一元二次函数 ppt课件
合集下载
二次函数与一元二次方程二次函数优秀ppt课件
7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
二次函数与一元二次方程ppt课件
垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值
范
(
围
)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D
是
数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),
人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .
②
[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .
②
[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.
新教材北师大版必修第一册 4.1一元二次函数 课件(46张)
2.参数“a,h,k”对y=a(x-h)2+k(a≠0)的图象的影响 (1)a的符号和绝对值大小分别决定了二次函数图象的开口方向和大小; (2)h决定了二次函数图象的对称轴的位置; (3)k决定了二次函数图象的顶点的高度.
【跟踪训练】
1.已知二次函数 y=x2-8x +c的图象的顶点在 x轴上,则c=
类型三 一元二次函数的最大值和最小值(数学运算)
角度1 求一元二次函数的最大值或最小值
【典例】求函数y= 1 x2-2x+4的最小值.
2
【思路导引】先配方变形,然后确定函数图象的开口方向和对称轴,最后求最小
值.
【解析】配方:y=
1 2
x2-2x+4=
1 (x 2)2 +2,此函数的图象是一条抛物线,开口
【拓展训练】 已知一元二次函数的图象经过点(1,0),(-5,0),且顶点纵坐标为 9 ,求这个函
2
数的解析式.
类型二 一元二次函数的函数值的变化趋势(逻辑推理) 【典例】试述一元二次函数y=3x2-6x-1函数值的变化趋势.
【解题策略】
一元二次函数y=ax2+bx+c(a≠0) 函数值的变化趋势
2
y=x2-mx+5的函数值y随x的增大而增大,所以 m ≤2,解得m≤4.
2
2.一元二次函数y=-x2+(m-1)x+m的图象与y轴交于(0,7)点. (1)求出m的值和此函数图象与x轴的交点坐标; (2)试述函数值的变化趋势.
【补偿训练】 试述一元二次函数y=4x2+16x+5函数值的变化趋势. 【解析】配方,得y=4x2+16x+5=4(x+2)2-11, 此函数的图象开口向上,对称轴是直线x=-2, 所以在区间 (-,-上2,]y随x的增大而减小; 在区间 [-2,上),y随x的增大而增大.
沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.
人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O
北师大版141一元二次函数课件(47张)
k
m≤h≤n
h=m+2 n
a(m-h)2+k 或a(n-h)2+k
k
m+2 n<h≤n
a(m-h)2+k
k
[练习 3]求函数 y=x2-2x+3 在区间[0,a]上的最值,并求此时 x 的值.
解:函数图象的对称轴为直线 x=1,抛物线开口向上, 当 0<a≤1 时,在[0,a]上函数值随 x 的增大而减小, ∴当 x=0 时,ymax=3;当 x=a 时,ymin=a2-2a+3. 当 1<a<2 时,在[0,1]上函数值随 x 的增大而减小,在[1,a]上函数值随 x 的增大而增 大, ∴当 x=1 时,ymin=2;当 x=0 时,ymax=3. 当 a≥2 时,在[0,1]上函数值随 x 的增大而减小,在[1,a]上函数值随 x 的增大而增大, ∴当 x=1 时,ymin=2; 当 x=a 时,ymax=a2-2a+3.
任意一元二次函数 y=ax2+bx+c(a≠0)都可转化为 y=a(x-h)2+k 的形式,都可由 y =ax2 的图象经过适当的平移得到,具体平移方法,如图所示.
[练习1]画出一元二次函数y=12x2-6x+21的图象,并说明它是如何经过y=21x2平移得 到的.
解:∵y=12x2-6x+21=12(x-6)2+3, ∴抛物线的顶点坐标为(6,3),对称轴为x=6. 令x=0,求得y=21,它与y轴交点为(0,21),此交点距顶点太远,画图时利用不上; 令y=0,12x2-6x+21=0. ∵Δ<0,方程无实数解, ∴抛物线与x轴没有交点. 因此,画此函数图象,应利用函数的对称性列表,在顶点的两侧适当地选取两对对 称点,然后描点、画图即可.
a=-2, 解这个方程组得b=8,
c=-5.
