5 统计热力学基本方法
写出四个热力学基本方程

写出四个热力学基本方程
1.热力学的四个基本公式:dU=TdS-PdV;dH=TdS+VdP;
dF=-SdT-PdV;dG=-SdT+VdP。
热力学是从宏观角度研究物质的热运动性质及其规律的学科。
属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。
热力学定律,是描述物理学中热学规律的定律,包括热力学第零定律、热力学第一定律、热力学第二定律和热力学第三定律。
其中热力学第零定律又称为热平衡定律,这是因为热力学第一、第二定律发现后才认识到这一规律的重要性;热力学第一定律是能量守恒与转换定律在热现象中的应用;热力学第二定律有多种表述,也叫熵增加原理。
热力学第一定律也就是能量守恒定律。
自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。
热力学第二定律的每一种表述,都揭示了大量分子参与的宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
2.热力学第二定律的英文解释是熵是趋向于总体增大,比如
1L90度水(A)和1L10度水(B)融合,不会是A的温度增加而 B的温度减小,因为如此的话,总体的熵减小。
如果A 温度降但B温度升高一点,其总体的熵增加。
热力学第三
定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零。
或者绝对零度(T=0K即-273.15℃)不可达到。
R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K,称为0K不能达到原理。
统计热力学基础

统计热力学基础教学目的与要求:通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。
重点与难点:统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。
概论统计热力学的研究任务和目的统计力学的研究对象是大量微观粒子所构成的宏观系统。
从这一点来说,统计热力学和热力学的研究对象都是一样的。
但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。
由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。
而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。
统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。
统计力学建立了体系的微观性质和宏观性质之间的联系。
从这个意义上,统计力学又可称为统计热力学。
相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。
对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。
当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。
由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。
同时模型本身也有近似性,所以由此得到的结论也有近似性。
热力学与统计物理第五章知识总结

热⼒学与统计物理第五章知识总结§5.1 热⼒学量的统计表达式我们根据Bolzman分布推导热⼒学量的统计表达式⼀、配分函数粒⼦的总数为令(1)名为配分函数,则系统的总粒⼦数为(2)⼆、热⼒学量1、内能(是系统中粒⼦⽆规则运动的总能量的统计平均值)由(1)(2)得(3)此即内能的统计表达式2、⼴义⼒,⼴义功由理论⼒学知取⼴义坐标为y时,外界施于处于能级上的⼀个粒⼦的⼒为则外界对整个系统的⼴义作⽤⼒y为(4)此式即⼴义作⽤⼒的统计表达式。
⼀个特例是(5)在⽆穷⼩的准静态过程中,当外参量有dy的改变时,外界对系统所做的功为(6)对内能求全微分,可得(7)(7)式表明,内能的改变分为两项:第⼀项是粒⼦的分布不变时,由于能级的改变⽽引起的内能变化;地⼆项是粒⼦能级不变时,由于粒⼦分布发⽣变化⽽引起的内能变化。
在热⼒学中我们讲过,在⽆穷⼩过程中,系统在过程前后内能的变化dU等于在过程中外界对系统所作的功及系统从外界吸收的热量之和:(8)与(6)(7)式相⽐可知,第⼀项代表在准静态过程中外界对系统所作的功,第⼆项代表在准静态过程中系统从外界吸收的热量。
这就是说,在准静态过程中,系统从外界吸收的热量等于粒⼦在其能级上重新分布所增加的内能。
热量是在热现象中所特有的宏观量,它与内能U和⼴义⼒Y不同。
3、熵1)熵的统计表达式由熵的定义和热⼒学第⼆定律可知(9)由和可得⽤乘上式,得由于引进的配分函数是,的函数。
是y的函数,所以Z是,y的函数。
LnZ的全微分为:因此得(10)从上式可看出:也是的积分因⼦,既然与都是的积分因⼦,我们可令(11)根据微分⽅程关于积分因⼦的理论,当微分式有⼀个积分因⼦时,它就有⽆穷多个积分因⼦,任意两个积分因⼦之⽐是S的函数(dS是⽤积分因⼦乘微分式后所得的全微分)⽐较(9)、(10)式我们有积分后得(12)我们把积分常数选为零,此即熵的统计表达式。
2)熵函数的统计意义由配分函数的定义及得由玻⽿兹曼分布得所以(13)此式称为Boltzman关系,表明某宏观状态的熵等于玻⽿兹曼k乘以相应的微观状态数的对数。
统计热力学基本方法

