利用二次函数解决有关利润问题

合集下载

二次函数利润问题含答案

二次函数利润问题含答案

1 / 7二次函数综合题的分类一二次函数综合题的分类一1、 为了落实国务院副总理李克强同志到恩施考察时的指示精神。

为了落实国务院副总理李克强同志到恩施考察时的指示精神。

最近,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W (千克)与销售价X (元(元//千克)有如下关系,千克)有如下关系,W=W=W=——2X+802X+80.设:这种农产品每天的销售利润为.设:这种农产品每天的销售利润为y (元)(元) (1)求y 与X 之间的函数关系式;之间的函数关系式;(2)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?)当销售价总为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?元的销售利润,销售价应定为多少元?(1)y =(x-20x-20))W=W=((x-20x-20))(-2x+80-2x+80))=-2x 2+120x-1600∴ y 与x 的函数关系式为y=y=--2x 2+120x-1600 +120x-1600(2)y =-2x 2+120x-1600=-2(x-30)2+200 ∴当x=30 时,时,y y有最大值200 所以当销售价定为30元/千克时,每天可获得最大销售利润200元(3)当y =150时,可得方程时,可得方程-2(x-30)-2(x-30)2+200=150 用这个方程,得x 1=25 =25 x 2=35 根据题意x 2=35不合题意,应舍去.不合题意,应舍去.∴当销售量为25元/千克时,该农户每天可获得销售利润150元.元.2、某公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的月销售量m (件)与时间t (天)的关系如下表:(天)的关系如下表:时间t (天)(天) 13 5 10 36 月销售量m (件)9490867624未来40天内,前20天每天的价格y 1(元(元 / /件)件)与时间t (天)的函数关系式为y 1=0.25t+25(1(1≤≤ t ≤20且t 为整数为整数))后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为(天)的函数关系式为 y 2=-0.5t+400.5t+40((2121≤≤t ≤40且t 为整数)下面我们就来研究销售这种商品有关问题。

