作......................................................................................................................................................... 10 .七. 关于我们......................................................................................................................................................... 10
si4463api_cn中文
如果控制在32K RC振荡器的校准将在武汉理工大学的 间隔进行。
revB1B
INT_CTL(0X01)
默认
简介
可用的功能
0x04
此属性提供对全局,以产生硬件中断在NIRQ脚使三个 中断组(芯片,调制解调器和包处理器)的。
revB1B
0x00
启用包处理器中断组内的个别中断源产生一个硬件中断 revB1B
com
命令摘要
数
名称
0X02 POWER_UP
数
名称
0x00 NOP
0X01 PART_INFO
0X10 FUNC_INFO
0x11 SET_PROPERTY
0X12 GET_PROPERTY
0X13 GPIO_PIN_CFG
0X15 FIFO_INFO
0X20 GET_INT_STATUS
0X33 REQUEST_DEVICE_STATE 0X34 CHANGE_STATE 0×44 READ_CMD_BUFF 0x50 FRR_A_READ 0X51 FRR_B_READ 0x53 FRR_C_READ 0x57 FRR_D_READ
revB1B
0X20 全局配置设置。
revB1B
0x00 一般唤醒定时器功能配置。
revB1B
0x00 0X01
配置唤醒定时器(WUT)值的尾数。
revB1B
0X60 配置唤醒定时器(WUT)值的指数。
revB1B
0x00
配置的时间段后自动唤醒在最不发达国家的模式下芯片 revB1B
仍然有效。
0x00
配置的后置功能和后置模式位。 定义后置模式。
revB1B revB1B
SI4463引脚定义
SI4463引脚解释PIN PIN Name I/O I/0 Description 意思1 SDN I Shutdown Input Pin.0–VDD V digital input. SDN should be = 0in all modes except Shutdown mode.When SDN = 1, the chip willbe completely shut down, and the contents of theregisters willbe lost.关闭输入Pin.0-VDD V数字输入。
SDN应该在所有模式除了关机模式= 0。
SDN = 1时,芯片将被完全关闭,theregisters的内容将丢失。
2 RXp I Differential RF Input Pins of the LNA.See application 微分射频低噪声放大器的输入插脚。
看到应用程序例如匹配网络3RXn I schematic for example matching network.示意图。
4TX O Transmit Output Pin.The PA output is an open-drain connection,so the L-C match must supply VDD (+3.3 VDC nominal) to thispin.传输输出接脚。
巴勒斯坦权力机构的输出是一个排水明沟连接,所以L-C匹配必须提供VDD这个销(+ 3.3 VDC名义)5 NC No Connect. Not connected internally to any circuitry.不联系了。
内部没有连接到任何电路。
6VDD VDD+1.8 to +3.6 V Supply Voltage Input to Internal Regulators.Therecommended VDD supply voltage is +3.0 V.+ 1.8 + 3.6 V电源电压输入内部监管机构。
Si4463芯片使用小结
Si4463芯片使用小结一、芯片介绍Silicon Labs 的Si4463芯片是高性能的低电流收发器,其覆盖了119MHz 至1050 MHz 的Sub-1GHz频段。
还是EZRadioPRO 系列的一部分,该系列包含覆盖各种应用的完整发射器、接收器和收发器产品线。
所有器件都具有杰出的灵敏度-126dBm,同时实现了极低的活动和休眠电流消耗。
二、功能实现1、引脚说明Si4463有20个引脚,主要引脚功能可以分为两大类:硬件引脚和软件引脚。
硬件引脚主要由电源、射频部分组成,软件引脚主要分为SPI、芯片使能以及GPIO。
硬件引脚在原理图、PCB设计部分需要注意,此处主要是介绍芯片的程序操作,硬件部分就此带过。
下表列举了si4463的21个引脚(包括芯片正下方的Exposed pad引脚)的具体引脚号和功能简述:表1 Si4463引脚简述Si446xPin Number Pin Name Pin Function Exposed pad, 18 GND Ground6, 8 VDD Supply input2,3 Rxp,Rxn used for Rx4,7 Tx,TXRamp used for Tx16,17 Xin,Xout crystal11 NIRQ Interrupt output, active low1 SDN Shutdown input, active high15 NSEL SPI select input12 SCLK SPI clock input14 SDI SPI data input13 SDO SPI data output9 GPIO0 GPIO10 GPIO1 GPIO19 GPIO2 GPIO20 GPIO3 GPIO2、功能实现1)SPI操作芯片的12-15脚为SPI引脚,最大支持速率达到10MHz.芯片支持标准的SPI总线协议,操作方便。
整个芯片的所有SPI操作都可以分成两种方式:写命令和读数据。
SI4463芯片的用法总结
Si4463芯片使用小结00一、芯片介绍Silicon Labs 的Si4463芯片是高性能的低电流收发器,其覆盖了119MHz 至1050 MHz 的Sub-1GHz频段。
还是EZRadioPRO 系列的一部分,该系列包含覆盖各种应用的完整发射器、接收器和收发器产品线。
所有器件都具有杰出的灵敏度-126dBm,同时实现了极低的活动和休眠电流消耗。
0二、功能实现001、引脚说明00Si4463有20个引脚,主要引脚功能可以分为两大类:硬件引脚和软件引脚。
硬件引脚主要由电源、射频部分组成,软件引脚主要分为SPI、芯片使能以及GPIO。
硬件引脚在原理图、PCB设计部分需要注意,此处主要是介绍芯片的程序操作,硬件部分就此带过。
下表列举了si4463的21个引脚(包括芯片正下方的Exposed pad引脚)的具体引脚号和功能简述:0表1 Si4463引脚简述0Si446xPin Number Pin Name Pin Function Exposed pad, 18 GND Ground6, 8 VDD Supply input2,3 Rxp,Rxn used for Rx4,7 Tx,TXRamp used for Tx16,17 Xin,Xout crystal11 NIRQ Interrupt output, active low1 SDN Shutdown input, active high15 NSEL SPI select input12 SCLK SPI clock input14 SDI SPI data input13 SDO SPI data output9 GPIO0 GPIO10 GPIO1 GPIO19 GPIO2 GPIO20 GPIO3 GPIO2、功能实现001)SPI操作00芯片的12-15脚为SPI引脚,最大支持速率达到10MHz.芯片支持标准的SPI总线协议,操作方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VGS(th) IGSS