第五章 统计热力学基本方法在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。
在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。
§5.1 热力学量与配分函数的关系本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。
在此之前先证明β = - 1/(kT )一 求待定乘子β对独立可别粒子系统: ln Ω = ln t m = ln (N !∏ii i !g iN N ) = ln N ! +i iiln g N∑ -∑ii!ln N将Stirling 近似公式代入、展开得 ln Ω = N ln N +i ii ln g N ∑ -∑iii ln N N代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i ii ln g N ∑ -∑iii ln NN )按Boltzmann 分布律公式 N i = qNg i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 NV N U N N V U S U S U S ,,,,⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂βββ 对(5—1a,b )式微分结果均为 N V U S ,⎪⎭⎫ ⎝⎛∂∂N V N V U U q N k k ,,ln ⎪⎭⎫ ⎝⎛∂∂⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛∂∂+-=βββ (5—2) 又 q =)exp(g iiiβε∑ 所以NV q ,ln ⎪⎪⎭⎫ ⎝⎛∂∂β = NV q q ,1⎪⎪⎭⎫ ⎝⎛∂∂β= )exp(g 1i i i i βεε∑q =N U(5—3)代入(5—2)式得 NV U S ,⎪⎭⎫ ⎝⎛∂∂= - k β 对照热力学中的特征偏微商关系 TU S NV 1,=⎪⎭⎫ ⎝⎛∂∂ 便可以得到 kT 1-=β二 热力学函数U ,S ,F 与粒子配分函数q 的关系1 热力学能U 由(5—3)式得 U = N N V q ,ln ⎪⎪⎭⎫ ⎝⎛∂∂β , 将kT 1-=β代入得 U = NkT2 NV T q ,ln ⎪⎭⎫ ⎝⎛∂∂ (5—4a ) 系统的摩尔热力学能 U m = RT 2NV T q ,ln ⎪⎭⎫ ⎝⎛∂∂ (5—4b )由于(5—3)式对独立可别与独立不可别粒子系统具有相同的形式,所以(5—4)式适用与整个独立粒子系统。
统计热力学

统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
物理化学教材统计热力学

03 热力学函数与状态方程
热力学函数的概念与性质
热力学函数
描述系统热力学行为的物理量,如内能、熵、焓等。
热力学函数的性质
封闭系统中,热力学函数的改变量只与系统与外界的 能量交换有关,与具体变化过程无关。
热力学基本方程
描述系统热力学函数之间关系的方程,如热力学第一、 第二定律等。
热容与熵的概念
热容
平衡。
05 热力学过程与平衡常数
热力学过程及其计算方法
热力学过程
是指系统状态随时间的变化过程,包括等温、等压、等 容等过程。
计算方法
通过热力学基本定律和相关公式,计算过程中系统吸收 或释放的热量、功量等物理量。
平衡常数的概念与计算
平衡常数
是指在一定条件下,可逆反应达到平衡状态时,反应 物和生成物的浓度比值。
02 分子运动论与热力学定律
分子运动论的基本概念
分子运动论
分子运动论是研究物质分子运动 规律的理论,它通过分析分子运 动的速度、方向、频率等参数, 揭示物质宏观性质和微观结构之
间的关系。
分子模型
分子模型是描述分子形状和结构 的工具,常见的分子模型包括球 棒模型、比例模型等,它们可以 直观地展示分子的几何形状和内
热力学第三定律
热力学第三定律指出,绝对零度是不可能达到的,即绝对 零度是不可能达到的。
分子运动论中的热力学基本关系式
理想气体状态方程
理想气体状态方程是描述理想气体状 态变化规律的公式,它表示气体的压 力、体积和温度之间的关系。
热容公式
热容公式是描述物质在加热或冷却过 程中吸收或释放热量时温度变化规律 的公式,它表示物质的比热容、熵等 热力学参数之间的关系。
统计分布描述了大量粒子系统中,粒子在各 种可能状态下的分布情况。
物理化学第七章统计热力学基础