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题(解析版)-【压轴必考】

专题08 二次函数实际应用中的利润问题 经典例题例1.某电商销售某种商品一段时间后,发现该商品每天的销售量y (单位:千克)和每千克的售价x (单位:元)满足一次函数关系(如图所示),其中5080x ≤≤,(1)求y 关于x 的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?【答案】(1)y 关于x 的函数解析式为2200y x =-+;(2)该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.【解析】(1)设y 关于x 的函数解析式为y kx b =+,则由图象可得()50,100和()80,40,代入得: 501008040k b k b +=⎧⎨+=⎩,解得:2200k b =-⎧⎨=⎩,∴y 关于x 的函数解析式为2200y x =-+; (2)设该电商每天所获利润为w 元,由(1)及题意得:()()240220022808000w x x x x =--+=-+-,∴-2<0,开口向下,对称轴为702b x a=-=, ∴5080x ≤≤,∴当70x =时,w 有最大值,即为22702807080001800w =-⨯+⨯-=; 答:该电商定价为70元时才能使每天获得的利润最大,最大利润是1800元.例2.合肥百货大楼以进价120元购进某种新商品,在5月份试销阶段发现,在售价不低于130元的情况下每件售价(元)与商品的日销量(件)始终存在下表中的数量关系:(1)请你观察上面表格中数据的变化规律,填写表中的a 值为(2)若百货大楼该商品柜组想日盈利达到1600元,应将售价定为多少元?(3)柜组售货员小李发现销售该种商品m 件与n 件的利润相同,且m n ≠,请直接写出m 与n 所满足的关系式.【答案】(1)20;(2)160元;(3)m +n =80【解析】(1)∴130+70=200,135+65=200,140+60=200,∴每件的售价与产品的日销量之和为200,∴a =200-180=20,故答案为:20;(2)由(1)知:当每件产品每涨价1元时,日销售量减少1件,设每件产品定价为x 元(x >120),则产品的日销量为(200-x )元,依题意得:(x -120)(200-x )=1600,整理得:x 2-320x +25600=0,解得:x 1=x 2=160.答:每件产品定价为160元时,每日盈利可达到1600元;(3)由(1)知:当每件产品每涨价1元时,日销售量减少1件,∴当销售该种商品m 件时,定价为:(200-m )元,销售该种商品n 件时,定价为:(200-n )元, 由题意得:(200-m -120)m =(200-n -120)n ,整理得:(m -n )(m +n -80)=0,∴m ≠n ,∴m +n -80=0,即m +n =80.故答案为:(1)20;(2)160元;(3)m +n =80例3.某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【解析】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【变式训练1】天府新区某商场开业后要经营一种新上市的文具进价为10元/件.试营销阶段发现:当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,设该商场销售这种文具每天的销售量为y 件,销售单价为x 元/件(3)1x ≥.(1)写出y 与x 之间的函数关系式;(2)设商场每天的销售利润为w (元),若每天销售量不少于150件,求商场每天的最大利润.【答案】(1)10380y x =-+;(2)1950元【解析】(1)当销售单价是13元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件,∴销售量y 件,销售单价x 元/件(13)x 之间的关系为:25010(13)10380y x x =--=-+; (2)每天销售量不少于150件,150y ∴,即10380150x -+,解得23x ,商场每天的销售利润2(10)(10)(10380)10(24)1960w x y x x x =-⋅=-⋅-+=--+,w ∴关于x 的抛物线对称轴为24x =,而100-<,开口向下,当23x 时,图象在对称轴左侧,w 随x 的增大而增大,23x ∴=时,w 最大,且w 最大值为1950,∴若每天销售量不少于150件,则商场每天的最大利润是1950元.【变式训练2】某地区在2020年开展脱贫攻坚的工作中大力种植有机蔬菜.某种蔬菜的销售单价与销售月份之间的关系如图(1)所示,每千克成本与销售月份之间的关系如图(2)所示(其中图(1)的图象是直线,图(2)的图象是抛物线).(1)求每千克蔬菜销售单价y 与销售月份x 之间的关系式;(2)判断哪个月份销售每千克蔬菜的收益最大?并求出最大收益;(3)求出一年中销售每千克蔬菜的收益大于1元的月份有哪些?【答案】(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【解析】(1)设y kx b =+,将(3,5)和(6,3)代入得,3563k b k b +=⎧⎨+=⎩,解得237k b ⎧=-⎪⎨⎪=⎩.273y x ∴=-+; (2)设每千克成本与销售月份之间的关系式为:y =a (x -6)2+1,把(3,4)代入得,4=a (3-6)2+1,解得13a =.21(6)13y x ∴=-+,即214133y x x =-+. 收益23W =-217(413)3x x x +--+217(5)33x =--+, 103a =-<,∴当5x =时,73W =最大值.故5月出售每千克收益最大,最大为73元; (3)一年中销售每千克蔬菜的收益:23W =-217(413)3x x x +--+, 当1W =时,23-217(413)13x x x +--+=,解得:x 1=7,x 2=3, 103a =-<,x 为正整数,∴一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月. 故答案为:(1)y =23-x +7;(2)5月出售每千克收益最大,最大为73元;(3)一年中销售每千克蔬菜的收益大于1元的月份有4,5,6三个月.【变式训练3】红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a 元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值.【答案】(1)5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩;(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4.【解析】(1)由题意,当4050x ≤≤时,5y =,当50x >时,50.1(50)0.110y x x =--=-+,0y ≥,0.1100x ∴-+≥,解得100x ≤,综上,5(4050)0.110(50100)x y x x ≤≤⎧=⎨-+<≤⎩; (2)设该产品的月销售利润为w 万元,①当4050x ≤≤时,5(40)5200w x x =-=-,由一次函数的性质可知,在4050x ≤≤内,w 随x 的增大而增大,则当50x =时,w 取得最大值,最大值为55020050⨯-=;②当50100x <≤时,2(40)(0.110)0.1(70)90w x x x =--+=--+,由二次函数的性质可知,当70x =时,w 取得最大值,最大值为90,因为9050>,所以当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元), 5070x ∴<≤,设该产品捐款当月的月销售利润为Q 万元,由题意得:(40)(0.110)Q x a x =---+,整理得:221400.1()390240a a Q x a +=--+-+, 140702a +>,∴在5070x <≤内,Q 随x 的增大而增大, 则当70x =时,Q 取得最大值,最大值为(7040)(0.17010)903a a ---⨯+=-,因此有90378a -=,解得4a =.【变式训练4】某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量y (万件)与售价x (元/件)的函数关系式为()()2140,406080.6070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩ (1)当售价为60元/件时,年销售量为________万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少?(3)若销售该产品的年利润不少于750万元,直接写出x 的取值范围.【答案】(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤【解析】(1)=6080608020x y x y =-+=-+=当时,代入中,得.(2)设销售该产品的年利润为W 万元,当60x ≤40<时,()()()2302140250800W x x x =--+=--+.∴20<-,∴当50x =时,800W =最大当6070≤≤x 时,()()()2308055625W x x x =--+=--+∴10-<,6070≤≤x ,∴当60x =时,600W =最大∴800600>,∴当50x =时,800W =最大∴当售价为50元/件时,年销售利润最大,最大为800万元.(3)4555x ≤≤理由如下:由题意得 ()()3021407504555x x x --+≥≤≤解得:故答案为:(1)20;(2)当售价为50元/件时,年销售利润最大,最大为800万元;(3)4555x ≤≤ 课后训练1.某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y (件)与销售单价x (元)之间的函数关系式;(不需要求自变量取值范围) (2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1)5550y x =-+;(2)70元;(3)80元.【解析】(1)∴依题意得()150100102y x =+-⨯⨯, ∴y 与x 的函数关系式为5550y x =-+;(2)∴依题意得()504000y x -=,即()()5550504000x x -+-=,解得:170x =,290x =, ∴7090<∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w ,依题意得 ()()()250555050580027500w y x x x x x =-=-+-=-+-∴50-<,此图象开口向下∴当()8008025x =-=⨯-时, w 有最大值为:258080080275004500-⨯+⨯-=(元),∴当销售单价为80元时利润最大,最大利润为4500元,故为了每月所获利润最大,该商品销售单价应定为80元.2.红星工厂研发生产某种产品,成本为3万元/吨,每天最多能生产15吨.工厂为持续发展,尝试与博飞销售公司建立产销合作关系,双方约定:合作第一个月,工厂产品仅由博飞销售公司订购代销,并每天按博飞销售公司当日订购产品数量生产,当日出厂价格y (万元/吨)与当日订购产品数量x (吨)之间的关系如图所示:(1)直接写出y 与x 的函数关系式,并写出自变量x 的取值范围;(2)红星工厂按产销合作模式生产这种产品,设第一个y (万元/吨)月单日所获利润为w (万元), ①求w (万元)与x (吨)的函数关系式;②为响应国家“乡村振兴”政策,红星工厂决定,将合作第一个月中单日所获最大利润捐赠给附近村委会.试问:工厂这次为“乡村振兴”最多捐赠多少万元?【答案】(1)9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<;(2)①w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<;②工厂这次为“乡村振兴”最多捐赠15万元.【解析】(1)当0≤x ≤5时,设函数关系式为:y =kx +b ,把(0,9),(5,4)代入上式,得945b k b =⎧⎨=+⎩,解得:19k b =-⎧⎨=⎩,∴y =-x +9, 当5<x ≤15时,y =4,综上所述:9(05)4(515)x x y x -+≤≤⎧=⎨≤⎩<; (2)①由题意得:w =(y -3)x =()()6(05)43(515)x x x x x ⎧-+≤≤⎪⎨-≤⎪⎩<,∴w =26(05)(515)x x x x x ⎧-+≤≤⎨≤⎩<; ②当05x ≤≤时,w =()22639x x x -+=--+,此时x =3,w 最大值=9,当515x ≤<时,w =x ,此时,x =15,w 最大值=15,综上所述:工厂这次为“乡村振兴”最多捐赠15万元.3.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系:(1)求y 与x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润及此时的销售单价分别为多少元?【答案】(1)50012000y x =-+;(2)一周该商场销售这种商品获得的最大利润为54000元,销售单价分别为12元【解析】(1)设y 和x 的函数表达式为y kx b =+,则10000495005k b k b =+⎧⎨=+⎩,解得50012000k b =-⎧⎨=⎩, 故y 和x 的函数表达式为50012000y x =-+;.(2)设这一周该商场销售这种商品的利润为w 元,由题意得:3155001200006000x x ≤≤⎧⎨-+≥⎩, 解得312x ≤≤,这一周该商场销售这种商品获得利润:()()()235001200035001350036000w y x x x x x =-=-+-=-+-,∴22750055125551252w x ⎛⎫=--+≤ ⎪⎝⎭, ∴312x ≤≤,故12x =时,w 有最大值为54000,答:一周该商场销售这种商品获得的最大利润为54000元,销售单价为12元.4.夏天到了,宁波人最惦记的水果——杨梅进入成熟期,一水果店老板进行杨梅销售,已知杨梅进价为25元/千克.如果售价为30元/千克,那么每天可售出150千克:如果售价为32元/千克,那么每天可售出130千克.经调查发现:每天销售盘y (千克)与售价x (元/千克)之间存在一次函数关系.(1)求出y 关于x 的一次函数关系式;(2)若杨梅售价不得高于36元/千克,该店主销售杨梅每天要获得960元的毛利润,则销售单价应定为多少元/千克?(毛利润=销售额-进货成本〉(3)设杨梅每天销售的毛利润为W 元,当杨梅的售价定为多少元/千克时,每天销售获得的毛利润最大?最大毛利润是多少元?【答案】(1)y=-10x+450;(2)33元/千克;(3)售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.【解析】(1)∴每天销售量y(千克)与售价x(元/千克)之间存在一次函数关系,∴设y=kx+b,∴x=30时,y=150,x=32时,y=130,则1503013032k bk b=+⎧⎨=+⎩,解得:10450kb=-⎧⎨=⎩,∴y关于x的一次函数关系式:y=-10x+450;(2)设销售单价应定为x元/千克,由题意得:(x-25)(-10x+450)=960,解得:x=37或x=33,∴杨梅售价不得高于36元/千克,∴x=37不合题意,∴x=33,答:销售单价应定为33元/千克;(3)设杨梅的售价定为m元/千克时,每天销售获得的毛利润最大,则W=(m-25)(-10m+450)=-10m2+700m-11250=-10(m-35)2+1000,∴-10<0,∴当m=35时,W有最大值,最大值1000元,答:杨梅的售价定为35元/千克时,每天销售获得的毛利润最大,最大毛利润是1000元.5.某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y(单位:万件)与销售单价x(单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元).①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见解析;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元.【解析】(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩,∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-;∴P 关于x 的函数表达式为222032P x x =-+-;②由题意得:2200x ≤⨯%,即4x ≤,∴22203210x x -+-=,解得:123,7x x ==,∴3x =; 答:此时的销售单价应定为3元.。

