高一年级集合的运算1及答案

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

高一数学第一章《集合的基本运算--交集与并集》知识点归纳、例题解析及课时作业

高一数学第一章《集合的基本运算--交集与并集》知识点归纳、例题解析及课时作业

3.1交集与并集学习目标 1.理解并集、交集的概念.2.会用符号、V enn图和数轴表示并集、交集.3.会求简单集合的并集和交集.知识点一并集思考某次校运动会上,高一(1)班有10人报名参加田赛,有12人报名参加径赛.已知两项都报的有3人,你能算出高一(1)班参赛人数吗?答案19人.参赛人数包括参加田赛的,也包括参加径赛的,但由于元素互异性的要求,两项都报的不能重复计算,故有10+12-3=19人.梳理(1)定义:一般地,由属于集合A或属于集合B的所有元素组成的集合,称为集合A 与B的并集,记作A∪B(读作“A并B”).(2)并集的符号语言表示为A∪B={x|x∈A,或x∈B}.(3)图形语言:、,阴影部分为A∪B.(4)性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆A∪B.知识点二交集思考一副扑克牌,既是红桃又是A的牌有几张?答案1张.红桃共13张,A共4张,其中两项要求均满足的只有红桃A一张.梳理(1)定义:一般地,由既属于集合A又属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)交集的符号语言表示为A∩B={x|x∈A,且x∈B}.(3)图形语言:,阴影部分为A∩B.(4)性质:A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.类型一求并集命题角度1数集求并集例1(1)已知集合A={3,4,5},B={1,3,6},则集合A∪B是()A.{1,3,4,5,6} B.{3}C.{3,4,5,6} D.{1,2,3,4,5,6}答案 A解析A∪B是将两集合的所有元素合并到一起构成的集合(相同元素算一个),因此A∪B ={1,3,4,5,6},故选A.(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.解如图:由图知A∪B={x|-1<x<3}.反思与感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练1(1)A={-2,0,2},B={x|x2-x-2=0},求A∪B.解B={-1,2},∴A∪B={-2,-1,0,2}.(2)A={x|-1<x<2},B={x|x≤1或x>3},求A∪B.解如图:由图知A∪B={x|x<2或x>3}.命题角度2点集求并集例2集合A={(x,y)|x>0},B={(x,y)|y>0},求A∪B,并说明其几何意义.解A∪B={(x,y)|x>0或y>0}.其几何意义为平面直角坐标系内去掉第三象限和x轴、y轴的非正半轴后剩下的区域内所有点.反思与感悟求并集要弄清楚集合中的元素是什么,是点还是数.跟踪训练2A={(x,y)|x=2},B={(x,y)|y=2}.求A∪B,并说明其几何意义.解A∪B={(x,y)|x=2或y=2},其几何意义是直线x=2和直线y=2上所有的点组成的集合.类型二求交集例3(1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B等于()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案 A解析在数轴上将集合A,B表示出来,如图所示,由交集的定义可得A∩B为图中阴影部分,即A∩B={x|-3<x<2},故选A.(2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1}C.{0,1,2} D.{0,1}答案 D解析M={x|-2≤x<2},N={0,1,2},则M∩N={0,1},故选D.(3)集合A={(x,y)|x>0},B={(x,y)|y>0},求A∩B并说明其几何意义.解A∩B={(x,y)|x>0且y>0},其几何意义为第一象限所有点的集合.反思与感悟两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.数轴是集合运算的好帮手,但要画得规范.跟踪训练3(1)集合A={x|-1<x<2},B={x|x≤1或x>3},求A∩B;(2)集合A={x|2k<x<2k+1,k∈Z},B={x|1<x<6},求A∩B;(3)集合A={(x,y)|y=x+2},B={(x,y)|y=x+3},求A∩B.解 (1)A ∩B ={x |-1<x ≤1}. (2)A ∩B ={x |2<x <3或4<x <5}. (3)A ∩B =∅.类型三 并集、交集性质的应用例4 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =B ,求a 的取值范围. 解 A ∪B =B ⇔A ⊆B .当2a >a +3,即a >3时,A =∅,满足A ⊆B . 当2a =a +3,即a =3时,A ={6},满足A ⊆B . 当2a <a +3,即a <3时,要使A ⊆B ,需⎩⎪⎨⎪⎧ a <3,a +3<-1或⎩⎪⎨⎪⎧a <3,2a >5,解得a <-4,或52<a <3.综上,a 的取值范围是{a |a >3}∪{a |a =3}∪{a |a <-4或52<a <3}={a |a <-4,或a >52}.反思与感悟 解此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练4 设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .解 ∵A ∩B ={12},∴12∈A ,∴2×(12)2+3p ×12+2=0,∴p =-53,∴A ={12,2}.又∵A ∩B ={12},∴12∈B ,∴2×(12)2+12+q =0,∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.1.已知集合M={-1,0,1},N={0,1,2},则M∪N等于()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}答案 B2.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B等于()A.{0} B.{0,1}C.{0,2} D.{0,1,2}答案 C3.已知集合A={x|x>1},B={x|0<x<2},则A∪B等于()A.{x|x>0} B.{x|x>1}C.{x|1<x<2} D.{x|0<x<2}答案 A4.已知A={x|x≤0},B={x|x≥1},则集合A∩B等于()A.∅B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}答案 A5.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3C.1或 3 D.1或3答案 B1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B 但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.课时作业一、选择题1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆M B.M∪N=MC.M∩N=N D.M∩N={2}答案 D解析∵-2∈N,但-2∉M,∴A,B,C三个选项均不对.2.设集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C等于()A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}答案 D解析A∩B={1,2},(A∩B)∪C={1,2}∪{2,3,4}={1,2,3,4}.3.已知集合A={x|-1≤x≤1}和集合B={y|y=x2},则A∩B等于()A.{y|0<y<1}B.{y|0≤y≤1}C.{y|y>0}D.{(0,1),(1,0)}答案 B解析∵B={y|y=x2},∴B={y|y≥0},A∩B={y|0≤y≤1}.4.已知M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么M∩N为()A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}答案 D解析 由⎩⎪⎨⎪⎧ x +y =2,x -y =4,解得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}.5.设A ,B 是非空集合,定义A *B ={x |x ∈A ∪B 且x ∉A ∩B },已知A ={x |0≤x ≤3},B ={y |y ≥1},则A *B 等于( ) A .{x |1≤x <3} B .{x |1≤x ≤3} C .{x |0≤x <1或x >3} D .{x |0≤x ≤1或x ≥3} 答案 C解析 由题意知,A ∪B ={x |x ≥0}, A ∩B ={x |1≤x ≤3}, 则A *B ={x |0≤x <1或x >3}.6.若集合A ={x |x ≥0},且A ∩B =B ,则集合B 可能是( ) A .{1,2} B .{x |x ≤1} C .{-1,0,1} D .R答案 A解析 ∵A ∩B =B ,∴B ⊆A , 四个选项中,符合B ⊆A 的只有选项A.二、填空题7.若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有________个. 答案 2解析 ∵A ={0,1,2,x },B ={1,x 2},A ∪B =A , ∴B ⊆A ,∴x 2=0或x 2=2或x 2=x , 解得x =0或2或-2或1.经检验当x =2或-2时满足题意.8.已知集合P ={x ||x |>x },Q ={x |y =1-x },则P ∩Q =________. 答案 {x |x <0} 解析 |x |>x ⇒x <0,∴P ={x |x <0},1-x ≥0⇒x ≤1, ∴Q ={x |x ≤1},故P ∩Q ={x |x <0}.9.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. 答案 {a |a ≤1}解析 A ={x |x ≤1},B ={x |x ≥a },要使A ∪B =R ,只需a ≤1.如图.10.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z },则A ∩B =________. 答案 {(0,1),(-1,2)}解析 A 、B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可. 三、解答题11.已知集合A ={x |⎩⎪⎨⎪⎧3-x >0,3x +6>0,},集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}, 解不等式3>2m -1得m <2, 则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.12.已知集合A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)若A ∩B ={x |1≤x ≤3},求实数m 的值; (2)若A ∩B =∅,求实数m 的取值范围. 解 A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B ={x |1≤x ≤3},∴⎩⎪⎨⎪⎧m -2=1,m +2≥3,解得m =3.(2)A ∩B =∅,A ⊆{x |x <m -2或x >m +2}. ∴m -2>3或m +2<-1.∴实数m 的取值范围是{m |m >5或m <-3}.13.已知集合A ={x |x 2-8x +15=0},B ={x |x 2-ax -b =0}. (1)若A ∪B ={2,3,5},A ∩B ={3},求a ,b 的值; (2)若∅B A ,求实数a ,b 的值.解 (1)因为A ={3,5},A ∪B ={2,3,5},A ∩B ={3},所以3∈B,2∈B ,故2,3是一元二次方程x 2-ax -b =0的两个实数根, 所以a =2+3=5,-b =2×3=6,b =-6.(2)由∅B A ,且A ={3,5},得B ={3}或B ={5}. 当B ={3}时,解得a =6,b =-9; 当B ={5}时,解得a =10,b =-25.综上,⎩⎪⎨⎪⎧ a =6,b =-9或⎩⎪⎨⎪⎧a =10,b =-25.四、探究与拓展14.已知集合A ={(x ,y )|y =x 2,x ∈R },B ={(x ,y )|y =x ,x ∈R },则A ∩B 中的元素个数为________. 答案 2解析 由⎩⎪⎨⎪⎧ y =x 2,y =x ,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1.15.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人? 解 设参加数学、物理、化学小组的人数构成的集合分别为A 、B 、C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x =36,解得x=8,即同时参加数学和化学小组的有8人.。