二次函数与一元二次方程、不等式_课件
对于比较简单的分式不等式,可直接转化为一元二次 不等式或一元一.次不等式组求解,但要注意分母不 为零.
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
对于不等号右边不为零的较复杂的分式不等式,先 移项再通分(不要去分母),使之转化为不等号右边为 零,然后再用上述方法求解.
拓展练习 变式训练2:解下列不等式 :
∴原不等式的解集 为
拓展练习 变式训练2:解下列不等式 :
(3){x|x≠2}
2.当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于 0? (1)y=3x²-6x+2;(2)y=25-x²; (3)y=x²+6x+10;(4)y=-3x²+12x-12.
(2) 令25-x²=0,则z=±5,又由y=25-x²图象的开口方向朝下,故z=±5 时 ,函数的值等于0,当-5 (3)令x²+6z+10=0,则方程无解,又由y=x²+6x+10 图象的开口方向上, 故无论x须何值,函数值均大于0; (4)x=2时,函数的值等于0;当x≠2时,函数值小于 0.
∴原不等式的解集 为
知识拓展
简单高次不等式的解 法
知识拓展 [解析]原不等式等价于x(x+2)(x3)<0. 结合数轴穿针法(如图)可知
[答案]A
拓展练习 变式训练3:解不等式:x(x-1)²(x+1)³(x-2)>0.
∴原不等式的解集 为
1.求下列不等式的解集∶ (1)(x+2)(x-3)>0;(2)3x²-7x≤10; (3)-x²+4x-4<0;(4)x²-x+<0; (5)-2x²+x≤-3;(6)x²-3x+4>0; 答案(1){x|x<-2,或x>3} (4)不等式的解集为
程
一元二次函数方程和不等式课件
y>0, 即 x2-2x -3 >0
x <-1 或 x > 3 y=0,即x2-2x -3 =0 x =-1 或 x = 3
-1
3
y<0,即x2-2x -3 <0 -1< x < 3
y = x2-2x -3
变一变
一元二次方程: a x 2 + b x + c = 0 ( a > 0 ) ,
一元二次不等式:a x 2 + b x + c > 0 ( a > 0 ) ,
画一画
画出二次函数 y = x 2 - 2 x - 3 的图象.
y x
-1
3
看一看
说一说
(1)方程 x 2 - 2 x - 3 = 0 的根是
x 1 = -1, x 2 = 3 (2)不等式 x 2 - 2 x - 3 > 0 的解集是 { x | x﹤-1 或 x > 3 } (3)不等式 x 2 - 2 x - 3 < 0 的解集是 { x | -1 < x < 3} 思考: 二次方程、二次不等式、二次函数, 三者之间有什么关系? y = x 2-2x3 y -1 3 x
x2 +bx+c<0
x
的解集是 { x | -1 < x < 3 }, 求实数 b , c 的值.
解:依题意,-1 ,3 是方程
x2 +bx+c=0
x
y = x 2+ bx + c y -1 3 x
的两根 , 所以 -1 + 3 = - b, -1×3 = c, 解得b = -2 , c = -3.
a x 2+ b x + c < 0 ( a > 0 ) , 一元二次函数: y = a x 2 + b x + c ( a > 0 ) , 三者之间有什么关系?
