传感器技术课后习题答案 贾伯年主编 第3版
传感器原理与应用习题-第7章热电式传感器
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。
它可分为两大类:热电阻传感器和热电偶传感器。
热电阻传感器的特点:(1)高温度系数、高电阻率。
(2)化学、物理性能稳定。
(3)良好的输出特性。
(4).良好的工艺性,以便于批量生产、降低成本。
热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。
铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。
铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。
当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。
7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。
利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。
连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。
连接导体定律是工业上运用补偿导线进行温度测量的理论基础。
7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。
传感器原理与应用习题_第6章压电式传感器
《传感器原理与应用》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第6章 压电式传感器6-1 何谓压电效应?何谓纵向压电效应和横向压电效应?答:一些离子型晶体的电介质不仅在电场力作用下,而且在机械力作用下,都会产生极化现象。
且其电位移D(在MKS 单位制中即电荷密度σ)与外应力张量T 成正比: D = dT 式中 d —压电常数矩阵。
当外力消失,电介质又恢复不带电原状;当外力变向,电荷极性随之而变。
这种现象称为正压电效应,或简称压电效应。
若对上述电介质施加电场作用时,同样会引起电介质内部正负电荷中心的相对位移而导致电介质产生变形,且其应变S 与外电场强度E 成正比: S=d t E 式中 d t ——逆压电常数矩阵。
这种现象称为逆压电效应,或称电致伸缩。
6-2 压电材料的主要特性参数有哪些?试比较三类压电材料的应用特点。
答:主要特性:压电常数、弹性常数、介电常数、机电耦合系数、电阻、居里点。
压电单晶:时间稳定性好,居里点高,在高温、强辐射条件下,仍具有良好的压电性,且机械性能,如机电耦合系数、介电常数、频率常数等均保持不变。
此外,还在光电、微声和激光等器件方面都有重要应用。
不足之处是质地脆、抗机械和热冲击性差。
压电陶瓷:压电常数大,灵敏度高,制造工艺成熟,成形工艺性好,成本低廉,利于广泛应用,还具有热释电性。
新型压电材料:既具有压电特性又具有半导体特性。
因此既可用其压电性研制传感器,又可用其半导体特性制作电子器件;也可以两者合一,集元件与线路于一体,研制成新型集成压电传感器测试系统。
6-3 试述石英晶片切型(︒︒+45/50yxlt )的含意。
6-4 为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合,试说明其组合的方式和适用场合。
答:(1)并联:C ′=2C ,q ′=2q,U ′=U,因为输出电容大,输出电荷大,所以时间常数,适合于测量缓变信号,且以电荷作为输出的场合。
传感器技术与应用第3版习题答案
传感器技术与应用第3版习题答案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器它由哪几部分组成2.答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
传感器通常由敏感元件和转换元件组成。
其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。
自动测控系统是完成这一系列技术措施之一的装置。
一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。
传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。
3. 传感器分类有哪几种各有什么优、缺点答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。
按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。
4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。
传感器技术与应用第3版的习题答案.doc
《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器?它由哪几部分组成?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
传感器通常由敏感元件和转换元件组成。
其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。
自动测控系统是完成这一系列技术措施之一的装置。
一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。
传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。
3. 传感器分类有哪几种?各有什么优、缺点?答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。
按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。
4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。
它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。
参考答案传感器及应用第三版习题册
模块一传感器的基本知识课题1 传感器的认识一、填空题1.传感器技术2.非电量信息3.敏感元件;传感器元件;测量电路4.物理效应5.传感器二、判断题1.√2.√3.×4.×5.√三、名词解释1.敏感元件是传感器中将被测量转换成与其有确定关系的、更易于转换的非电量的元件。
如很多称重传感器,先将重力转化成位移,位移更易于转换和检测。
2.传感元件是将传感器中的敏感元件转换的非电量进一步转换成电量,便于信号采集的元件。
如很多称重传感器,敏感元件先将重力转换成位移,传感元件再将位移转换成电阻变化,经检测电路成为便于测量的电压信号或电流信号。
四、简答题1.在信号检测和自动化控制系统中,传感器用于接收各种外部环境信息,其作用类似于人的感官,例如光敏传感器的作用类似视觉器官,气敏传感器的作用类似嗅觉器官。
2.传感器种类多种多样,比较常用的分类方法有三种:○1按传感器测量的物理量分类,可分为温度传感器、压力传感器、流量传感器、位移传感器等。
○2按传感器工作原理分类,可分为电阻传感器、电容传感器、电感传感器、光电传感器等。
○3按传感器输出信号的性质分类,可分为开关型传感器、模拟型传感器、数字型传感器。