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》     及答案解析

集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。

人教版新课标高一数学必修一 第一章 集合与函数的概念 1..1 集合 集合的运算 教案及课后习题

人教版新课标高一数学必修一 第一章 集合与函数的概念 1..1 集合 集合的运算  教案及课后习题

微课程2:集合的运算子集真子集定义对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,称集合A为集合B的子集若集合A⊆B,但存在元素x ∈B,且x∉A,称集合A是集合B的真子集符号语言若任意x∈A,有x∈B,则A⊆B。

若集合A⊆B,但存在元素x ∈B ,且x∉A,则A B表示方法A为集合B的子集,记作A⊆B或B⊇A。

A不是B的子集时,记作A B或B A。

若集合A是集合B的真子集,记作A B或B A。

性质①A⊆A ②∅⊆A③A⊆B,B⊆C⇒A⊆CA B,且B C⇒A C子集个数含n个元素的集合A的子集个数为n2含n个元素的集合A的真子集个数为n2-1空集不含任何元素的集合,记为∅。

空集是任何集合的子集,用符号语言表示为∅⊆A;若A非空(即A≠∅),则有∅A。

集合的运算:1. 并集的概念(1)自然语言表示:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。

(2)符号语言表示:A∪B={x|x∈A,或x∈B}。

(3)图形语言(Venn图)表示:。

2. 交集的概念(1)自然语言表示:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A与B的交集。

(2)符号语言表示:A∩B={x|x∈A,且x∈B}。

(3)图形语言表示(Venn图):。

3. 补集的概念(1)自然语言表示:对于集合A,由全集U中不属于集合A的所有元素所组成的集合,称为集合A相对于全集U的补集,简称为集合A的补集。

(2)符号语言表示:A={x|x∈U,且x∉A}。

(3)图形语言表示(Venn图):,阴影部分表示A。

【典例精析】例题1 判断下列说法是否正确,如果不正确,请加以改正。

(1){∅}表示空集;(2)空集是任何集合的真子集;(3){1,2,3}不是{3,2,1};(4){0,1}的所有子集是{0},{1},{0,1};(5)如果A ⊇B 且A≠B ,那么B 必是A 的真子集; (6)A ⊇B 与B ⊆A 不能同时成立。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。