二次函数利润问题

二次函数利润问题

二次函数利润问题二次函数利润问题是指在经济学中,根据某个企业的销售情况建立的二次函数模型,通过求解二次函数的最值,进而得到该企业的最大利润或最小成本。

利润是企业经营的重要指标,通过利润问题的求解,可以帮助企业制定最优的经营策略和决策,提高企业的竞争力和盈利能力。

二次函数是一种常见的数学模型,可以用来描述许多实际问题的规律。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

在二次函数利润问题中,一般假设函数的自变量x表示某个特定的经济因素,如销售量或产量,而函数的因变量f(x)表示企业的利润或成本。

在二次函数利润问题中,一个常见的问题是求解二次函数的最值。

利润的最大值通常表示企业的最大利润,而成本的最小值则表示企业的最小成本。

求解最值问题可以用两种方法:一种是图像法,另一种是公式法。

图像法是通过绘制二次函数的图像来求解最值问题。

首先,根据函数的一般形式,确定图像的开口方向。

如果二次函数的系数a大于0,则图像开口向上;如果系数a小于0,则图像开口向下。

其次,根据函数的另外两个系数b 和c,确定图像的位置。

特别地,根据系数b的符号,可以判断图像的位置相对于y轴的平移情况。

最后,通过观察图像的顶点,即二次函数的最值点,可以得到最值的坐标。

公式法是通过解二次函数的一阶导数为0来求解最值问题。

首先,将二次函数表示为标准形式f(x) = ax^2 + bx + c,并求出其一阶导数f'(x) = 2ax + b。

其次,令一阶导数等于0,解方程2ax + b = 0,得到x = -b/2a。

最后,将x的值代入原函数,得到最值点的坐标。

两种方法都可以求解二次函数的最值问题,具体选择哪种方法则取决于具体的情况和个人喜好。

不过,为了能够更好地理解问题和解答问题,掌握两种方法的使用和转化是非常有益的。

除了求解二次函数的最值问题,二次函数利润问题还可以涉及到其他的经济学概念和数学方法。

第05讲二次函数利润问题的四种题型(带答案)

第05讲二次函数利润问题的四种题型(带答案)

第05讲二次函数利润问题的四种题型题型一:“每每”的利润问题商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,“每每”问题的做题步骤①找出原来的销量:30件,原来的每件盈利:50元;②确定每件产品降价(或涨价)后的利润:(50-x)元;③计算出降价(或涨价)后销量的变化量:2x件;④找出降价(或涨价)后的销量,本题里有明确的“多出”字样,即为:(30+2x)件;⑤利润=每件利润×数量:=5−5+B计算注意事项①若题中要求价格为整数,而二次函数的对称轴不是整数,要用二次函数的性质取适当的整数求最值;②结果可能不唯一,例如题中要求结果为整数,而对称轴是51.5,那么51和52都可以;③看清楚题中是否有“最优惠”等条件,算出多个结果需要舍根。