热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。
06章_统计热力学基础

若气体反应为
2D + E = G
不难证明在平衡后有如下关系若气体反应为
' qG = '2 ' KN = 2 * ( N D ) N E* qD ⋅ qE * NG
∆ε 0 fG KC = = 2 exp − 2 * * ( CD ) CE fD fE kT
* CG
在配分函数中,浓度C的单位是:m −3 若单位用 mol ⋅ dm −3 ,平衡常数值必须作 相应的换算 。
* ' NG qG = ' ' = KN * * N D N E qD qE
q ' = q ⋅ exp(−
ε0
kT
)
K N 是用分子数目表示的平衡常数,q是将零点
能分出以后的总配分函数。 如果将平动配分函数中的V再分出,则配分函数 用 f 表示
q ' = V ⋅ f ⋅ exp(−
ε0
kT
)
G D E ε0 − ε0 − ε0 N fG V = ⋅ exp − * * N D N E f D f E V ⋅V kT * G
C fG ∆ε 0 Kc = * * = exp(− ) CD CE f D f E kT
* G
求出各配分函数 f 值,可得到平衡常数 KC 值 对于理想气体,
p = CkT
∑ν B = f G ⋅ exp − ∆ε 0 ⋅ ( kT )∑ν B K p = K C ( kT ) B B fD fE kT
从自由能函数计算平衡常数
自由能函数(free energy function) 因为 所以
q G = − NkT ln + U 0 N
热力学统计物理简明教程

热力学统计物理简明教程第一章:热力学基本概念1.1 热力学系统:定义热力学系统为与外界相互作用的物质集合,可以是一个孤立系统、封闭系统或开放系统。
1.2 热平衡:当一个系统与外界无能量交换时,系统达到热平衡。
系统内各部分的温度、压力等宏观性质保持恒定。
1.3 状态函数:热力学基本量,与系统的当前状态有关而与历史路径无关,如内能、熵、压力、温度等。
第二章:热力学定律2.1 第一定律:能量守恒原理,能量既不能被创造也不能被毁灭,只能转化形式或在系统间传递。
2.2 第二定律:熵的增加原理,自然界中熵总是趋向增加的方向进行变化,热量只能自高温物体流向低温物体。
2.3 第三定律:绝对零度不可达到,任何物体都无法降至绝对零度(零开尔文)。
3.1 宏观态与微观态:一个宏观系统对应于多个微观系统可能的状态,微观态是描述微观粒子的位置和动量等的状态。
3.2 统计平均:宏观量可以通过对大量微观状态进行统计平均来获得。
3.3 热力学极限:当系统粒子数足够大时,微观态的统计平均值可以近似为宏观量。
第四章:分布函数与统计热力学4.1 统计系综:包括正则系综、巨正则系综和平均系综等,用于描述与热平衡态相关的情况。
4.2 分布函数:用于描述系统处于不同状态的概率分布,如能级分布函数、玻尔兹曼分布等。
4.3 统计热力学量:基于分布函数和统计平均,可以推导出各种统计热力学量的表达式,如配分函数、自由能、熵等。
第五章:应用与实例5.1 理想气体模型:通过应用统计物理理论,可以推导出理想气体的各种性质,如压力、内能和熵等。
5.2 凝聚态物质:应用统计物理理论可以解释凝聚态物质的相变,如固体到液体的熔化和液体到气体的汽化等。
5.3 热力学函数的应用:通过计算热力学函数,可以推导出一些与实际系统相关的性质,如化学反应平衡条件和热电材料的热电效应等。
以上是热力学统计物理简明教程的大致内容,希望能够帮助你对热力学统计物理有初步的了解。
统计热力学基础

例2. 定域子系统中只有3个一维谐振子,它们分别在 A,B,C三个定点上振动,总能量为 9 hv,分析系统 2 可能有的能级分布及状态分布。 能级 能级分布 Ⅰ Ⅱ Ⅲ n0 n1 n2 n3
状态分布 0
3 0 0 WⅠ= 6 WⅡ = 3 WⅢ = 1 Ω = WⅠ+WⅡ+WⅢ=10
0=
1=
例如,某能级分布的微态数为WD,总微态数为Ω, 则该能级分布的数学概率 P 为:
WD 1 PD = Ω × WD = Ω
系统状态确定时,Ω为定值,微态数最大的分布 WD 最大,热力学概率也最大,称为最概然分布。
4、最概然分布与平衡分布 最概然分布虽然代表了系统微态数最多的一种 能级分布方式,但是它的数学概率是随着粒子数的 增多而减小的。 以粒子的空间分布为例来进行分析 例如,某一气体系统,粒子数为N,当系统达平 衡时,粒子在整个空间上的分布应是均匀的。 如果把整个空间分为大 小相等的两部分,则两部 分中所包含的粒子数应相 等,均为 N 。
2、等概率定理
对于U, V 和 N 确定的某一宏观系统,任何一 个可能出现的微观状态,都有相同的数学概率。 这个假设称为等概率定理。 例如,某宏观系统的总微态数为Ω ,则每一 种微观状态出现的数学概率 P 都相等,即:
1 P=Ω
3、最概然分布(最可几分布) 对于U, V 和 N 确定的宏观系统,微观上可能会 有多种能级分布方式,不同的能级分布所包含的状 态分布数不同,根据等概率定理,各微态出现的概 率相等,则各能级分布出现的概率不同。
§9.1
粒子各运动形式的能级及能级的简并度
根据前面的讨论及上述计算结果可以看出,各 种运动的能级间隔遵循如下关系:
Δn>Δe>Δv>Δr>Δt
热力学统计