点评:涉及实数构成集合问题,常常借助于韦恩图。

2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。

3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。

【考点】本题主要考查函数的概念,指数函数的图象和性质。

点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。

4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。

点评:简单题,借助于数轴求集合的并集。

5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。

高一数学第一章《集合的基本运算--全集与补集》知识点归纳、例题解析及课时作业

高一数学第一章《集合的基本运算--全集与补集》知识点归纳、例题解析及课时作业

3.2全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理(1)定义:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素.(2)记法:全集通常记作U.知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=v,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0}, 由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}.命题角度2 补集性质在解题中的应用 例3 关于x 的方程:x 2+ax +1=0,① x 2+2x -a =0,② x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集. 跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则集合A 中含有2个元素时, 实数a 的取值范围是{a |a <98且a ≠0}.在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0},所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}.类型三 集合的综合运算例4 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于()A .{3}B .{4}C .{3,4}D .∅ 答案 A解析 ∵∁U (A ∪B )={4}, ∴A ∪B ={1,2,3},又∵B ={1,2},∴∁U B ={3,4}, A 中必有3,可以有1,2,一定没有4. ∴A ∩(∁U B )={3}.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思与感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练4 (1)已知集合U ={x ∈N |1≤x ≤9},A ∩B ={2,6},(∁U A )∩(∁U B )={1,3,7}, A ∩(∁U B )={4,9},则B 等于( ) A .{1,2,3,6,7} B .{2,5,6,8} C .{2,4,6,9} D .{2,4,5,6,8,9}答案 B解析 根据题意可以求得U ={1,2,3,4,5,6,7,8,9},画出Venn 图(如图所示),可得B ={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U NC.∁U(∁U∅) D.∁U Q答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},选C.2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}答案 D解析如图,阴影部分为(∁U B)∩A,∴A={3,9}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A .A ∩(∁UB ) B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A .∁U N ⊆∁U M B .M ⊆∁U N C .∁U M ⊆∁U N D .∁U N ⊆M 答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5} 答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}. 二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________.答案 {x |0<x <1} {x |0<x <1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁A)∩(∁U B)={x|0<x<1}.U8.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案{a|a≤1}解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.12.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A . 当m =0时,B =∅⊆A ; 当m ≠0时,B ={-1m}.∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}. (1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围. 解 (1)∵A ∪B ={x |3<x <10}, ∴∁R (A ∪B )={x |x ≤3或x ≥10}. 又∵∁R A ={x |x ≤3或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}. (2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3⇒⎩⎨⎧a ≥3,a ≤7⇒3≤a ≤7.∴a 的取值范围为{a |3≤a ≤7}. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩(∁I C )D .(A ∩∁I B )∩C 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U (M ∪P ).解 集合M 表示的是直线y =x +1上除去点(2,3)的所有点,集合P 表示的是不在直线y =x +1上的所有点,显然M ∪P 表示的是平面内除去点(2,3)的所有点,故∁U (M ∪P )={(2,3)}.。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知集合,,则().A.B.C.D.【答案】A【解析】因为,所以;又因为,所以.【考点】集合的运算.3.已知全集U=R,A={x|﹣3<x≤6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).【答案】(1);(2).【解析】解题思路:由题意,先解出一元二次不等式,化简集合B,再求出集合B的补集,再由交、并的运算法则解出即可.规律总结:在处理集合间的运算问题时,往往先化简集合,再结合数轴求集合间的交、并、补集. 试题解析:(1),则;(2),则 .【考点】交、并、补集的运算.4.已知集合,,且,则实数的值是.【答案】.【解析】∵,,∴.【考点】集合间的关系.5.已知集合,则满足A∩B=B的集合B可以是( )A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】利用复合函数的值域知识可得A={y|0<y},因为A∩B=B,所以B A,所以答案是C.【考点】(1)复合函数;(2)集合的运算.6.已知全集,设集合,集合,若,求实数a的取值范围.【答案】.【解析】先解方程,的x=a,-4将a,与-4比较进行讨论,再利用得进行求解.试题解析:因为,又因为2分当时满足,此时 4分当时若,则 6分当时,满足,此时 8分综合以上得:实数的取值范围,所以 10分.【考点】1.一元二次不等式的解法;2.集合的运算.7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.以知集合,则=()A.B.C.D.【答案】C【解析】,即,,,【考点】指数不等式的运算和集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算11.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。

最新人教版高一数学必修1第一章“集合的基本运算”解答题

最新人教版高一数学必修1第一章“集合的基本运算”解答题

《集合的基本运算》解答题1.已知{}b a M ,,2=,{}2,2,2b a N =,且N M =,求a ,b 的值2.已知全集{}10*≤∈=x N x U ,AU ,B U ,{}5,4=B A , A (B ){}3,2,1=,(A ) (B ){}8,7,6=,求集合A 、B3.已知集合{}3,2,1=A ,{}2,1B ,设集合{}B y A x y xC ∈∈=,),(, {}A y B x y xD ∈∈=,),(,求D C 及D C4.已知{}1≤=x x A ,{}13-<<-=x x B ,求集合C ,使同时满足下列三个条件:(1)Z B A C )(⊆;(2)C 有两个元素;(3)∅≠⊆B C5.已知{}{}51,4>-<=<-=x x x B a x x A 或,且R =B A ,求实数a 的范围.6.某班有学生55人,其中音乐爱好者有34人,体育爱好者有43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?7.设全集{}{}02,11,≥-=>-<==x x B x x x A R U 或,判断A 与B 之间的关系.8.已知R 为全集,{}⎭⎬⎫⎩⎨⎧≥+=<≥-=125,31x x B x x A ,求(A )B .9.已知集合A 中有3个元素,集合B 中有5个元素,两个集合中的元素可以相同也不同,利用Venn 图研究B A B A 、中的元素个数.10.设集合X 的元素个数用X 表示.对任意两个集合A 、B ,试探究B A B A += 是否成立?如果成立,请说明理由;如果不成立,请举出反例,并给出B A 的一个表示方法.11.如果设全体整数的集合Z 为全集,那么全体奇数的集合A 与全体偶数的集体B 都是Z 的子集.有人说:“集合A 与集合B 的元素一样多,但集合A 与集合B 的元素都比全集Z 的元素少”,你认为这种说法正确吗?为什么?12.已知实数a 使三个一元二次方程024,02,0222=+-=+-=+-a x x a x x a x x 至少有一个有解,你有什么简便方法得出a 的取值范围吗?13.分别用自然语言、图形语言、符号语言表示两个集合的交集与并集.14.求两个集合的交集与并集时应该注意什么?15.满足怎样条件的两个集合互为补集,求集合的补集时应注意什么问题?参考答案:1.解:N M = ⎩⎨⎧==∴22b b a a 或⎩⎨⎧==ab b a 22⎩⎨⎧==∴0)(0b a 舍或⎩⎨⎧==10b a 或⎪⎪⎩⎪⎪⎨⎧==2141b a 2.解:{}10,9,8,7,6,5,4,3,2,1=U根据题意得,{}5,4,3,2,1=A {}10,9,5,4=B3.解:由已知{})2,3(),1,3(),2,2(),1,2(),2,1(),1,1(=C{})3,2(),2,2(),1,2(),3,1(),2,1(),1,1(=D{})2,2(),1,2(),2,1(),1,1(=⋂∴D C{})2,3(),1,3(),3,2(),2,2(),1,2)(3,1(),2,1(),1,1(=⋃∴D C4.解:{}1,0,1,2)(--=⋂⋃Z B A 又∅≠⋂B C C ∈-∴2且C 中含有两个元素,Z B A C ⋂⋃⊆)({}1,2--=∴C 或{}0,2-=C 或{}1,2-=C5.解:{}{}51,44>-<=+<<-=x x x B a x a x A 或,因为R =B A .在数轴上表示集合A 、B 可得实数a 的范围为:{}31<<a a .6.解:设音乐爱好者的集合为A ,体育爱好者的集合为B ,则B A 中的人数为51,由Venn 图可知,既爱好音乐又爱好体育的人数(即B A 中的人数)为34+43-51=26.7.解:{}11>-<=x x x A 或 ,∴{}11≤≤-=x x A .{}02≥-=x x B ,∴{}2<=x x B . ∴A B8.解:{}31<≤-=x x A ,∴{}31≥-<=x x x A 或. 由125≥+x 可得32,023≤<-≥+-x x x ,于是{}32≤<-=x x B . (A ){}312=-<<-=x x x B 或 .9.解:B A 中的元素个数可以是,0、1、2、3;对应的B A 中的元素个数分别是8,7,6,5.10.B A B A += 不成立,如{}{}4,3,2,3,2,1==B A 时,{}4,3,2,1=B A ,故B A B A B A B A +≠=== ,4,3.其实,B A B A B A -+=.11.答:因为集合Z 、A 、B 都是无限集,因此它们的元素多少不能用常规方法进行比较.事实上,通过今后的学习我们会知道,不仅集合A 的元素与集合B 的元素一样多,集合Z 的元素也与集合B 的元素一样多.12.解:设三个方程都没有解,则有⎪⎩⎪⎨⎧<->⇔<-<-.0816.2,044,041a a a a所以,当2≤a 时,所给的三个方程中至少有一个有解.13.略14.略15.略。