【例1】商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元,据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:=50−30+2=−2−70+1500.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x (单位:元/件),月销售量为y (单位:万件).(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a 元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a 的值2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y元,求y与x的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y千克,每千克的售价为x元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?6.(2022·贵州铜仁·统考中考真题)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?1.(2022·贵州遵义·三模)红星公司销售一种成本为4元/件的产品,若月销售单价不高于5元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售件产品便向大别山区捐款a元,已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值【答案】(1)()540500.110(50100)xyx x⎧≤≤=⎨-+<≤⎩(2)7元/件,最大利润为9万元(3)4a=【分析】(1)分4050x≤≤和50x>两种情况,根据“月销售单价每涨价1元,月销售量就减少0.1万件”即可得函数关系式,再根据0y≥求出x的取值范围;(2)在(1)的基础上,根据“月利润=(月销售单价-成本价)⨯月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;万元,先根据捐款当月的月销售单价、月销售2.(2022·辽宁朝阳·模拟预测)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x 的代数式表示);(2)在上述条件不变,销售正常的情况下,设商场日盈利y 元,求y 与x 的函数关系式;(3)在(2)的条件下,每件商品降价多少元时,商场日盈利最高?【答案】(1)2x ,()50x -;(2)2701500y x x =--+(3)每件商品降价35元时,商场日盈利最高.【分析】(1)每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.商场日销售量增加2x 件,每件商品盈利()50x -元;(2)根据(1)得,单件利润乘以销售量等于利润,即可得到y 与x 的函数关系式;(3)由题意得:利润函数的表达式为()()50302y x x =-+,再化为顶点式得()2352725y x =-++,得,当35x =时,y 有最大值.【详解】(1)解:每天销售30件,每件盈利50元,每件商品每降价1元,商场平均每天可多售出2件,∴当降价x 元时,商场日销售量增加2x 件,每件商品盈利为()50x -元,故答案为:2x ,()50x -;(2)解:根据题意得:()()250302701500y x x x x =-+=--+.(3)解:()22701500352725y x x x =--+=-++,当35x =时,y 有最大值,答:每件商品降价35元时,商场日盈利最高.【点睛】本题考查二次函数的销售问题,涉及到利润函数=单件利润乘以销售数量,利用二次函数的性质求最值,通常都是化为顶点式来解决问题.3.(贵州遵义·统考一模)某水果批发店销售一种优质水果,已知这种优质水果的进价为10元/千克.经市场调查发现:若售价为12元/千克时,每天的销售量为180千克;若售价每千克提高1元,每天的销售量就会减少10千克.设每天的销售量为y 千克,每千克的售价为x 元.请解答以下问题:(1)为让利给顾客,当这种优质水果售价为多少时,每天可获得利润960元.(2)当售价定为多少时,每天可获得最大利润,并求最大利润是多少?【答案】(1)当这种优质水果售价为18元时,每天可获得利润960元(2)当售价定为20元时,每天可获得最大利润,最大利润是1000元【分析】(1)先根据题意求得销量与售价的关系,然后根据销量乘以每千克的利润等于总利润,列出一元二次方程,解方程即可求解;(2)设利润为w ,根据题意列出二次函数,根据二次函数的性质即可求解.【详解】(1)解:设每天的销售量为y 千克,每千克的售价为x 元,根据题意得,()180121010300y x x =--⨯=-+,()()1010300960x x --+=,解得:1218,22x x ==,∵为让利给顾客,∴18x =,答:当这种优质水果售价为18元时,每天可获得利润960元;(2)解:设利润为w ,则()()()22101030010400300010201000w x x x x x =--+=-+-=--+,∴20x =时,w 最大,最大利润是1000元,答:当售价定为20元时,每天可获得最大利润,最大利润是1000元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.4.(2022·四川巴中·统考中考真题)端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a 元,销售猪肉粽的利润为w 元,求该商家每天销售猪肉粽获得的最大利润.【答案】(1)每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元(2)1800元【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.5.(2022·山东青岛·统考中考真题)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y (元/千克)与购进数量x (箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?【答案】(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.【分析】(1)根据题意列出8.20.2(1)y x =--,得到结果.(2)根据销售利润=销售量⨯(售价-进价),利用(1)结果,列出销售利润w 与x 的函数关系式,即可求出最大利润.【详解】(1)解:由题意得8.20.2(1)y x =--0.28.4x =-+∴批发价y 与购进数量x 之间的函数关系式是0.28.4y x =-+(110x ≤≤,且x 为整数).(2)解:设李大爷销售这种水果每天获得的利润为w 元则[120.5(1)]10w x y x=---⋅[120.5(1)(0.28.4)]10x x x=----+⋅2341x x=-+∵30a =-<园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?【答案】(1)220y x =-+,4 5.5x ≤≤(2)将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围;(2)根据销售利润=销售量×(批发价-成本价),列出销售利润w (元)与批发价x (千元/吨)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:根据题意得()()12242204 5.5y x x x =--=-+≤≤,所以每天销量y (吨)与批发价x (千元/吨)之间的函数关系式220y x =-+,自变量x 的取值范围是4 5.5x ≤≤(2)解:设每天获得的利润为w 千元,根据题意得()()222202224402(6)32w x x x x x =-+-=-+-=--+,∵20-<,∴当6x <,W 随x 的增大而增大.∵4 5.5x ≤≤,∴当 5.5x =时,w 有最大值,最大值为22 5.563231.5-⨯-+=(),∴将批发价定为每吨5.5千元时,每天获得的利润最大,最大利润是31.5千元.【点睛】本题考查二次函数应用,解题的关键是读懂题意,列出函数关系式.题型二:二次函数和一次函数综合的利润问题【例2】2022年春,新冠肺炎有所蔓延,市场对口罩的需求量仍然较大.某公司销售一种进价为12元/袋的口罩,其销售量y (万袋)与销售价格x (元/袋)的变化如表:价格x (元/袋)…14161820…销售量y(万袋)…5432…另外,销售过程中的其他开支(不含进价)总计6万元.(1)根据表中数据变化规律及学过的“一次函数、二次函数、反比例函数”知识,请判断销售量y (万袋)与价格x (元/袋)满足什么函数?并求出y 与x 之间的函数表达式;(2)设该公司销售这种口罩的净利润为w (万元),当销售价格定为多少元时净利润最大,最大值是多少?,可判断该函数是一次函数;设1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.2.(2021·四川德阳·二模)某工厂制作A、B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y(个)与销售单价x(元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?1.(2022·贵州遵义·校考一模)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)3035404550日销售量p (千克)600450300150(1)请直接写出p 与x 之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.【答案】(1)301500p x =-+(2)这批农产品的销售价格定为40元,才能使日销售利润最大(3)a 的值为2.【分析】(1)首先根据表中的数据,可猜想y 与x 是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w '与销售价格x 之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a 的值.【详解】(1)解:由表格的数据可知:p 与x 成一次函数关系,设函数关系式为p=kx+b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k=-30,b=1500,∴p=-30x+1500,∴所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p (x-30)=(-30x+1500)(x-30),即223024004500030(40)3000w x x x =-+-=--+,∵-30<0,∴当x=40时,w 有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利w '=p (x-30-a )=(-30x+1500)(x-30-a ),即230(240030)(150045000)w x a x a '=-++-+,作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元;(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B为5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.3.(2022·辽宁大连·校考模拟预测)新冠肺炎疫情后期,我县某药店进了一批口罩,成本价为2元/个,投入市场销售,其销售单价不低于成本,按物价局规定销售利润率不高于80%.经一段时间调查,发现每天销售量y (个)与销售单价x (元/个)之间存在一次函数关系,且有两天数据为:销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个.(1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)如果该药店销售口罩每天获得800元的利润,那么这种口罩的销售单价应定为多少元?(3)设每天的总利润为w 元,当销售单价定为多少元时,该药店每天的利润最大?最大利润是多少元?【答案】(1)4002000(2 3.6)y x x =-+≤≤(2)3元(3)3.5元,900元【分析】(1)设y 与x 之间的函数关系式为y kx b =+,用待定系数法可得y 与x 之间的函数关系式为4002000y x =-+,根据销售单价不低于成本,按物价局规定销售利润率不高于80%,可得2 3.6x ≤≤;(2)根据题意得:()()24002000800x x --+=,即可解得答案;(3)由题意得:()()24002000w x x =--+,整理计算,再利用二次函数的性质可得答案.【详解】(1)设y 与x 之间的函数关系式为y kx b =+,将销售价定为2.3元,每天销售1080个;销售价定为2.5元,每天销售1000个代入得:2.310802.51000k b k b +=⎧⎨+=⎩,解得4002000k b =-⎧⎨=⎩,y ∴与x 的函数关系式为4002000y x =-+,销售单价不低于成本,按物价局规定销售利润率不高于80%,22280%x x ≥⎧∴⎨-≤⨯⎩,解得2 3.6x ≤≤,()40020002 3.6y x x ∴=-+≤≤;(2)根据题意得:()()24002000800x x --+=,整理得:27120x x -+=,解得:13x =,24(x =不合题意,舍去),答:如果每天获得800元的利润,销售单价应定为3元;(3)由题意得:()()24002000w x x =--+240028004000w x x =+-()2400712.2512.254000w x x =--+--2400( 3.5)900w x =--+4000-< ,∴抛物线开口向下,w 有最大值,3.5x ∴=时,w 最大值是900,答:销售单价定为3.5元时,每天的利润最大,最大利润是900元.【点睛】本题考查一元二次方程及二次函数的应用,解题关键是读懂题意,找到等量关系列方程和函数关系是.题型三:二次函数和分段函数综合的利润问题①写分段函数解析式是要明确自变量的取值范围;②要分段求利润的最值,再比较两段之间的最大值;③注意自变量的范围和结果的取舍。

利润问题(二次函数应用题)含答案

利润问题(二次函数应用题)含答案

利润问题(二次函数应用题)1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x件,应如何定价才能使定价利润最大?最大利润是多少元?2、某超市茶叶专柜经销一种绿茶,每千克成本为50元,市场调查发现,在一段时间内,每天的销售量y(千克)随销售单价x(元/千克)的变化而变化,具体的变化如下表:(1)求y与x的函数关系式;(2)设这种绿茶在这段时间内的销售利润为W(元).那么该茶叶每千克定价为多少元时,获得最大利润?且最大利润为多少元?3、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?6、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。

(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

二次函数的实际应用利润问题

二次函数的实际应用利润问题

y=(60+x)(300-10x)-40(300-10x) (0≤X≤30)
即 y10x210x06000
精选ppt
10
y10x210x06000 (0≤X≤30)
x2ba5时, y最大值 1052 100560006250
所以,当定价为65元时,利润最大,最大利润为6250元
y\元
6250 6000
若生产厂家要求每箱售价在45—55元之间。 如何定价才能使得利润最大?(为了便于计 算,要求每箱的价格为整数)
精选ppt
13
有一经销商,按市场价收购了一种活蟹1000千克, 放养在塘内,此时市场价为每千克30元。据测算,此后 每千克活蟹的市场价,每天可上升1元,但是,放养一天 需各种费用支出400元,且平均每天还有10千克蟹死去, 假定死蟹均于当天全部售出,售价都是每千克20元(放 养期间蟹的重量不变).
际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买
进商品需付40(300-10x)元,因此,得利润
y 6 0 x3 010 x8 43 0 010 x8
1x2 8 6x0 60(0≤0 x≤200 )
当 答x:定2价ba为5358时1 , y元最时大,利18润最53大2,6最0大53 利6润0为060605005元0 3
请大家带着以下几个问题读题
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是 自变量?哪些量随之发生了变化?
精选ppt
9
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:每涨价1 元,每星期少卖出10件;每降价1元,每 星期可多卖出18件,已知商品的进价为 每件40元,如何定价才能使利润最大?

