双因素方差分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双因素方差分析

一、双因素方差分析的含义和类型

(一)双因素方差分析的含义和内容

在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。例如上一节中饮

料销售量的例子,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因,采用不同的推销策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位,在市场占有率低的地

区,进一步扩大宣传,让更多的消费者了解,接受该产品。

在方差分析中,若把饮料的颜色看作影响销售量的因素A,饮料的销售地区看作影

响因素B。同时对因素A和因素B进行分析,就称为双因素方差分析。

双因素方差分析的内容包括:对影响因素进行检验,究竟一个因素在起作用,还是两个因素都起作用,或是两个因素的影响都不显著。

双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方

差的一致性。

(二)双因素方差分析的类型

双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A 和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产

生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。

1•无交互作用的双因素方差分析。

无交互作用的双因素方差分析是假定因素A和因素B的效应之间是相互独立的,不存在相互关系;

2•有交互作用的双因素方差分析。

有交互作用的双因素方差分析是假定因素A和因素B的结合会产生出一种新的效应。例如,若假

定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,

这就是两个因素结合后产生的新效应,属于有交互作用的背景,否则,就是无交互作用

的背景。

二、数据结构

方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而

确定可控因素对研究结果影响力的大小。

下面用一个简单的例子来说明方差分析的基本思想:

如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L )如下:

问该地克山病患者与健康人的血磷值是否不同?

从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:

组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;

组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。

而且:SS总=SS组间+SS组内v总=v组间+v组内

如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较, 若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各

组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率

可通过查阅F界值表(方差分析用)获得。

因素A位于列的位置,共有r个水平,^ 表示第j种水平的样本平均数;

因素B位于行的位置,共有k个水平,表示第I种水平的样本平均数。

止为样本总平均数

样本容量为n = r x k 。

每一个观察值X j是由因素A的r个水平和因素B的k个水平所组成的八「「总体中抽取的样本容量为1的独立随机样本。

在进行双因素方差分析时,假定在厂〉三个总体中,每一个总体都服从正态分布,而且有相同的方差。

三、离差平方和的分解

与单因素方差分析相类似,进行双因素方差分析时也需要将总离差平方和SST进行

分解。但不同的是,这里需要将SST分解成三个组成部分:即

SSA:反映因素A的组间差异

SSB:反映因素B的组间差异

SSE:随机误差的离散状况

它们的计算公式分别为:

—二二.〔 (1}

二二宀二:'⑵

SSE = SST -SSA -SSB ( 4)

双因素方差分析表如下:

表7-8 收因素方差分祈裏

溟差来源离差平方和自由度均方差F值

&因素SSA r - 1USA 二SSA/(x - 1) F.二JISA/MSE

B因盍SSB K1wsB = SSE/(K-I3

SSE(r-1) (i-li ISE = SSE/(x-l) Ck-L)

合计SST a - 1

例题:某商品有五种不同的包装方式,在五个不同地区销售。现从每个地区随机抽

取一个规模相同的超级市场,得到该商品不同包装的销售资料如表7-9所示。

^7-9某种商品不同地因不同包装的销售资料

包转方式⑷

A

曲As As

i

销Bi2013201014

售22L020126

地241416IS10

区比1348618

<3)血2S

22162010

试问,包装方式和销售地区对该商品销售量是否有显著影响(a= 0.05)?

解:从上表可看出,设包装方式为因素A,销售地区为因素B。

如果五种包装方式的销售均值相等,则表明不同的包装方式在销售上没有差别;

同理,如果五个地区销售均值相等,则表明不同地区在销售上没有影响。

所以,方差分析的过程为:

(一)建立假设:

用A、B分别来表示两个因素。因素A位于列的位置,有r个水平;因素B 位于行的位置,有k个水平,因素A和因素B共有r k种不同的水平组合。我们对每一种水平组合进行一次试验,其试验结果用X j来表示。并且假定这r k

个观察值均服从正态分布,且有相同的方差。全部试验结果如下表:

表8-9双因素方差分析数据表

-因素A(j)

A A…A j …A r X i

因素B( i)-

B i X ii X i2 X1j X1r X1

B2 X21 X22 X2j X2r X2

M M M M M M M M

B i X ii X i2 X j X ir X i

M M M M M M M M

B k X ki X k2 X kj X kr X k

X j X i X2 X j X r X

相关文档
最新文档