高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析

高一数学寒假作业(人教A版必修一)集合的概念与运算word版含解析

高一数学寒假作业(人教A版必修一)集合的概念与运算1.已知集合A={y|x2+y2=1}和集合B={y|y=x2},则A∩B等于( )A.(0,1) B.[0,1]C.(0,+∞) D.{(0,1),(1,0)}【答案】 B2.设全集U=M∪N={1,2,3,4,5},M∩∁UN={2,4},则N=( )A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}【解析】由M∩∁UN={2,4}可得集合N中不含有元素2,4,集合M中含有元素2,4,故N={1,3,5}.【答案】 B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=( ).A.{1,4} B.{1,5} C.{2,3} D.{3,4}【解析】U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.【答案】 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是( ).A.2 B.3 C.4 D.5【解析】B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.【答案】 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【解析】若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.【答案】 A6.设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}【解析】 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2].【答案】 B7.已知集合M ={x|(x -1)2<4,x∈R},N ={-1,0,1,2,3},则M∩N=( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】 A8.若集合A ={x|x 2-2x -16≤0},B ={y|C 5y≤5},则A∩B 中元素个数为( )A .1个B .2个C .3个D .4个 【答案】 D【解析】 A =[1-17,1+17],B ={0,1,4,5},∴A∩B 中有4个元素.故选D.9.若集合M ={0,1,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 【答案】 C【解析】 N ={(x ,y)|-1≤x-2y≤1,x ,y∈M},则N 中元素有:(0,0),(1,0),(1,1),(2,1).10.已知集合A ={1,3,zi}(其中i 为虚数单位),B ={4},A∪B=A ,则复数z 的共轭复数为( )A .-2iB .2iC .-4iD .4i 【答案】 D【解析】 由A∪B=A ,可知B ⊆A ,所以zi =4,则z =4i=-4i ,所以z 的共轭复数为4i ,故选D. 11.设集合M ={y|y =2sinx ,x∈[-5,5]},N ={x|y =log 2(x -1)},则M∩N=( )A .{x|1<x≤5}B .{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}【答案】 D【解析】∵M={y|y=2sinx,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.12.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为( )A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】 D13.已知集合A={-1,0},B={0,1},则集合∁A∪B(A∩B)=( )A.∅B.{0}C.{-1,1} D.{-1,0,1}【答案】 C【解析】∵A∩B={0},A∪B={-1,0,1},∴∁A∪B(A∩B)={-1,1}.14.已知P={x|4x-x2≥0},则集合P∩N中的元素个数是( )A.3 B.4C.5 D.6【答案】 C【解析】因为P={x|4x-x2≥0}={x|0≤x≤4},且N是自然数集,所以集合P∩N中元素的个数是5,故选C.15.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.【解析】∵3∈B,又a2+4≥4,∴a+2=3,∴a=1.【答案】 116.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.【解析】 若a =4,则a2=16∉(A∪B),所以a =4不符合要求,若a2=4,则a =±2,又-2∉(A∪B),∴a =2.【答案】 217.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z}为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.【答案】 ②18.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.【解析】 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}.又∵B ={x |x 2-2x -m <0},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8.【答案】 819.若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}.∴⎩⎪⎨⎪⎧ -a =-1+3=2,b = -1 ×3=-3,∴a =-2,b =-3.20.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.21.设A ={x |x 2-8x +15=0},B ={x |ax -1=0}.(1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .∴1a =3或1a =5,即a =13或a =15, ∴C =⎩⎨⎧⎭⎬⎫0,13,15. 22.设集合A ={x2,2x -1,-4},B ={x -5,1-x,9},若A∩B={9},求A∪B.解 由9∈A,可得x2=9或2x -1=9,解得x =±3或x =5.当x =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素重复,故舍去;当x =-3时,A ={9,-7,-4},B ={-8,4,9},A∩B={9}满足题意,故A∪B={-7,-4,-8,4,9}; 当x =5时,A ={25,9,-4},B ={0,-4,9},此时A∩B={-4,9}与A∩B={9}矛盾,故舍去.综上所述,A∪B={-8,-4,4,-7,9}.23.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈A∩B; (2){9}=A∩B .【答案】(1)a=5或a=-3 (2)a=-3【解析】(1)∵9∈A∩B且9∈B,∴9∈A.∴2a-1=9或a2=9.∴a=5或a=±3.而当a=3时,a-5=1-a=-2,故舍去.∴a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B.∴a=5或a=-3.而当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9}≠{9},故a=5舍去.∴a=-3.讲评9∈A∩B与{9}=A∩B意义不同,9∈A∩B说明9是A与B的一个公共元素,但A与B允许有其他公共元素.而{9}=A∩B说明A与B的公共元素有且只有一个9.24.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,试求实数m的值.【答案】m=1或m=22};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或2.。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.已知全集合,,,若,试确定实数的取值范围.【答案】.【解析】首先通过一元二次不等式化简集合A和B,然后求集合B的补集,进而求出,最后根据,则可写出其满足条件的的取值范围即可.试题解析:(1)由题意得:,,,所以,.因为,所以且∴,解得,所以的取值范围是.【考点】子集与交集、并集运算的转换.2.集合{1,2,3}的真子集共有()A.5个B.6个C.7个D.8个【答案】C【解析】本题考查子集的概念,如果一个集合由n个元素,那么它有个子集,真子集共有个.【考点】集合的子集个数.3.设不等式的解集为.(1)求集合;(2)设关于的不等式的解集为,若,求实数的取值范围.【答案】(1)(2).【解析】(1)解一元二次不等式,首先将一元二次不等式整理成二次项系数为正的情形,然后求对应一元二次方程的根,最后根据根的情况及不等式类型写出解集. 由,得,(2)对含参数的不等式,首先观察能否因式分解,这是简便解答的前提,然后根据根的大小讨论解集情况. 不等式等价于,若,则,要,只需,若,则,要,只需,若,则,符合,综上所述,的取值范围为.解:(1),所以 3分所以不等式的解集 4分(2)不等式等价于 5分若,则,要,只需 7分若,则,要,只需 9分若,则,符合 11分综上所述,的取值范围为. 12分【考点】一元二次不等式解法4.若集合A={x|-1≤2x+1≤3}, B=,则A∩B=( )A.{x|-1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}【答案】B【解析】由于A={x|-1≤2x+1≤3}={x|-1≤x≤1},B=,所以A∩B={x|0<x≤1}【考点】集合的运算.5.已知集合M={y|y=,x>0},N={x|y=lg(2x-)},则M∩N为()A.(1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)【答案】A【解析】,,,故选A.【考点】数集的交集6.表示自然数集,集合,则( )A.B.C.D.【答案】B【解析】表示在集合A中但不在集合B中的自然数,故.【考点】本题考查集合的补集、交集运算.7.设全集,则=()A.B.C.D.【答案】B【解析】,,【考点】集合的运算8.满足A∪{-1,1}={-1,0,1}的集合A共有( )A.10个B.8个C.6个D.4个【答案】D【解析】根据题意,分析可得,集合A中必须有元素0,可能含有元素1或-1,由此列举可得全部可能的集合集合A可能为{0}、{0,1}、{0,-1}、{0,1,-1},共有4个;故选D【考点】子集与真子集.9.已知集合,(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2)【解析】(1)两个集合的交集是由两个集合的公共元素构成,而某个集合A补集是由全集中不属于集合A的元素构成的;(2),即集合C是集合B的子集,说明集合C中的元素都属于集合B试题解析:(1) 7分(2) 14分【考点】(1)交集与补集;(2)子集10.设集合是函数的定义域,集合是函数的值域.(Ⅰ)求集合;(Ⅱ)设集合,若集合,求实数的取值范围.【答案】(Ⅰ)(Ⅱ).【解析】(Ⅰ)先通过不等式组解得集合A,再利用指数不等式解得集合B,得到,(Ⅱ)先由得到进而得到.本题容易丢掉a=2.试题解析:(Ⅰ)由,得, 2分又, 2分2分(Ⅱ), 2分而,, 2分【考点】1、定义域和值域的求法;2、子集的性质的应用.11.已知全集U={小于10的正整数},集合M={3,4,5},P={1,3,6,9},则集合=()A.B.C.D.【答案】B【解析】由已知全集是有限集,对有限集可用Venn图来解题由图可知集合在集合M,P的外部故选B【考点】主要考查集合运算12.已知,函数的定义域为(1)求;(2)求。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知全集,A是U的子集,且,,则的值为()A.2B.8C.3或5D.2或8【答案】D【解析】因为全集,A是U的子集,且,,,所以A={2,3},,解得或,故选D。