二次函数的应用(利润问题)

二次函数的应用(利润问题)

二次函数的应用——利润问题[例1]:求以下二次函数的最值:〔1〕求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.〔2〕求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,商品的进价为每件40元,如何定价才能使利润最大?解:设涨价〔或降价〕为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 那么:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y 〔元〕)20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y 〔元〕综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 那么:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?月 日解:设旅行团有x 人)30(≥x ,营业额为y 元, 那么:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y 〔元〕答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件本钱10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 假设日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.那么1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x当25=x ,225max =y 〔元〕答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)〞的设问中, “某某〞要设为自变量,“什么〞要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.〔2006十堰市〕市“健益〞超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x 〕存在如以下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益〞超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).x 〔元〕 15 20 30 … y 〔件〕 25 20 10 …解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P 〔元〕〔或通过配方,4500)35(202+--=x P ,也可求得最大值〕答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,那么具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大〞“最小〞).3.不管自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解〞或“无解〞)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m 4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一局部,如下图,假设命中篮圈中心,那么他与篮底的距离L 是 4.5米 .月 日解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x 〔不合题意,舍去〕5.在距离地面2m 高的某处把一物体以初速度V 0〔m/s 〕竖直向上抛出,•在不计空气阻力的情况下,其上升高度s 〔m 〕与抛出时间t 〔s 〕满足:S=V 0t-12gt 2〔其中g 是常数,通常取10m/s 2〕,假设V 0=10m/s ,那么该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究说明,晴天 在某段公路上行驶上,速度为V 〔km/h 〕的汽车的刹车距离S 〔m 〕可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.假设这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,那么应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 那么:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y 〔元〕答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一局部,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),那么这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.〔2006年青岛市〕在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x 〔元/千克〕 … 25 242322…销售量y 〔千克〕… 2000 2500 3000 3500 …〔1〕在如图的直角坐标系内,作出各组有序数对〔x ,y 〕所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; 〔2〕假设樱桃进价为13元/千克,试求销售利润P 〔元〕与销售价x 〔元/千克〕之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:〔1〕由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点〔•25,2000〕,〔24,2500〕在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. 〔2〕P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量根本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.月 日∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元那么:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2021湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,这种产品的本钱价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y 〔元〕(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x 〔不合题意,舍去〕252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2021河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元〕与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,〔万元〕均与满足一次函数关系.〔注:年利润=年销售额-全部费用〕〔1〕成果说明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润〔万元〕与之间的函数关系式;〔2〕成果说明,在乙地生产并销售吨时,〔为常数〕,且在乙地当年的最大年利润为35万元.试确定的值;〔3〕受资金、生产能力等多种因素的影响,某投资商方案第一年生产并销售该产品18吨,根据〔1〕,〔2〕中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:〔1〕甲地当年的年销售额为万元;.〔2〕在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.〔3〕在乙地区生产并销售时,年利润,将代入上式,得〔万元〕;将代入,得〔万元〕.,应选乙地.。