统计物理学包括:气体动理论、统计力学、涨落现象理论。 从广义上来说,统计物理学是从物质微观结构和相互 作用的认识出发,采用概率统计的方法来说明或预言由大 量粒子组成的宏观物体的物理性质。 分子动理论的主要特点是考虑到分子与分子间、分子 与器壁间频繁的碰撞,考虑到分子间有相互作用力,利用 力学定律和概率论来讨论分子运动分子碰撞的详情。 它可 描述气体由非平衡态转入平衡态的过程。
统计方法分类
总 结
统计力学早在18世纪中期便已建立,最早所用 的是经典统计方法。
玻兹曼统计 经典统计 吉布斯统计 统计方法 爱因斯坦统 玻色 量子统计 费米 狄拉克统计
1900年普朗克提出了量子论,引进了能量量子
化的概念,从而发展成为量子统计力学,由此产生 了玻色-爱因斯坦统计和费米-狄拉克统计,在经 典统计发展成为量子统计的过程中,玻尔兹曼作了 大量的贡献。
由于热现象是大量微观粒子运动的整体表现,
所以,与热现象有关的宏观性质可通过对相应的 微观粒子运动规律的研究结果进行统计平均获得
发展简史:气体分子运动学说为起点
1875年,克劳修斯提出:气体分子均方速度、
平均自由程和分子碰撞数等重要概念;
1860年,麦克斯韦导出分子速度分布定律;
1868年,玻尔兹曼将重力场引入分子速度分布
1905年,爱因斯坦提出光子学说,1924年,玻色
将黑体视为光子气体重导普朗克的辐射方程也获
得成功,在此基础上,爱因斯坦将其进一步推广
发展成为玻色-爱因斯坦量子统计法
1926年,费米发现,涉及到电子、质子和中子 等的某些物质体系,不能应用玻色-爱因斯坦统 计,其量子态受到泡利不相容原理制约,费米和 狄拉克提出另一种量子统计法——费米-狄拉克 统计。 经典统计和量子统计都是根据概率论,以微观粒
第04章统计热力学基本概念及定律习题及答案

第四章 统计热力学基本概念及定律习题及答案4-1 一个系统中有四个可分辨的粒子,这些粒子许可的能级为ε0 = 0, ε1 =ω,ε2=2ω, ε3 = 3ω,其中ω为某种能量单位,当系统的总量为2ω时,试计算: (1)若各能级非简并,则系统可能的微观状态数为多少?(2)如果各能级的简并度分别为g 0 =1,g 1 =3,g 2 =3,则系统可能的微观状态数又为多少?解:(1) 许可的分布{2,2,0,0}{3,0,1,0},微观状态数为24C +14C =10(2) 微观状态数为g 02 g 1224C + g 03 g 2 14C =664-2 已知某分子的第一电子激发态的能量比基态高400kJ ⋅mo1-1,且基态和第一激发态都是非简并的,试计算:(1) 300K 时处于第一激发态的分子所占分数;(2)分配到此激发态的分子数占总分子数10%时温度应为多高? 解:(1) N 0→N , N 1/N =exp[-ε / (kT )]= 2.2×10-70(2)q ’≈1+ exp[-△ε / (kT )] , N 0: N 1=9 , exp[-ε / (kT )]=1/9, T =2.2×104K4-3 N 2分子在电弧中加热,根据所测定的光谱谱线的强度,求得处于不同振动激发态的分子数N v 与基态分子数N 0之比如下表所示:振动量子数υ1 2 3 N v / N 00.2610.0690.018请根据以上条件证明火焰中气体处于热平衡态。
解:气体处于热平衡N v / N 0=exp[-υhν/( kT )], N 1:N 2:N 3=0.261:0.261 2:0.261 34-4 N 个可别粒子在ε0 = 0, ε1 = kT , ε2 = 2kT 三个能级上分布,这三个能级均为非简并能级,系统达到平衡时的内能为1000kT ,求N 值。
解:q =1+exp(-1)+exp(-2)=1.503 , N 0= N exp(-0) / q , N 1= N exp(-1) / q ,N 2= N exp(-2) /q1000kT = N 0ε0+ N 1ε1+ N 2ε2 , N = 23544-5 HCl 分子的振动能级间隔为5.94×10-20 J ,试计算298.15K 某一能级与其较低一能级上的分子数的比值。
热力学统计物理-统计热力学课件第九章-49页PPT文档资料