【考点】本题主要考查子集、并集、补集的概念。

点评:基本题型,首先应从条件出发,建立a的方程,列举法直观,易于理解。

2.已知集合M={},P={},则M P=()A.B.(3,)C.{3,}D.{(3,)}【答案】D【解析】即求两个一次函数与图象的交点,并用点集形式给出.因为M={(x,y)|x+y=2},P={(x,y)|x-y=4},所以M∩P=={(3,-1)},故选D。

【考点】本题主要考查交集的概念、二元一次方程组解法。

点评:本题主要考查交集的概念、二元一次方程组解法。

应特别注意结合中元素是有序数对。

3.已知全集,,,,则集合A=____________,B=_____________.【答案】{2,3},{2,4}【解析】依题意可填充韦恩图如图,所以A={2,3},B={2,4}。

【考点】本题主要考查交集、并集、补集的概念、集合的表示方法。

点评:此题考查了集合的交、并、补集等运算,结合韦恩图逐步填空可得解。

4.设集合A=,B=,当时,求.【答案】【解析】由已知必有,∴,或,当时集合B中的元素,且,与集合中元素的互异性矛盾,当时集合B适合题意,∴时得到.【考点】本题主要考查交集、并集的概念、集合中元素的性质。

点评:此题考查了集合的交、并运算,探究求得a,利用集合中元素的互异性,确定取舍。

细心解方程。

5.已知A={1,2},B={x|x A},则中的元素个数是()A.1B.2C.3D.4【答案】D【解析】集合中的元素可以是任意具有确定性的对象,如本题,集合B中的元素即是集合A的子集,即B={,{1},{2},{1,2}}.故选D【考点】本题主要考查补集的概念。

点评:理解补集的概念,将B中属于集合A的元素“去掉”,有余下的B中元素构成的集合就是。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。

【考点】集合相等的概念及集合中元素的互异性。

2.设集合,A.B.C.D.【答案】B【解析】集合=,N= ;所以M N=【考点】交集的运算3.已知集合,,则.【答案】【解析】集合,集合,.【考点】集合的交集.4.已知全集,集合(1)求(2)求【答案】(1)(2)【解析】分别求出两集合A,B的解集,,再求出,分别求出,.由,得-6<x-1<6,解得-5<x<7,由,得(x-8)(2x-1)>0,解得x>8,或x<.(1);(2).【考点】集合的运算.5.已知集合,集合,若是单元素集,则=【答案】6 或-4【解析】由条件,得,可知集合表示一条直线,集合表示圆心为,半径为的圆,若是单元素,则直线与圆相切,则有,即,解得.【考点】1、集合的交集运算;2、直线与圆的位置关系.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。