中考二次函数解决利润应用题

中考二次函数解决利润应用题

中考数学挑战满分知识点二次函数应用题题型一、与一次函数结合销售总利润=利润×销售量销售量(利润=售价-成本)成本)1.为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策优惠政策,,使农民收入大幅度增加使农民收入大幅度增加..某农户生产经销一种农副产品某农户生产经销一种农副产品,,已知这种产品的成本价为20元/千克千克..市场调查发现市场调查发现,,该产品每天的销售量w该产品每天的销售量w((千克千克))与销售价x与销售价x((元/千克千克))有如下关系有如下关系::w=-2x+x+80.80.80.设这种产品每天的销售利润为y设这种产品每天的销售利润为y设这种产品每天的销售利润为y((元).(1)(1)求y与x之间的函数关系式求y与x之间的函数关系式求y与x之间的函数关系式. .(2)(2)当销售价定为多少元时当销售价定为多少元时当销售价定为多少元时,,每天的销售利润最大每天的销售利润最大??最大利润是多少最大利润是多少? ?(3)(3)如果物价部门规定这种产品的销售价不得高于如果物价部门规定这种产品的销售价不得高于28元/千克千克,,该农户想要每天获得150元的销售利润元的销售利润,,销售价应定为多少元销售价应定为多少元? ?(1)y=w (x ﹣20)=(x ﹣20)(﹣2x+80)=﹣2x 2+120x ﹣1600,则y=﹣2x 2+120x ﹣1600.由题意,有, 解得20≤x ≤40.故y 与x 的函数关系式为:y=﹣2x 2+120x ﹣1600,自变量x 的取值范围是20≤x ≤40;(2)∵y=﹣2x 2+120x ﹣1600=﹣2(x ﹣30)2+200,∴当x=30时,y 有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x 2+120x ﹣1600=150,整理,得x 2﹣60x+875=0,解得x 1=25,x 2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x 2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元2、某商场购进一批单价为16元的日用品,元的日用品,经试验发现,经试验发现,经试验发现,若按每件若按每件20元的价格销售时,元的价格销售时,每月每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.的一次函数.(1)试求y 与x 之间的关系式;之间的关系式;(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b ,则有所以y=-30x+960(16≤x ≤32).(2)每月获得利润P=(-30x+960)(x-16) =30(-x+32)(x-16) =30(-x 2 +48x-512)=-30(x-24)2 +1920. 所以当x=24时,P 有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.某商场购进一种每件价格为100元的新商品元的新商品,,在商场试销发现在商场试销发现::销售单价x (元/件)与每天销售量y (件)之间满足如图所示的关系:(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;之间的函数关系式;若你是商场负责人,若你是商场负责人,若你是商场负责人,会将售价定为会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?解:(解:(解:(11)设y 与x 之间的函数关系式为y =kx kx++b (k ≠0).由所给函数图象得由所给函数图象得îíì=+=+3015050130b k b k 解得解得 îíì=-=1801b k ∴函数关系式为∴函数关系式为y =-=-x x +180. y(件) x(元/件) 30 50 130 150 O (2)W (2)W==(x (x--100) y 100) y==(x (x--100)( 100)( --x +180) 180) =-=-=-x2x2x2++280x 280x--18000=-=-=-(x (x (x--140) 2140) 2++1600当售价定为当售价定为140元, W 最大=最大=1600. 1600.∴售价定为∴售价定为140元/件时件时,,每天最大利润W =1600元某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y (元(元//千克)与采购量x (千克)之间的函数关系图象如图中折线AB AB﹣﹣﹣﹣﹣﹣BC BC BC﹣﹣﹣﹣﹣﹣CD CD 所示(不包括端点A ).).(1)当100100<<x <200时,直接写y 与x 之间的函数关系式:之间的函数关系式: y=y=﹣﹣0.02x+8 .(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?时,蔬菜种植基地获利最大,最大利润是多少元?(3)在()在(22)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?元的利润?考点: 二次函数的应用次函数的应用分析: (1)利用待定系数法求出当100100<<x <200时,时,y y 与x 之间的函数关系式即可;之间的函数关系式即可;(2)根据当0<x ≤100时,当100100<<x ≤200时,分别求出获利W 与x 的函数关系式,进而求出最值即可;进而求出最值即可;(3)根据()根据(22)中所求得出,﹣)中所求得出,﹣0.020.020.02((x ﹣150150))2+450=418求出即可.求出即可.解答: 解;(;(11)设当100100<<x <200时,时,y y 与x 之间的函数关系式为:之间的函数关系式为:y=ax+b y=ax+b y=ax+b,,,解得:∴y 与x 之间的函数关系式为:之间的函数关系式为:y=y=y=﹣﹣0.02x+80.02x+8;;故答案为:故答案为:y=y=y=﹣﹣0.02x+80.02x+8;;(2)当采购量是x 千克时,蔬菜种植基地获利W 元,元,当0<x ≤100时,时,W=W=W=((6﹣2)x=4x x=4x,,当x=100时,时,W W 有最大值400元,元,当100100<<x ≤200时,时,W=W=((y ﹣2)x=(﹣(﹣0.02x+60.02x+60.02x+6))x=﹣0.020.02((x ﹣150150))2+450+450,,∵当x=150时,时,W W 有最大值为450元,元, 综上所述,一次性采购量为150千克时,蔬菜种植基地能获得最大利润为450元;元;(3)∵)∵418418418<<450450,,∴根据(∴根据(22)可得,﹣)可得,﹣0.020.020.02((x ﹣150150))2+450=418解得:解得:x x 1=110=110,,x 2=190=190,,答:经销商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润.的利润.点评: 此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及一元二次方程的解法等知识,利用数形结合以及分段讨论得出是解题关键.程的解法等知识,利用数形结合以及分段讨论得出是解题关键.5.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:关系如下表:若日销售量y 是销售价x 的一次函数.的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?少元?某市对火车站进行了大规模的改建,某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,改建后的火车站除原有的普通售票窗口外,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为的表达式为 60x 2 ,其中自变量x 的取值范围是的取值范围是 0≤x ≤ ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.后半段一次函数的表达式.x (元) 15 20 30 … y (件) 25 20 10 …考点: 二次函数的应用;一次函数的应用次函数的应用;一次函数的应用分析: (1)设函数的解析式为y=ax 2,然后把点(,然后把点(11,6060)代入解析式求得)代入解析式求得a 的值,即可得出抛物线的表达式,根据图象可得自变量x 的取值范围;的取值范围;(2)设需要开放x 个普通售票窗口,根据售出车票不少于14501450,列出不等式解不等,列出不等式解不等式,求最小整数解即可;式,求最小整数解即可;(3)先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,时,y y 的值,然后把运用待定系数法求解析式即可.的值,然后把运用待定系数法求解析式即可.解答: 解:(:(11)设函数的解析式为y=ax 2,把点(把点(11,6060)代入解析式得:)代入解析式得:)代入解析式得:a=60a=60a=60,,则函数解析式为:则函数解析式为:y=60x y=60x 2(0≤x ≤););(2)设需要开放x 个普通售票窗口,个普通售票窗口,由题意得,由题意得,80x+6080x+6080x+60××5≥14501450,,解得:解得:x x ≥14,∵x 为整数,为整数,∴x=15x=15,,即至少需要开放15个普通售票窗口;个普通售票窗口;(3)设普通售票的函数解析式为y=kx y=kx,,把点(把点(11,8080)代入得:)代入得:)代入得:k=80k=80k=80,,则y=80x y=80x,,∵10点是x=2x=2,,∴当x=2时,时,y=160y=160y=160,,即上午10点普通窗口售票为160张,张,由(由(11)得,当x=时,时,y=135y=135y=135,,∴图②中的一次函数过点(,135135),(),(),(22,160160),),),设一次函数的解析式为:设一次函数的解析式为:y=mx+n y=mx+n y=mx+n,,把点的坐标代入得:,解得:,则一次函数的解析式为y=50x+60y=50x+60..点评: 本题考查了二次函数及一次函数的应用,解答本题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.决.某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y 件与销售单价x (x ≥5050)元)元)元//件的关系如下表:件的关系如下表:销售单价x (元(元//件)件) …55 60 70 75 … 一周的销售量y (件)(件)… 450 400 300 250 … (1)直接写出y 与x 的函数关系式:的函数关系式: y=y=﹣﹣10x+1000考点: 二次函数的应用.次函数的应用.3718684 3718684分析: (1)设y=kx+b y=kx+b,把点的坐标代入解析式,求出,把点的坐标代入解析式,求出k 、b 的值,即可得出函数解析式;的值,即可得出函数解析式;(2)根据利润)根据利润==(售价﹣进价)×销售量,列出函数关系式,继而确定销售利润随着销售单价的增大而增大的销售单价的范围;销售单价的增大而增大的销售单价的范围;(3)根据购进该商品的贷款不超过10000元,求出进货量,然后求最大销售额即可.解答: 解:(:(11)设y=kx+b y=kx+b,,由题意得,,解得:, 则函数关系式为:则函数关系式为:y=y=y=﹣﹣10x+100010x+1000;;(2)由题意得,)由题意得,S=S=S=((x ﹣4040))y=y=((x ﹣4040)(﹣)(﹣)(﹣10x+100010x+100010x+1000))=﹣10x 2+1400x +1400x﹣﹣40000=40000=﹣﹣1010((x ﹣7070))2+9000+9000,,∵﹣∵﹣101010<<0,∴函数图象开口向下,对称轴为x=70x=70,,∴当4040≤≤x ≤70时,销售利润随着销售单价的增大而增大;时,销售利润随着销售单价的增大而增大;(3)当购进该商品的贷款为10000元时,元时,y==250=250(件),(件),(件),此时x=75x=75,,由(由(22)得当x ≥70时,时,S S 随x 的增大而减小,的增大而减小,∴当x=70时,销售利润最大,时,销售利润最大,此时S=9000S=9000,,即该商家最大捐款数额是9000元.元.点评: 本题考查了二次函数的应用,难度一般,解答本题的关键是将实际问题转化为求函数最值问题,从而来解决实际问题.最值问题,从而来解决实际问题.设利润为y ,售价定为每件x 元,由题意得,y=(x-18)×[100-10(x-20)],整理得:y=-10x 2+480x-5400=-10(x-24)2+360,∵-10<0,∴开口向下,故当x=24元时,y 有最大值为360元.2.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。