N,V
22
系统热平衡条件 : 1 2
热力学中类似的两个系统达到热平衡的条件:
US11
N1,V1
US22
N2,V2
比较可得:
1 kT
Skln
S U
N ,V
1 T
——熵与微观状态数的关系—玻耳兹曼关系。
•不仅适用于近独立粒子系统,也适用于粒子间存在相
01.12.2019
1 E (E 11) 2(E 2) 1(E 1) 2 E (E 22) E E 1 20
ln E 11(E1)N1,V1 ln E 22 (E2)N2,V2 ——系统热平衡条件
lnE(E)
ln V
N
,E
lnN 11E1,V1 lnN 22E2,V2
ln N
E,V
1 1
1 2 1 2
01.12.2019
24
•参量的物理意义
全微分: d ln d E d V d N
开系的热力学基本方程:
dSdUpdVdN
TT T 比较可得:
01.12.2019
1 kT
p kT
kT
1 1
1 2 1 2
T1 T2 p1 p2
1 2
25
经典理想气体——确定常量k
(N,E,V)VN
在经典理想气体中,粒子的位置是互不相关的。一个 粒子出现在空间某一区域的概率与其它粒子的位置无关。 一个粒子处在体积为V的容器中,可能的微观状态数与V 成正比,N个粒子处在体积为V的容器中,可能的微观状 态数将与VN成正比。
化学反应的热力学平衡常数计算方法

化学反应的热力学平衡常数计算方法热力学平衡常数是化学反应在一定温度下的热力学性质之一,它描述了反应物与生成物之间的浓度与温度之间的关系。
在化学工程和研究中,计算热力学平衡常数是了解反应的性质、优化反应条件以及设计合理的反应器的关键步骤。
本文将介绍几种常用的计算热力学平衡常数的方法。
一、理论计算方法1. 统计热力学方法统计热力学方法是一种基于量子化学和统计力学原理的计算方法,通过计算反应物和生成物的分子的振动和转动能量以及势能表面,进而计算热力学平衡常数。
这种方法需要复杂的计算和模型,适用于简单的反应体系。
2. 状态函数法状态函数法是一种基于热力学第一定律和熵增原理的计算方法。
根据能量和熵的关系,可以通过计算反应物和生成物的标准生成焓和标准熵,从而计算热力学平衡常数。
这种方法适用于各类反应体系,但需要准确的实验数据来计算标准生成焓和标准熵。
二、实验计算方法1. 等温法等温法是一种通过实验测量系统在不同温度下的平衡浓度,然后利用热力学平衡常数定义式进行计算的方法。
通过测量实验数据并建立方程,可以得到热力学平衡常数的计算结果。
这种方法需要准确的实验数据,并且在浓度测量和温度控制方面要求较高。
2. 使用表格数据如果有可用的实验数据或者已知的热力学平衡常数的数值,可以直接查询相关表格或文献以获取所需的数值。
这种方法适用于常见的反应和已有实验结果的反应,但对于特殊的反应或者无法查询到相关数据的反应来说并不适用。
三、计算软件和工具1. 化学反应平衡常数计算软件现在有许多化学软件和在线工具可以帮助计算热力学平衡常数。
例如,GaussView、Gaussian和Chem3D等软件可以通过输入反应物和生成物的结构,自动计算热力学平衡常数。
在线工具如Chemicalize等也可以通过用户提供的反应方程式进行计算。
2. 基于机器学习的模型近年来,机器学习在化学领域的应用日益广泛。
通过利用大量的实验数据和化学知识,可以开发出基于机器学习的模型来计算热力学平衡常数。
统计热力学基础