(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。

试题解析:(1),所以。

(2)消去y整理可得。

因为是只有一个元素的集合,即此方程在只有一个根。

所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。

当时,两集合仍没有公共点,所以;(2)集合B中必须含有小于等于的元素,集合A中含有的元素在集合B中仍可含有所以试题解析:(1)因为,A B=,所以(2)当A B=时【考点】集合的运算8.满足A∪{-1,1}={-1,0,1}的集合A共有( )A.10个B.8个C.6个D.4个【答案】D【解析】根据题意,分析可得,集合A中必须有元素0,可能含有元素1或-1,由此列举可得全部可能的集合集合A可能为{0}、{0,1}、{0,-1}、{0,1,-1},共有4个;故选D【考点】子集与真子集.9.设集合若,则实数 .【答案】4【解析】,或或,当时,,此时不合题意,.【考点】集合的交、并、补运算10.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.11.已知全集为实数集R,集合,.(1)分别求,;(2)已知集合,若,求实数的取值集合.【答案】(1),;(2)的取值范围是.【解析】(1)只要求出集合,根据集合交集,并集,补集的定义就可以得出结论;(2)由于,可以在数轴上表示出两个集合,从而得出的范围.试题解析:(Ⅰ),,,.(Ⅱ)①当时,,此时;②当时,,则.综合①②,可得的取值范围是.【考点】1、集合的运算;2、子集的概念.A=12.已知集合A={y | y=2x,x∈R},则CRA.B.(-∞,0]C.(0,+∞)D.R【答案】B【解析】A={y | y=2x,x∈R},所以CA=(-∞,0].R【考点】本小题主要考查指数函数的值域和补集运算.点评:涉及到集合的运算,可以借助数轴辅助解决问题.13.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CB)等于()UA.{4,5} B.{2,4,5,7} C.{1,6} D.{3}【答案】AB={2,4,5,7},【解析】根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CU则A∩(CB)= {4,5},故选A.U【考点】交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题14.已知A={xú 2a≤x≤a+3},B={xú x<-1或x>5} 且A∩B=Ф,求实数a的取值范围.【答案】.【解析】当时,,所以,这时A∩B="Ф" (2分)当时,根据题意得,即,所以(8分)综上可得,或(9分)∴实数的取值范围是(10分)【考点】本题主要考查集合的运算,一元一次不等式组的解法。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

高一数学集合的基本运算练习题及答案

高一数学集合的基本运算练习题及答案

高一数学必修1集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参与甲、乙两项体育活动,每人至少参与了一项,参与甲项的学生有30名,参与乙项的学生有25名,则仅参与了一项活动的学生人数为________.【解析】设两项都参与的有x人,则只参与甲项的有(30-x)人,只参与乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参与甲项的有25人,只参与乙项的有20人,∴仅参与一项的有45人.【答案】454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},∴{a ,a 2}={4,16},∴a =4,故选D.【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( )A .ØB .{x|x<-12}C .{x|x>53}D .{x|-12<x<53} 【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( )A .{x|x ≥-1}B .{x|x ≤2}C .{x|0<x ≤2}D .{x|-1≤x ≤2}【解析】 集合A 、B 用数轴表示如图,A ∪B ={x|x ≥-1}.故选A.【答案】 A4.满意M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4【解析】 集合M 必需含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A ={x|x ≤1},B ={x|x ≥a},且A ∪B =R ,则实数a 的取值范围是________.【解析】 A =(-∞,1],B =[a ,+∞),要使A ∪B =R ,只需a ≤1.【答案】 a ≤16.满意{1,3}∪A ={1,3,5}的全部集合A 的个数是________.【解析】 由于{1,3}∪A ={1,3,5},则A ⊆{1,3,5},且A 中至少有一个元素为5,从而A 中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满意条件的A 的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A ={1,3,5},B ={1,2,x 2-1},若A ∪B ={1,2,3,5},求x 及A ∩B.【解析】 由A ∪B ={1,2,3,5},B ={1,2,x 2-1}得x 2-1=3或x 2-1=5.若x 2-1=3则x =±2;若x 2-1=5,则x =±6;综上,x =±2或±6.当x =±2时,B ={1,2,3},此时A ∩B ={1,3};当x =±6时,B ={1,2,5},此时A ∩B ={1,5}.8.已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.【解析】 由A ∩B =Ø,(1)若A =Ø,有2a>a +3,∴a>3.(2)若A ≠Ø,如图:∴ ,解得- ≤a ≤2.综上所述,a 的取值范围是{a|- ≤a ≤2或a>3}.9.(10分)某班有36名同学参与数学、物理、化学课外探究小组,每名同学至多参与两个小组.已知参与数学、物理、化学小组的人数分别为26,15,13,同时参与数学和物理小组的有6人,同时参与物理和化学小组的有4人,则同时参与数学和化学小组的有多少人?【解析】 设单独参与数学的同学为x 人,参与数学化学的为y 人,单独参与化学的为z 人.依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧ x =12,y =8,z =1.∴同时参与数学化学的同学有8人,答:同时参与数学和化学小组的有8人.。

高一数学集合的运算试题

高一数学集合的运算试题

高一数学集合的运算试题1.设非空集合满足:当时,有,给出如下三个命题:①若,则②若,则;③若,则。

其中正确命题的个数是()A.0B.1C.2D.3【答案】D.【解析】由定义可设非空集合满足:当时,有知,符合定义的参数的值一定大于等于1或小于等于0,惟如此才能保证时,有即;符合条件的的值一定大于等于0,小于等于1,惟如此才能保证时,有即,正对各个命题进行判断:对于①,,故必有可得,;对于②,,则可得;对于③,则,解之得,所以正确命题的个数为3个.故选D.【考点】集合的确定性、互异性、无序性;元素与集合关系的判断.2.已知全集U={1,2,3,4},集合是它的子集,①求;②若=B,求的值;③若,求.【答案】①={2,3};②;③.【解析】①由补集的定义可得;②由交集的定义可得; ③由并集的定义可得. 注意不能混淆三种运算.试题解析:解:①={2,3} 4分②若=B,则 6分(写成的,也对)∴集合A={1,2,4} 8分③若,则 10分∴. 12分 (少1个减1分)【考点】集合的运算.3.已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},则等于 ( )A.{1,3,5}B.{2,4,6}C.{1,5}D.{1,6}【答案】D【解析】集合A补集是由全集中不属于A的元素所构成的,现,故,选D【考点】集合的运算(并、补运算).4.集合,,则等于()A.B.C.D.【答案】C【解析】因为,,,交集是两个集合中的相同元素构成的集合,所以,,选C。