《一元二次方程根与系数的关系》PPT课件 (共16张PPT)
一、知识要点:
1、一元二次方程的一般形
式
ax2+bx+c=0 (a≠0)
。
2、若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1 、x2 c b 则x1+x2= ,x1x2= a 。 a
3、用根与系数关系解题的条件 是 (1)a≠0 (2)△≥0 。
二、典型例题
例题1:已知方程 x1,x2, (1)(x1-x2)2
( 3)
1 2
x2=2x+1的两根为
不解方程,求下列各式的值。 (2)x13x2+x1x23
x2 x1 x1 x2
提 高 练 习
3、已知:如图,直角梯形ABCD中,AB∥CD, AD⊥DC,AD=10cm, A B 以AD 为直径的⊙O切另 E 一腰于E,以AB、CD为 O 根的方程是X2-12X+m=0, 求m的值。
x,则
2
答:方程的另一个根是 k根的和与两根
的积各是多少?(不解方程)
(1)x2-3x+1=0
(2)3x2-2x=2 (3)2x2+3x=0 (4)3x2=1
2、设x1.x2是方程2x2+4x-3=0的两个根,利用
根与系数的关系,求下列各式的值。 x2 x1 (1)( x1+1)(x2+1)(2)— + — x1 x2
一元二次方程根与系数的关系?
如果ax bx C 0(a 0)的两根分别是 b c x1 , x2 则有 x1 x2 a ; x1. x2 a
2
例题2:
(1)若关于x的方程2x2+5x+n=0的一个根是 -2,求它的另一个根及n的值。
(2)若关于x的方程x2+kx-6=0的一个根是- 2,求它的另一个根及k的值。
一元二次函数方程和不等式课件ppt
y 3
= y
x
2-2x-
{ x | x﹤-1 或 x > 3 }
-1 3 x
(3)不等式 x 2 - 2 x - 3 < 0 的解集是
{ x | -1 < x < 3}
思考: 二次方程、二次不等式、二次函数, 三者之间有什么关系?
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
只需 f (1)< 0, 即 4-2 a < 0,
所以 a > 2. x
y
1x
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
例3. 若不等式 x 2 - 2 a x + 3 > 0 对任意 x ∈[ -1 , 3 ] 恒成立, 求实数 a 的取值范围.
看一看
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
说一说
(1)方程 x 2 - 2 x - 3 = 0 的根是
x1 (2)不等式 x
= -1, 2- 2
x x
2
-
= 3
3 >
0
的解集是
解:依题意,-1 ,3 是方程
x2 +bx+c=0
x
的两根 , 所以
-1 + 3 = - b, -1×3 = c,
解得 b = -2 , c = -3.
北师大版高中数学必修第一册 第一章 4-1《一元二次函数》课件PPT
函数在 = ℎ处有最大值,记作 =
最值
提示:y=ax2+bx+c=a
2 4−2
4−2
x+ 2 + 4 (a≠0).所以h=-2,k= 4 .
即时巩固
1 +2
时,y等于(
2
设一元二次函数y=ax2+bx+c(a≠0)的图像与x轴交点的横坐标为x1,x2,且x1≠x2,则当x=
3
(2)该函数的对称轴为x=2,所给区间[2,3]在对称轴的同侧,都在右侧,
又二次项系数为1>0,所以在[2,3]上该函数为随x的增大而增大,
所以当x=2时,函数值最小,最小值为-9,当x=3时函数有最大值,最大值为-7.
反思感悟
求一元二次函数在闭区间上的最值的方法
一看开口方向;二看对称轴和区间的相对位置,简称“两看法”.只需作出二次函数相关的部分简图,利用数形结
新知学习
情境导学
现准备要围成一个矩形花圃,花圃的一边利用足够长的墙,另外三边用总长为32米
的篱笆恰好围成,围成的花圃是如图所示的矩形ABCD,设AB边的边长为x米,问当x取
何值时,矩形的面积最大?同学们这道题目不陌生吧,在初中我们学过了一元二次函数,
知道了其图象为抛物线,并了解其图象的开口方向、对称轴、顶点等特征.
1.将抛物线y=(x-2)2+1向左平移2个单位长度,得到的新抛物线的顶点坐标是( B )
A.(4,1)
B.(0,1) C.(2,3) D.(2,-1)
2.一元二次函数y=-x2+2x-5,当x取全体实数时,有( C )
A.最大值-5
B.最小值-5C.最大值-4
D.最小值-4
高中数学新北师大版必修第一册 第1章 4.1 一元二次函数 课件(48张)
5.体会抽象概括的过程,加强直观想象素养的培
养.