二次函数与实际问题中利润问题(附答案)

二次函数与实际问题中利润问题(附答案)
如果设果园增种x棵橙子树,总产量为y个,则
②T恤衫何时获得最大利润,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.当销售单价为多少元时,可以获得最大利润,最大利润是多少元?
(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;
(2)每件定价多少元时,才能使一天的利润最大?
⑥纯牛奶何时利润最大:
6.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱发50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利润最大:
8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
设销售价为x元(x≤13.5元),利润是y元,则
③日用品何时获得最大利润:
3.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?
设销售价为x元(x≥30元),利润为y元,则
二次函数y=ax2+bx+c(a≠0)的性质:

利用二次函数解决利润问题专项练习附答案

利用二次函数解决利润问题专项练习附答案

利用二次函数解决利润问题基础题知识点利用二次函数解决利润问题1.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y与x的函数关系是( )A.y=x2+a B.y=a(x-1)2 C.y=a(1-x)2D.y=a(1+x)2 2.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,可卖出(350-10x)件商品,则商品所赚钱y元与售价x元之间的函数关系为( ) A.y=-10x2-560x+7 350 B.y=-10x2+560x-7 350 C.y=-10x2+350x D.y=-10x2+350x-7 350 3.某商店经营某种商品,已知所获利润y(元)与销售单价x(元)之间的表达式为y=-x2+24x+2 956,则获利最多为( ) A.3 144元B.3 100元C.144元D.2 956元4.喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x 为正整数),每星期销售该商品的利润为y元,则y与x的函数表达式为( )A.y=-10x2+100x+2 000 B.y=10x2+100x+2 000 C.y=-10x2+200x D.y=-10x2-100x+2 000 5.某水果店销售一批水果,每箱进价为40元,售价为60元,每天可卖50箱,则一天的销售利润为____________元.由于积压时间不能太长,所以该店决定降价售出,若每降价5元,则每天可多售出10箱.若现在售价为x元(40<x<60),则现在每天可多卖出________箱,每天共卖出_____箱,每箱的利润为_____元,即每天的总利润为________________________元.6.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是____________.7.(沈阳中考)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为____________元.8.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种____________棵橘子树,橘子总个数最多.9.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了获得最大利润,每个售价应定为多少元?中档题10.某体育商店试销一款成本为50元的足球,规定试销期间单价不低于成本价,且获利不得高于50%.经试销发现,每天的销售量y(个)与销售单价x(元)之间满足一次函数y=-x+120,那么可求出该超市试销中一天可获得的最大利润为____________元.11.(龙岩中考)小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以13元/千克的价格销售,那么每天可获取利润750元.【利润=(销售价-进价)×销售量】(1)(2)价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数表达式;(3)设该超市销售这种水果每天获取的利润为W元,求W与x 之间的函数表达式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?综合题12.(莆田中考)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数表达式y2=mx2-8mx+n,其变化趋势如图2所示.(1)求y2的表达式;(2)第几月销售这种水果,每千克所获得的利润最大?最大利润是多少?参考答案1.D 2.B 3.B 4.A 5.1 000 (120-2x) (170-2x) (x -40) (x -40)(170-2x) 6.205万元 7.25 8.10 9.设售价在90元的基础上上涨x 元,总利润为y 元, 由题意,得y =(10+x)(400-20x)=-20(x -5)2+4 500. ∴当x =5时,y 有最大值,最大值为4 500.此时90+x =95. ∴售价为95元时可获得最大利润. 10.1 12511.(1)300 250 150(2)y 是x 的一次函数.设y =kx +b ,∵当x =10时,y =300;当x =11时,y =250, ∴⎩⎪⎨⎪⎧10k +b =300,11k +b =250.解得⎩⎪⎨⎪⎧k =-50,b =800. ∴y =-50x +800.经检验:x =13,y =150也适合上述表达式. ∴y 与x 的函数表达式为y =-50x +800.(3)由题意,得W =(x -8)y =(x -8)(-50x +800)=-50x 2+1 200x -6 400=-50(x -12)2+800. ∵a =-50<0,∴当x =12时,W 取最大值,为800.答:当销售单价为12元时,每天可获得的利润最大,最大利润是800元. 12.(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7.解得⎩⎨⎧m =18,n =638.∴y 2的表达式为y 2=18x 2-x +638(1≤x ≤12).(2)设y 1=kx +b.∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10.解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的表达式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12).∴当x =3时,w 取最大值214.答:第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.。

二次函数(利润问题)

二次函数(利润问题)

应用实践
某宾馆有 50 个房间供游客居住,当每个房间的定 价为每天 180 元时,房间会全部住满 . 当每个房 间每天的定价每增加 10 元时,就会有一个房间空 闲 . 如果游客居住房间,宾馆需对每个房间每天支 出 20 元的各种费用 . 房价定为多少时,宾馆利润 最大?
归纳总结
通过本节课的学习,我的收获是什么?
二次函数是一类最优化问题的数学模型, 能指导我们解决生活中的实际问题,同学 们,认真学习数学吧,因为数学来源于生 活,更能优化我们的生活。
注意:在应用二次函数模型解决实际问题 时,一定要说明自变量的取值范围。
③在自变量的取值范围内确定最大利润 ;
④可以利用配方法或公式求出最大利润;也可以画 出函数的简图,利用简图和性质求出 .
牛刀小试
某商店购进一批单价为20元的日用品,如果以 单价30元销售,那么半个月内可以售出400件.根据 销售经验,提高单价会导致销售量的减少,即销售 单价每提高1元,销售量相应减少20件.售价提高多 少元时,才能在半个月内获得最大利润?
22.3 二次函数 ----利润最大
在日常生活中存在着许许多多的与数学知识有 关的实际问题 . 商品买卖过程中,作为商家追 求利润最大化是永恒的追求 .如果你是商场经 理,如何定价才能使商场获得最大利润呢?
我们需要了解关于销售、利润、成本、单价、利润 率之间的关系式. (1) 销售额= 售价×销售量 ; (2) 利润= 销售额-总成本=单件利润×销售量; (3) 单件利润=售价-进价 ;
如:某商品现在的售价为每件 60 元,每星期可卖 出 300 件,已知商品的进价为每件40元,则每星期 销售额是 元,销售利润 元.
问题探究
问题:已知某商品的进价为每件40元。现在的售价 是每件60元,每星期可卖出300件。市场调查反映: 如调整价格 ,每涨价一元,每星期要少卖出10件; 如何定价才能使每周的利润最大?