【考点】集合的运算点评:简单题,交集是两个集合中的相同元素构成的集合。

5.设集合M,N=,则等于()A.B.C.D.【答案】D【解析】因为,集合M,N=,所以,由补集的定义,借助于数轴得,=,选D。

【考点】集合的运算点评:简单题,A的补集是属于全集且不属于集合A的元素构成的集合。

此类问题常常借助于数轴。

6.若集合M={3、4、5、6、7、8},N={x2-5x+4≤0}则()A. {3}B. {3、4}C. {3<x≤5}D. {3、4、5}【答案】B【解析】∵N={x2-5x+4≤0}={1≤x≤4},又M={3、4、5、6、7、8},∴ {3、4},故选B【考点】本题考查了集合的运算点评:熟练掌握交集的概念是解决此类问题的关键,属基础题7.已知集合集合且则的值为()A.-1,1B.1,-1C. -1,2D.1,2【答案】A【解析】由,得,即,所以集合,因为,所以是方程的根,所以代入得,所以,此时不等式的解为,所以,即。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.已知集合,则下列式子表示正确的有()①②③④A.1个B.2个C.3个D.4个【答案】C.【解析】由集合知,,即集合A包含两个元素1,-1.所以①,正确;由集合与集合之间的关系应为含于,即,所以②,不正确;由空集是任何非空集合的子集知,③正确;由任何非空集合是自身的子集,即④正确.所以其正确的个数为3个.故应选C.【考点】集合与集合的基本关系;元素与集合的关系.2.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。

【考点】集合相等的概念及集合中元素的互异性。

3.设A是整数集的一个非空子集,对于k∈A,若k-1∉A,且k+1∉A,则称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有个.【答案】6【解析】由“孤立元”的定义可知,集合中不能存在一个与其他元素相差大于的元素。

故由S的3个元素构成的所有集合中,不含“孤立元”的集合有。

【考点】这是新定义问题,注意对“孤立元”定义的理解。

4.已知集合集合.(1)若,求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)解不等式、可得集合A、B中的元素,然后求交集;(2)即集合A是集合B的子集,所以集合A中元素的范围比集合B中元素的范围小,依此来建立关于的不等式。