一、二次函数的配方法
【问题思考】
1.y=4x2-4x-1如何配方?你能由此求出方程4x2-4x-1=0的根吗?
提示:y=4(x2-x)-1
=4 - ×
=4
+
- -2.
能求出方程的根,令 4
-1
-2=0
解法1:y>0对∀x∈[1,+∞)恒成立,等价于x2+2x+a>0对
∀x∈[1,+∞)恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),那么问题转化为g(x)>0在
x∈[1,+∞)上恒成立,又g(x)在区间[1,+∞)上单调递增,从而
g(x)min=3+a.
于是当且仅当g(x)min=3+a>0,即a>-3时,g(x)>0对x∈[1,+∞)
任意三点时,设一般式;抛物线的顶点坐标常设顶点式;抛物线
与x轴的交点或交点的横坐标时,常设两根式.
【变式训练1】 一元二次函数的图象的对称轴是直线x=-1,
并且经过点(1,13)和(2,28),求一元二次函数的解析式.
解:设一元二次函数的解析式为 y=a(x+1)2+k(a≠0),
+ = ,
数y=f(x)的最值.
解:y=x2-4x-4=(x-2)2-8在区间[-3,2]上单调递减,在区间[2,4]上
单调递增,所以f(x)的最小值为-8.
又因为x=-3时,y=17,x=4时,y=-4,所以f(x)的最大值为17.
养.
一、二次函数的配方法
【问题思考】
1.y=4x2-4x-1如何配方?你能由此求出方程4x2-4x-1=0的根吗?
提示:y=4(x2-x)-1
=4 - ×
=4
+
- -2.
能求出方程的根,令 4
-1
-2=0
解法1:y>0对∀x∈[1,+∞)恒成立,等价于x2+2x+a>0对
∀x∈[1,+∞)恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),那么问题转化为g(x)>0在
x∈[1,+∞)上恒成立,又g(x)在区间[1,+∞)上单调递增,从而
g(x)min=3+a.
于是当且仅当g(x)min=3+a>0,即a>-3时,g(x)>0对x∈[1,+∞)
任意三点时,设一般式;抛物线的顶点坐标常设顶点式;抛物线
与x轴的交点或交点的横坐标时,常设两根式.
【变式训练1】 一元二次函数的图象的对称轴是直线x=-1,
并且经过点(1,13)和(2,28),求一元二次函数的解析式.
解:设一元二次函数的解析式为 y=a(x+1)2+k(a≠0),
+ = ,
数y=f(x)的最值.
解:y=x2-4x-4=(x-2)2-8在区间[-3,2]上单调递减,在区间[2,4]上
单调递增,所以f(x)的最小值为-8.
又因为x=-3时,y=17,x=4时,y=-4,所以f(x)的最大值为17.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-3
3
二次函数 y = x2的图象是一条曲线,它的 形状类似于投篮球时球在空中所经过的路线, 只是这条曲线开口向上,这条曲线叫做抛物 线 y = x2 ,
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
y轴对称,y轴就
的值最小,最小值是0.
是它的对称轴.
8
6
4
对称轴与抛物 线的交点叫做
当x<0 (在对称轴的
2
抛物线的顶点.
左侧)时,y随着x的增大而
1
减小. -4
-3 -2
-1
0
1
2 当x3>0 (在4对称x轴的
-2
右侧)时, y随着x的增大而
增大.
在学中做—在做中学
(1)二次函数y=-x2的图象是什么形状?
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而
减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而
增大.
当x=-2时,y4 当x=-1时,y=1
抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.
7 2018
一元二次函数
1.在某一问题中,保持不变 的量叫常量,可以取不同数值 的 量,叫做变量.
2.函数:在同一变化过程中,有两个变量x和y,如果对于 x的每—个值,y都有__唯__一__确_定__的__值___与之对应,我们就把 y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y 的值是b,就把b叫做x=a时的函数值.