量子力学中把能级可能有的微观状态数称为
该能级的简并度,用符号gi 表示。简并度亦称为
退化度或统计权重。
简并度(degeneration)
例如,气体分子平动能的公式为:
N!
Hale Waihona Puke g Ni iN! i
i Ni !
非定位体系的最概然分布
同样采用最概然分布的概念,用Stiring公式
和Lagrange乘因子法求条件极值,得到微态数为
极大值时的分布方式
N
*(非定位)为:
i
N(i* 非定位) N
g ei / kT i g ei / kT i
i
由此可见,定位体系与非定位体系,最概然
的分布公式是相同的。
Boltzmann公式的其它形式
(1)将i能级和j能级上粒子数进行比较,用最 概然分布公式相比,消去相同项,得:
Ni*
N
* j
g ei / kT i
g e j / kT j
Boltzmann公式的其它形式
(2)在经典力学中不考虑简并度,则上式成为
Ni*
N
* j
i / kT
ee j / kT
(U,V , N)
N!
g Ni i
i
i Ni !
求和的限制条件仍为:
Ni N
Nii U
i
i
有简并度时定位体系的微态数
再采用最概然分布概念, i max ,用
Stiring公式和Lagrange乘因子法求条件极值,得
到微态数为极大值时的分布方式 Ni* 为:
物理化学习题解

第三章 化学反应系统热力学 练 习 题3-4 在291~333K 温度范围内,下述各物质的C p,m /(JK -1mol -1)分别为 CH 4(g): 35.715; O 2(g): 29.36; CO 2(g): 37.13; H 2O(l): 75.30;在298.2K 时,反应 CH 4 (g) + 2O 2(g)==CO 2(g) + 2H 2O(l) 的恒压反应热效应为 -890.34kJmol -1。
.求 333K 时该反应的恒容反应热效应为多少? 解:(1) 求333K 时恒压反应热效应: ΔH (333K) =ΔH (298.2K)+⎰∆333298d TC p = -887.0 kJ mol -1(2) 求恒容反应热效应: ΔU (333K) =ΔH (333K) - ∑BB)(RTg ν= -881.6kJmol -13-5 由以下数据计算2,2,3,3四甲基丁烷的标准生成热。
已知:Om f H ∆[H(g)]=217.94 kJ mol -1,Om f H ∆[C(g)]=718.38 kJmol -1,εC-C =344 kJmol -1,εC-H = 414 kJmol -1。
解:O m f H ∆[CH 3C(CH 3)2 C(CH 3)2 CH 3 (g)]=18O m f H ∆[H(g)]+8Om f H ∆[C(g)]-7εC-C -18εC-H = -190 kJ mol -13-6 已知计算25℃时甲醇的饱和蒸气压p *。
解:CH 3OH(l)→CH 3OH(g) ,Om r G ∆=[-200.7-(-238.7)]-T [239.7-127.0]×10-3= 4.4 kJ mol -1O m r G ∆=O ln K RT -, O K =p */Op , p *=1.7×104Pa3-8 已知反应C(石墨)+H 2O(g)→CO(g)+H 2(g) 的 Om r H ∆(298.15 K) =133 kJ mol -1,计算该反应在125℃时的 Om r H ∆(398.15K)。
统计热力学