(1)当时,,解得,则.由,得,则.所以.6′(2)由,得.即.若,则解得.所以实数的取值范围是. .12′【考点】(1)解绝对值、分式不等式;(2)集合的运算;5.设关于的二次方程和的解集分别是集合和,若为单元素集,求的值.【答案】或.【解析】先解出集合,根据为单元素集,得到或,相当于二次方程只有一个根2或二次方程只有一个根3,从而将2或3代入方程中得到参数的取值,求出的取值之后,返代,得出,检验此时的是否为或,满足要求的就取,不满足要求的的值应该舍去.试题解析:解方程,得 2分由为单元素集得或 3分当时有或时不合题意6分当时有或时不合题意10分综上得或 12分.【考点】1.集合的运算;2.二次方程的解.6.已知集合A=,B=,则()A.B.C.D.【答案】B【解析】,,故选B.【考点】集合的运算7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.已知集合,集合,则()A.B.C.D.【答案】B【解析】集合为非负偶数集,所以【考点】本题考查集合的元素和运算.9.已知函数的定义域为集合,集合,集合.(1)求;(2)若 (),求的值.【答案】(1),(2)1.【解析】(1)求函数定义域,主要列出所有限制条件,本题一是要求分母不为零,二是要求偶次被开方数非负,结合两者得到函数定义域为;解对数不等式,注意真数要大于零及不等号的方向=,根据数轴求出集合的交集;(2)集合是解参数不等式,由于参数大于零,所以先求出集合为,再求出交集,由并结合数轴得,解此类问题需注意区间之间相互关系,并重视区间端点是否能取到.试题解析:(1)由题意得=.,=, 2分∴. 4分(2)由题意得=,∴, 6分∵,∴, 8分∴,又∵,∴=1. 10分【考点】函数定义域,解对数不等式,集合运算.A,则实数a的取值范围10.设全集U=R,A="{x|" x<-2,或x≥1},B="{x|" a-1<x<a+1},B∁R是______.【答案】【解析】由题意得,由,又因为,即集合为非空集合,所以有,解得.故正确答案为.【考点】集合的运算11.设集合A={1,2,3},B={2,4,5},则______________【答案】【解析】集合的并集是由两集合的所有元素组成.【考点】1、集合的并集运算;2、集合元素的互异性.12.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算13.某班共50人,参加A项比赛的共有30人,参加B项比赛的共有33人,且A,B两项都不参加的人数比A,B都参加的人数的多1人,则只参加A项不参加B项的有人.【答案】9【解析】假设A,B都参加的设为x,所以仅参加A项的共(30-x)人,仅参加B项的共(33-x)人,都不参加的()人,有这些相加即:,解得:x=21,所以只参加A项不参加B共有30-21=9,所以填9.【考点】本题考查的内容是容斥原理,通过韦恩建立数学模型巧妙的解决.14.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.15.已知集合,,,.(1)求;(2)若,求实数的取值范围.【答案】(1),(2).【解析】(1)根据全集,先求出集合的补集,再求;(2)由知,集合与有公共元素,所以.试题解析:(1)因为,集合,所以,又因为,结合数轴可知(2)结合数轴可知:当时,.【考点】集合的基本运算16.设集合,,若,则的范围是()A.B.C.D.【答案】B【解析】在数轴上画出集合A,B,如图,可知.这种与实数集有关问题借助于数轴可以很快得出结论.【考点】子集的概念.17.给出以下五个命题①集合与都表示空集.②是从到的一个映射.③函数是偶函数.④是定义在上的奇函数,则⑤是减函数.以上命题正确的序号为:【答案】②④【解析】①集合与都表示空集,不对,因为,中有元素,不是空集;②是从到的一个映射,正确,因为,对中任意一个元素,按,在中都有唯一一个元素与之对应;③函数是偶函数,不正确,定义域不关于原点对称;④是定义在上的奇函数,则,正确,因为,,;⑤是减函数,不对,只能说其在区间是减函数。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.,,则()A.B.C.D.【答案】D【解析】.【考点】集合的交集.2.已知全集,集合(1)求(2)求【答案】(1)(2)【解析】分别求出两集合A,B的解集,,再求出,分别求出,.由,得-6<x-1<6,解得-5<x<7,由,得(x-8)(2x-1)>0,解得x>8,或x<.(1);(2).【考点】集合的运算.3.已知,.(1)求和;(2)定义且,求和.【答案】(1),;(2),.【解析】(1)分别求出与中不等式的解集,然后根据交集、并集的定义求出和;﹙2﹚根据元素与集合的关系,由新定义求得和.试题解析:(1),,;.(2),.【考点】1、指数与对数不等式的解法;2、集合的运算;3、创新能力.4.设求 .【答案】.【解析】有并集定义得.【考点】并集概念.5.知集合,集合.(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.【答案】(1);(2);(3).【解析】(1)时,先确定集合中的元素,然后可求出;(2),说明中的元素都在中且,从而求得的取值范围;(3),说明中的元素都不在中或为空集,因为空集与任何集合的交集也是空集,分两种情况讨论可求得的取值范围.试题解析:(I)当时,,则 4分(2)由知: 6分得,即实数的取值范围为 8分(做成为开区间者扣一分)(3)由得:①若即时,,符合题意 9分②若即时,需或得或,即 11分综上知即实数的取值范围为 12分(答案为者扣一分).【考点】1.集合的运算;2.集合间的关系;3.分类讨论的思想.6.已知集合,,则()A.B.C.D.【答案】B【解析】集合表示的是大于1而小于4的所有实数,所以.【考点】集合的交集运算.7.已知集合,则()A.B.C.D.【答案】C【解析】,所以,故选C.【考点】1.集合的运算;2.二次不等式的求解.A,则实数a的取值范围8.设全集U=R,A="{x|" x<-2,或x≥1},B="{x|" a-1<x<a+1},B∁R是______.【答案】【解析】由题意得,由,又因为,即集合为非空集合,所以有,解得.故正确答案为.【考点】集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级:《集合的运算1》导学案
请同学们在学习过程中思考
1集合之间有没有运算?
2集合之间的运算有哪些?
(一)本节知识内容
一并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B
的并集.记作:A∪B(读作:“A并B”)即:A∪B ={ x| x∈A或x∈B } 说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有元素组成的集合
(重复元素只看成一个元素).
二并集的性质:
1:A A A
2:A A
A B B A
3:
5:
A B A B A
4:B A A B A
6:,A B C A B C
A A
B B A B
7:()()
8:
A B A A B A B A
三交集的概念
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
记作:A∩B(读作:“A交B”)即:A ∩B ={ x| x∈A且x∈B }
说明:两个集合求交集,结果还是一个集合,是由集合A与B 的公共元素组成的集合.
四交集的性质
A B B A
2:3:A∅=∅
1:A A A
5:
A B A B A
4:B A A B A
6:,A B C A B C
A A
B B A B
7:()()
交集并集的一些性质(补充):
(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C);
A∩(B∪C)=(A∩B)∪(A∩C); A∪(B∩C)=(A∪B)∩(A∪C).
(二)典型例题
例1.设A={4,5,6,8},B={3,5,7,8},求A B.
解 AUB={3,4,5,6,7,8}
例2.设集合A={x|-1<x<2},B={x|1<x<3},求A B.
解 A B={x/-1<x<3}
例3:若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A B等于( A) A.{x|x≤3或x>4} B.{x|-1<x≤3}
C.{x|3≤x<4} D.{x|-2≤x<-1}
[答案] A
将集合A、B表示在数轴上,由数轴可得A U B={x|x≤3或x>4} ,故选A
例4.(09·上海)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值
范围是_{a/a≤1}_____.
[答案] a≤1
[解析] 将集合A、B分别表示在数轴上,如图所示.
要使A ∪B =R ,则a ≤1.
例5 已知:A ={x ||x -a |<4},B ={x |x <-1或x ≥5},且A ∪B =R ,求实数a 的范围.
练习1
1.设{}1,0,1,2A =-,{}0,2,4,6B =,求A B .
2.设{}|22A x x
=-<,{}|0
4B x x
=,求A
B .
1.A ∪B={-1,0,1,2,4,6}
2.A ∪B={-2<x ≤4} 例1
(1)设A ={1,2},B ={2,3,4},则A ∩B = {2} . (2)设A ={x |x <1},B ={x |x >2},则A ∩B = ∅ .
例2 已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =____3____. [解析] 由题意A 和B 中相同的元素为2和3,故m=3. 例3 设集合M ={m ∈Z|-3<m <2},
N ={n ∈Z|-1≤n ≤3},则M ∩N =( B ) A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2}
[解析] ∵M ={-2,-1,0,1},N ={-1,0,1,2,3},∴M ∩N ={-1,0,1},故选B. 例4 已知A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则A ∩B =_{(1,2)}_______.
例5已知集合A ={-4,2a -1,a 2
},B ={a -5,1-a ,9},分别求适合下列条件的a 值.
(1)9∈A ∩B ; (2){9}=A ∩B .
[分析] 9∈A ∩B 与{9}=A ∩B 意义不同,9∈A ∩B 说明9是A 与B 的一个公共元素,但A 与B 中允许有其它公共元素.{9}=A ∩B ,说明A 与B 的公共元素有且只有一个9.
解 (1)∵9∈A ∩B ,∴9∈A
∴2a -1=9或a 2
=9,∴a =5或a =±3. 检验知:a =5或a =-3满足题意. (2)∵{9}=A ∩B ,∴9∈A ∩B , ∴a =5或a =±3.
检验知:a =5时,A ∩B ={-4,9}不合题 意, ∴a =-3. 练习2
1.设{}1,0,1,2A =-,{}0,2,4,6B =,求A
B .
2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B .
3.设{}|22A x x =-<≤,{}|0
4B x x
=,求A
B .
1. A ∩B={0,2}
2. A ∩B={(2,0.5)}
3. A ∩B={x /0≤x ≤2}
(三 )知识小结
1.求集合的并、交是集合间的基本运算,运算结果仍然还是集合. 2.区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件.
3.注意结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法.。

相关文档
最新文档