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
实际上,每条抛物线都有对称轴,抛物线与对称轴的交 点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.
x … -3 -2 -1 0 1 2 3 … y=-x2 … -9 -4 -1 0 -1 -4 -9 …
你能根据表格中的数据作出
猜想吗?
(1)二次函数y=-x2的图象是什么形状?
3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数 轴,水平的一条叫做x轴或横轴,习惯上取向 右 的方向为正方 向, 铅直 的一条叫做 y轴 或 纵轴,取向上的方向为正方向,这就 组成了平面直角坐标系.
知识点回顾:
一次函数: 若两个变量 x、y之间的关系可以表示成
y=kx+b(k,b为常数,k≠0)的形式,则称 y是x的一 次函数。(x为自变量,y为因变量) 当b=0时,称y= kx是x的正比例函数
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的 函数叫做x的二次函数. y=ax²+bx+c(a,b,c是常数,a≠0)
2.几种不同表示形式: (1)y=ax²--------- (a≠0,b=0,c=0,).
(2)y=ax²+c ------ (a≠0,b=0,c≠0).
(3)y=ax²+bx ---- (a≠0,b≠0,c=0).
下列函数中,哪些是二次函数?
(1) y 3x2 2
(是 )
(2) y x2 1
( 否)
x
(3) y (x 2)(x 3)
( 是)
(4)y x2 2x 3
(否 )
(5) y (x 2)( x 2) (x 1)2 ( 否)
y (k 2 k)x2 kx 2 k ≠0且k ≠1 时,y是x的二次函数?
=1 时,y是x的一次函数?
你会用描点法画二次函数y=x2的图象吗?
画函数图象的基本步骤: 列表,描点,连线。
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
当x=1时,y=1 当x=2时,y=4
抛物线y=x2与x轴 有一个交点,是原 点(0,0)
抛物线y=x2在x轴的
y=x 上方(除顶点外),顶点
是它的最y 低点,开口 向上,并且向上无限 伸展;当1x0=0时,函数y
二次函数y=x2的 图象形如物体抛射
时们2所把经它这过叫条的做抛路抛物线物线线,我关. 于
Y=2X
5 44
3 22
1
-1-100 -9 -8 -7 -6 --55 -4 -3 -2 -1 O 1 2 3 4 55 6 -1
X
10
-2 -2
பைடு நூலகம்
-3
-4 -4
-5
-6 -6
-7 -8 -8
认识一元二次函数
二次函数的一般形式是怎样的? y=ax²+bx+c(a,b,c是常数,a≠ 0)
定义中应该注意的几个问题:
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
y x2
思考:这个二次函数图象有什么特征?
9
(1)形状是开口向上的抛物线
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
二次函数 y x2 2x 5 中,x=-2时,y= -3 ;
当y =2时, x = -1或3 ;
火眼金睛
若y (m 2)xm2 m4是关于x的二次函数,求m的值。
解:依题意得
m2 +m-4=2 m-2≠0
解得 m=-3 ∴ 当m=-3时,原函数为二次函数。
已知函数 (1)当k (2)当k
1、一次函数的图像有何特征?
一次函数的图像是一条直线 。 当 k>0 时,y随x的增大而增大; 当 k<0 时,y随x的增大而减小。
2、画函数图像的基本步骤是: 列表 、 描点 、 连线 。
作出一次函数y=2x和Y=2X+1的图象
一次函数做图步骤 1列表 2描点
3连线
88 YY=2X+1
7
66
(6) y=ax⒉+bx+c
在二次函数y=ax²+bx+c(a≠0)中, a、b、c分 别叫做二次项系数、一次项系数、常数项。填表:
y=ax²+bx+c(a≠0) a
y=6x²
6
y=x²+3x-2
1
y=-2x²+6
-2
y=(2x+3)(x-1)
2
y=2+(x-1)²
1
b
c
0
0
3
-2
0
6
1
-3
-2
3