这就是定域体系的自由能公式,式中Q称为分子配分函数。
❖ 总结
定域体系有三个重要公式:
1、总微观状态数
γν ι
Ω Ν! ι
D
i νι!
2、最可几分布
FkT lnQN
3、热力学函数
*
ni N
g ie i g ie i
i
基本粒子:如电子、中子、光子等。 复合粒子:如原子、分子等。 复合粒子构成体系:如一升气体,一摩尔晶体等。 (2)统计体系分类 按照体系内粒子之间相互作用的强弱可把体系分为近独立 粒子体系和相依粒子体系。 按照体系内粒子是否可区分,也可把体系分为定域粒子体 系和离域粒子体系。
(3)微观态和宏观态 体系的微观态是指在某一瞬间,体系中全体
N个全同粒子构成体系,总自由度为Nf (f 为一个粒 子自由度),需要2 Nf 维相空间。
Γ空间:描述N个粒子构成体系,整个气体运动状态的 相空间,也叫做气体相空间。 Γ空间中的一个相点 代表体系的一个微观运动状态。
测不准原理:△q× △p≈ h
相胞:hf
❖ §1.2 粒子微观运动状态的描述 一、自由粒子
ni !
2、最可几分布
ni* e i e(i)/kT gi
3、热力学函数
Sk
i
[ni*lnngi*i ni*]
❖ §2.3 费米-狄拉克统计
由质子、中子、电子以及由奇数个这些基本粒子组成的复合粒子构成的体系 服从费米-狄拉克统计。这个统计分布的特点是每一状态最多容纳一个粒子。
一、微观状态数
D D
如果每个容器最多容纳物体数目不受限制,有多少种排列方式(N≤M)?
N个可区分的物体,排列在M个不同容器中,物体的数目不受限制,可能的方式 数有多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动 配分 函数
qv
exp[ v /(2T )] 1 exp( v / T )
qV
exp[ hv /(2kT )] 1 exp[ hv /(kT )]
qv
1 1 exp[hv
/(kT )]
1
1 exp[V
/T]
各种运动形式配分函数的计算
电子运动 配分函数
能级间隔很大,除几千度以上高温, 电子常处于基态。
第五章
第五章
§5.1 热力学量与配分函数的关系 §5.2分子配分函数的计算 §5.3 热力学函数的统计计算 §5.4 热力学定律的统计力学解释
§5.1
一 U,S,F与粒子配分函数 q 的关系 二 其它热力学性质与q 的关系
三 零点能选择所产生的影响
U,S,F 与q 的关系
1 热力学能U
q
对平动
对转动
lnqt 3 T V ,N 2T
lnqr 1 T V ,N T
对振动
ln qV v / T 2 T V ,N exp(v / T ) 1
化学势的统计表达式
O B
(
g,
T
)
RTln
q
O B
L
RTln
q
O B
L
U 0,m (B)
单原子分子
q (2mkT)32V / h3 .ge,0.gn,0
各种运动形式配分函数的计算
双原子 振动频率
分子
波数
~
c
振动 特征温度
V
h
k
分子
H2 N2 O2 CO
~(10-2 / m-1) 4405 2360 1580 2168
Θv / K 6100 3340 2230 3070
HCl HBr HI 2989 2650 2309 4140 3700 3200
解: 已知 Mr=28.01; r=2.86 K; v=3340 K;
m=Mr×10-3 / L=4.65×10-26 kg Sm,tV=mO=15(209.381.1(5J/2K7-31.m15o)l×-10) .0224=0.02445 m3 Sm,r =41.18 (JK-1mol-1) Sm,v=1.16×10-3 ( JK-1mol-1) 所以 Sm=Sm,t+Sm,r+Sm,v =150.31+41.18+0.00116=191.49 ( JK-1mol-1) 可见与平动熵和转动熵相比,振动熵可以忽略不计。
q qt qr qv qe qn
各种运动形式配分函数的计算
平动 配分 函数
(
2mkT
)
1 2
qt,x
h
a
(2mkT )12
qt, y
h
b
(2mkT
)
1 2
qt,z
h
c
(2mkT )32
qt qt,x qt,y qt,z
h3
abc
(2mkT )32
qt h3 V
把式中的常数值以及m=Mr / (1000L )代入后得
qt = 1.88 ×1026( Mr T )3/2 V )
对平动运动,处于基态时εt,0≈0 (例如298.15K时 1.0dm3体积内的氮分子εt,0=10-26J),所以
qt
(2mkT
h3
)3 2
V
各种运动形式配分函数的计算
双原子分子 转动特征温度
r
h2
8 2 Ik
转动 惯量
I r2
分子
(2) 相对零点标度----选择各种运动形式自身的基态能 量为能量标度的零点。粒子基态的能量值就规定为零。
对配分函数的影响
q q'exp[ 0 /(kT )]
对热力学函数表达式的影响