九年级 下册 数学 PPT课件 第3课时 利用二次函数解决利润问题

九年级 下册 数学 PPT课件  第3课时  利用二次函数解决利润问题

【解析】(1)由题意可知,
当x≤100时,购买一个需5 000元,故y1=5 000x
当x>100时,因为购买个数每增加一个,其价格减少10元
但即售10价0不<x得≤低25于03时5,0购0元买/一个个,需所5以0x0≤500-01001(0x3-510000)1元00,故250
y1= 6当0x0>02x5-100时x,2;购买一个需3 500元,故y1=3 500x;
【解析】(1)设每千克应涨价x元,列方程得: (5+x)(200-10x)=1 500, 解得:x1=10, x2=5.因为要顾客得到实惠,5<10 所以 x=5. 答:每千克应涨价5元. (2)设商场每天获得的利润为y元,则根据题意,得 y=( x +5)(200-10x)= -10x2+150x+1 000, 当x= b 150时,y有7.5最大值.
2a 2 (10)
因此,这种水果每千克涨价7.5元,能使商场获利最多.
1.(株洲·中考)某广场有一喷水池,水从地面喷出,
如图,以水平地面为轴,出水点为原点,建立平面直角坐
标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单
位:米)的一部分,则水喷出的最大高度是( )
A.4米
B.3米
y (米)
【规律方法】先将实际问题转化为数学问题,再将所求的问 题用二次函数关系式表达出来,然后利用顶点坐标公式或者 配方法求出最值,有时必须考虑其自变量的取值范围,根据 图象求出最值.
“何时获得最大利润” 问题解决的基本思路. 1.根据实际问题列出二次函数关系式. 2.根据二次函数的最值问题求出最大利润.
10
此时的利润为10 880元.

二次函数与实际问题中利润问题(附答案)

二次函数与实际问题中利润问题(附答案)
(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式;
(2)每箱定价多少元时,才能使平均每天的利润最大?最大利润是多少?
⑦水产品何时利润最大:
.某商店销售一种销售成本为40元的水产品,若按50元/千克销售,一月可售出5000千克,销售价每涨价1元,月销售量就减少10千克.
(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;
二次函数y=ax2+bx+c(a≠0)的性质:
顶点式,对称轴和顶点坐标公式:
利润=售价-进价
总利润=每件利润×销售数量
①何时橙子总产量最大:
1.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?
求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.
(2)当销售单价定为55元时,计算出月销售量和销售利润;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(1)
(2)
(3)
⑧化工材料何时利Βιβλιοθήκη 最大:8 .某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元~70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).
如果设果园增种x棵橙子树,总产量为y个,则

二次函数的实际应用利润问题

二次函数的实际应用利润问题
二次函数的实际应用利润 问题
二次函数的定义和特征,以及通过图像展示二次函数的形状和特点,奠定了 解决利润问题的基础。
二次函数在经济中的应用
成本分析
二次函数帮助分析成本的增长或减少,为经济决策提供依据。
营收预测
通过利用二次函数来预测营收变化,帮助企业规划和管理财务。
市场调研
利用二次函数模型进行市场需求的预测和分析,指导产品定价和市场营销。
结论
二次函数的应用十分广泛,涉及经济、物理、工程和生活的方方面面,为解决实际问题提供了有效的数学工具。
3
电力传输
通过二次函数模型分析电路中电流和电阻的关系,优化电力传输效率。
二次函数在生活中的应用
1 健身
二次函数可以用于描述人体肌肉在不同锻炼负荷下的力量变化。
2 交通规划
利用二次函数模型分析车流量和道路容量,改善交通拥堵问题。
3 药物代谢
通过二次函数模型研究药物在人体内的代谢过程,用于设计药物剂量和治疗方案。
二次函数在物理中的应用
抛物线轨迹
二次函数用于描述抛射物体的轨 迹,如抛物线。
摆动运动
通过二次函数可描述摆动系统中 物体的运动状态和周期。
自由落体
二次函数能够描述物体在自由落 体中的高度变化。
二次函数在工程中的应用
1
桥梁设计
通过二次函数模Байду номын сангаас,工程师能够优化桥梁的曲线形状,提高结构强度。
2
信号处理
二次函数模型在电信号分析和处理中发挥重要作用,例如音频滤波器设计。

二次函数最大利润问题完整版

二次函数最大利润问题完整版

二次函数最大利润问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】二次函数最大利润问题44.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大最大利润是多少(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内(每天的总成本=每件的成本×每天的销售量)45.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元46.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元(成本=进价×销售量)47.某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元②求出y与x之间的函数关系式,当x取何值时,商场获利润最大并求最大利润值.48.某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件元.经市场调研发现:该款工艺品每天的销售量件与售价元之间存在着如下表所示的一次函数关系.(1)求销售量件与售价元之间的函数关系式;(2)设每天获得的利润为元,当售价为多少时,每天获得的利润最大并求出最大值.49.某商场要经营一种新上市的文具,进价为20元/件。

专题8 二次函数利润问题

专题8 二次函数利润问题
(1)求y与x之间的函数关系。
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
变式3:某商店经营一批进价为10元的商品,据市场分析,每件售价15元,则一天可售55
件,如果售价每降1元,则日销售量可增加3件,(为了方便结账,定价取整数)设销售单价为x元,日销售量为y件,日获利为w元。解答下列问题:
例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?
3、某商品的进价为每件40元。当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件。在确保盈利的前提下,解答下列问题:
(1)若设每件降价x元,每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用二次函数解决有关利润问题
一、学习目标:姓名:_____________
1、知识与能力:
能够分析和表示有关利润问题中变量之间的二次函数关系,把实际问题转化为数学问题,正确建立函数关系,并能运用二次函数性质解决问题。

2、过程与方法:
通过对典型例题的分析解答和具体练习,强化知识的探究。

3、情感态度与价值观:
体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值,体会到学习数学的乐趣。

二、教学重难点:
教学重点:会通过情境问题确定二次函数的表达式。

教学难点:运用函数性质解决实际问题。

三、教学过程:
㈠、复习回顾:
1、求下列二次函数的最大值或最小值:
⑴y=-x2+2x-3;⑵y=x2+4x
2、图中所示的二次函数图像的解析式为:
⑴若-4≤x≤-3,图像位于对称轴的___侧,y随x的增大而____,
当x=____时,y有最大值为_____、当x=___时,y有最小值为_____。

⑵若0≤x≤3,图像位于对称轴的____侧,y随x的增大
而______,当x=____时,y有最大值为_____、当x=___时,
y有最小值为_____。

⑶若-3≤x≤3,当x=____时,y有最大值为_____、
当x=___时,y有最小值为_____。

可见求函数的最值问题,应注意什么?
㈡、新授:
例1来到商场:
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?思考:(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?
分析:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x 的函数关系式。

涨价x元时每星期少卖___件,实际卖出_______件,此时每件的利润为______元,因此,所得利润为_________________元。

所以得:
在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。

(2)、设每件降价x元,则每星期多卖___件,实际卖出_______件,此时每件的利润为______元,因此,所得利润为:
归纳小结:
运用二次函数的性质求实际问题的最大值和最小值的一般步骤:
三、练一练:
1、某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。

市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件。

设每件涨价x元(x为非负整数),每星期的销量为y件.
⑴求y与x的函数关系式及自变量x的取值范围;
⑵如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?
13
x8
x2
y2+
+
=
2、最近,市委市政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克。

市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=-2x+80.设这种产品每天的销售利润为w(元)。

(1)求w与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
思考:3、有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。

据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).
⑴设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.
⑵如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x 的函数关系式。

⑶该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?
4、中考原题:(2009年烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
课堂小测:
1、(2009年内蒙古)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y kx b
=+,且65
x=时,55
y=;75
x=时,45
y=.
(1)求一次函数y kx b
=+的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?。

相关文档
最新文档