IDSS ID(on) rDS(on)
gfs VSD
VDS = VGS, ID = −250 mA VDS = 0 V, VGS = "12 V VDS = −20 V, VGS = 0 V
VDS = −20 V, VGS = 0 V, TJ = 70_C VDS = −5 V, VGS = −4.5 V VGS = −4.5 V, ID = −13 A VGS = −2.5 V, ID = −11 A VDS = −10 V, ID = −13 A IS = −2.7 A, VGS = 0 V
S G
D P-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS (TA = 25_C UNLESS OTHERWISE NOTED)
Parameter
Symbol
10 secs Steady State
Drain-Source Voltage Gate-Source Voltage
Continuous Drain Current (TJ = 150_C)a Pulsed Drain Current continuous Source Current (Diode Conduction)a Maximum Power Dissipationa Operating Junction and Storage Temperature Range
−0.6
1.6
V
"100
nA
−1 mA
−10
−30
A
0.009
0.014
W
0.013
0.020
50
S
−0.65
−1.1
V
Total Gate Charge Gate-Source Charge Gate-Drain Charge Gate Resistance
Qg
Qgs
VDS = −10 V, VGS = −4.5 V, ID = −13 A
Maximum Junction-to-Ambienta
Maximum Junction-to-Foot (Drain) Notes a. Surface Mounted on 1” x 1” FR4 Board.
Document Number: 71819 S-50694—Rev. C, 18-Apr-05
Source-Drain Diode Forward Voltage 50
TJ =150_C 10
rDS(on) − On-Resiistance (Normalized)
C − Capacitance (pF)
6400 Ciss
4800
3200
1600
0 0
Coss
Crss
4
8
12
16
20
VDS − Drain-to-Source Voltage (V)
Single Pulse 10−3
2
1 Duty Cycle = 0.5
Notes:
PDM
t1
t2 1. Duty Cycle, D =
t1 t2
2. Per Unit Base = RthJA = 70_C/W
3. TJM − TA = PDMZthJA(t)
4. Surface Mounted
10−2
Parameter
Symbol
Test Condition
Min
Typ
Max Unit
Static
Gate Threshold Voltage Gate-Body Leakage
Zero Gate Voltage Drain Current On-State Drain Currenta Drain-Source On-State Resistancea Forward Transconductancea Diode Forward Voltagea
10−1
1
10
Square Wave Pulse Duration (sec)
Normalized Thermal Transient Impedance, Junction-to-Foot
100
600
Normalized Effective Transient Thermal Impedance
0.2
On-Resistance vs. Junction Temperature 1.6
VGS = 4.5 V ID = 13 A 1.4
1.2
1.0
0.8
0.6 −50 −25 0
25 50 75 100 125 150
TJ − Junction Temperature (_C)
On-Resistance vs. Gate-to-Source Voltage 0.05
Normalized Thermal Transient Impedance, Junction-to-Ambient 2
1 Duty Cycle = 0.5
Normalized Effective Transient Thermal Impedance
0.2
0.1 0.1
0.05
0.02
0.01 10−4
0.1 0.1
0.05 0.02
Single Pulse
0.01
10−4
10−3
10−2
10−1
1
10
Square Wave Pulse Duration (sec)
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see /ppg?71819.
IF = −2.1 A, di/dt = 100 A/ms
35
55
45
70
160
240
ns
140
210
55
80
Notes a. Pulse test; pulse width v 300 ms, duty cycle v 2%. b. Guaranteed by design, not subject to production testing.
D Lead (Pb)-Free Version is RoHS Compliant
Available
SO-8
S1 S2 S3 G4
8D 7D 6D 5D
Top View
Ordering Information: Si4463DY-T1 Si4463DY-T1—E3 (Lead (Pb)-Free)
Si4463DY
Vishay Siliconix
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
0.030
On-Resistance vs. Drain Current
8000
Capacitance
rDS(on) − On-Resistance ( W )
V GS − Gate-to-Source Voltage (V)
Qgd
Rg
46
70
9
nC
13.2
3.2
W
Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Source-Drain Reverse Recovery Time
td(on) tr
td(off) tf trr
VDD = −10 V, RL = 10 W ID ^ −1 A, VGEN = −4.5 V, RG = 6 W
TA = 25_C TA = 70_C
TA = 25_C TA = 70_C
VDS VGS
ID IDM IS PD TJ, Tstg
−20
"12
−13
−9
−10
−7
−50
−2.7
−1.36
3.0
1.5
1.9
0.95
−55 to 150
Unit
V
A
W _C
THERMAL RESISTANCE RATINGS Parameter
TYPICAL CHARACTERISTICS (25_C UNLESS NOTED)
Output Characteristics
50
50
VGS = 5 thru 2.5 V
40
40
30
2V
30
Transfer Characteristics
TC = −55_C 25_C
125_C
I D − Drain Current (A) I D − Drain Current (A)
P-Channel 2.5-V (G-S) MOSFET
Si4463DY
Vishay Siliconix
PRODUCT SUMMARY
VDS (V)
rDS(on) (W)
0.014 @ VGS = −4.5 V −20