(1)热力学能 U Um RT 2( lnq' T)V ,N Um,0
(2)熵S : 零点能的选取对熵S 没有任何影响。
④ qe ge,0 3
§5.3
一 统计计算中的几个问题 二 单原子分子 三 双原子分子
统计计算中的几个问题
各种运动形式的贡献
S = St + Sr + Sv + Se + Sn 统计熵中不可别粒子的等同性修正项放在平动熵中
St (不可别)= Nk-Nk ln N Nk ln qt NkT ln qt T N ,V
SmO=169.56 Hale Waihona Puke JK-1mol-1)GmO
RT ln
2m kT
3 2
(Lh3 ) RT ln ge,0
8.314 298.15 ln
2 3.1416 21.80 1026 1.38 1023 298.15
3 2
0.02445
0
=
6.023 1023 6.6262 1034 3
St (可别)= Nk ln qt NkT ln qt T N ,V Sr= Nk ln qr NkT ln qr T N ,V
S
=
V
Nk
ln qV
NkT
ln
qV
T N ,V
统计计算中的几个问题
偏微分 的求算
(1)
lnq 1 V T ,N V
(2)
lnq T V ,N
ln(ge,0 gn,0 )
双原子分子
摩尔热力学能
Um
U m,0
RT
5 2
hv / k exp[hv /(kT )] 1
摩尔等容热容
CV ,m
5 2
R
R( v / T )2 exp( v / T )
exp( v / T ) 12
【例5—3】
计算298.15K 时Cl2分子(ΘV=814K)的振动
V ,N
R ln
8 2IkT h2
R
振动熵
Sm, V
R
e
v xp( v
/T /T)1
ln1
e
xp
v
T
电子及核自旋运动熵 Sm,e = R ln ge,0 Sm,n = R ln gn,0
【例5—4】
试计算N2在298.15K,101325Pa时的摩尔熵 (忽略电 子与核自旋运动的贡献) 。
S(不可别粒子系)=Nk ln( qN ) NkT lnq
N!
T V ,N
U,S,F与粒子配分函数q的关系
3 Helmholtz自由能F
定义式 F =U-TS
S(可别粒子系)=Nk ln q NkT lnq T V ,N
U NkT 2 lnq T V ,N
F(可别粒子系)= Nk ln q
( Nh3 ) 5 Nk 2
Se Nk ln ge,0
Sn Nk ln gn,0
单原子理想气体的摩尔熵
Sm Rln
2m kT 3/ 2Vm
(Lh3 )
5 2
R
R ln(ge,0 gn,0 )
理想气体Vm = RT / p
Sm
3
5
2 Rln Mr 2 RlnT Rln
p / pO
Mr=131.3; ge,0=1;
m=Mr /(1000L)
=131.3/(103×6.023×1023)=21.80×10-26 kg
VmO =(298.15/273.15)×0.0224=0.02445 m3
【例5—2 】
SmO=12.47lnMr+Rlnge,0+108.74 =12.47ln131.3+0+108.74
lnq ln (2mkT)32V / h3 ln(ge,0gn,0 )
热力学能
U U0 NkT 2 ln q T V
3NkT / 2
摩尔热力学能
Um = 3RT / 2 +U0,m
等容热容
CV,m = (Um / T) = 3R / 2
单原子分子
单原子气体分子的熵
St Nk ln 2mkT3/2V
F (不可别粒子系)=kT ln( qN ) N!
其它热力学性质与粒子配分函数q的关系
1 压力 p
p F V T
p NkT lnq V T ,N
2 焓H
H U pV
H NkT 2 ln q NkTV lnq
T V ,N
V T ,N
零点能选择所产生的影响
(1) 绝对零点标度----选择共同的零点。这样,粒子的 各种运动形式的基态能量就有一定的数值。
§5.2
一 配分函数的析因子性质 二 各种运动形式配分函数的计算
配分函数的析因子性质
q
gi
exp
i
kT
i i,t i,r i,v i,e i,n
gi gi,t gi,r gi,v gi,e gi,n
从数学上可以证明,几个独立变数的乘积之和等 于各自求和的乘积。
i
g
i
exp(
εi kT
)
kT 2 lnq T V ,N
i
i
[
gi q
exp( i
kT
)]
U N
所以
热力学能
U NkT 2 lnq T V ,N
摩尔热力学能
Um
RT 2 lnq T V ,N
从Blotzmann分布律
U
K i0
N i* i
N q
K i0
gi
i
e
xp( i
kT
对摩尔等容热容CV,m的贡献。讨论 T<< v ,T
>>v时的情况。
解
CV ,m
5 2
R
R( v / T )2 exp( v / T )
exp( v / T ) 12