3.传感器测量转换电路将传感元件输出的幅度很小且混杂有干扰信号的信号转换成为具有最佳特性的、线性化的电信号,并放大成易于测量、处理的电信号,如电压、电流、频率等。
五、综合应用题1.答案要点:一辆中级轿车中装有上千种传感器,以保证汽车的动力性、安全性、舒适性等。
当速度传感器感受到汽车速度为零时,输出信号使得汽车刹车启动,实现自动启停功能;汽车碰撞时,冲击传感器感受到冲击,输出信号将气囊打开,保护驾驶员的安全性。
温度传感器能够使汽车内部环境舒适宜人,保证驾驶员及乘坐人员的舒适性。
2.答案要点:机器人能看到障碍物,它可能用了图像传感器,类似于相机中的图像传感器,可以记录图像、可以识别图像。
课题2 传感器的技术指标一、填空题1.真实值2.线性度;迟滞;重复性3.最小变化4.动态响应时间;频率响应范围5.线性度;迟滞;重复性二、判断题1.×2.√3.√4.√5.√三、名词解释1.传感器的静态特性是指传感器的输入信号不随时间变化,或随时间缓慢变化时,传感器的输入与输出的对应关系。
传感器技术 贾伯年(第三版)习题答案
仅供参考习题11-1衡量传感器静态特性的主要指标有哪些?说说它们的含义。
答:1、线性度:表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、灵敏度:传感器输出量增量与被测输入量增量之比。
3、分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
4、回差:反映传感器在正(输入量增大)反(输入量减小)行程过程中对应于同一输入量,输出量曲线的不重合程度指标。
5、重复性:衡量传感器在同一工作条件下,输入量按同一方向作全程连续多次变动时,所得特性曲线间一致程度的指标。
6、阈值:是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性:传感器在相当长时间内仍保持其性能的能力。
8、漂移:指在一定时间间隔内,传感器输出量存在着与被测输人量无关的、不需要的变化。
9、静态误差(精度):指传感器在满量程内任一点输出值相对其理论值的可能偏离(逼近)程度。
它表示采用该传感器进行静态测量时所得数值的不确定度。
1-2 计算传感器线性度的方法有哪几种?差别何在?答:1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
两端误差为零,中间大。
3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高,但只可用图解法或计算法得。
4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小但拟合出的直线与标定曲线的最大偏差绝对值不一定最小,最大正负偏差的绝对值也不一定相等。
1-4怎样评价传感器的综合静态特性和动态特性??!答:传感器的综合静态特性和动态特性的评价主要从它的线性度、回差、重复性、灵敏度、分辨力,频率响应特性和阶跃响应特性指标进行。
1-5为什么要对传感器进行标定和校准?举例说明传感器静态标定和动态标定的方法(能说出一般标定的基本方法则更好!)。
传感器技术与应用第3版习题答案
《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器?它由哪几部分组成?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
传感器通常由敏感元件和转换元件组成。
其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。
自动测控系统是完成这一系列技术措施之一的装置。
一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。
传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。
3. 传感器分类有哪几种?各有什么优、缺点?答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。
按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。
4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。
它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。
传感器技术课后习题答案贾伯年主编第3版
衡量传感器静态特性的主要指标。
说明含义。
线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
灵敏度——传感器输出量增量与被测输入量增量之比。
分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
稳定性——即传感器在相当长时间内仍保持其性能的能力。
漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
计算传感器线性度的方法,差别。
理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。
动态特性:反映传感器对于随时间变化的输入量的响应特性。
(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。
Z-1 分析改善传感器性能的技术途径和措施。
(1)结构、材料与参数的合理选择(2)差动技术(3)平均技术(4)稳定性处理(5)屏蔽、隔离与干扰抑制(6)零示法、微差法与闭环技术(7)补偿、校正与“有源化”(8)集成化、智能化与信息融合2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。
传感器技术及应用第3版习题
《传感器技术与应用第 3 版》习题参照答案习题 11.什么叫传感器?它由哪几部分构成?答:传感器是能感觉规定的被丈量并依照必定的规律变换成可用输出信号的器件或装置。
传感器往常由敏感元件和变换元件构成。
此中敏感元件是指传感器中能直接感觉或响应被丈量的部分;变换元件是指传感器中能将敏感元件感觉或响应的被丈量变换成适于传输或丈量的电信号部分。
2.传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性认识、定量剖析预期成效所从事的一系列技术举措。
自动测控系统是达成这一系列技术举措之一的装置。
一个完好的自动测控系统,一般由传感器、丈量电路、显示记录装置或调理履行装置、电源四部分构成。
传感器的作用是对往常是非电量的原始信息进行精准靠谱的捕捉和变换为电量,供应给丈量电路办理。
3.传感器分类有哪几种?各有什么优、弊端?答:传感器有很多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加快度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,马上传感器分为有源传感器和无源传感器;按输出信号的性质分类,马上传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的长处是比较明确地表达了传感器的用途,便于使用者依据其用途选用;弊端是没有区分每种传感器在变换机理上有何共性和差别,不便使用者掌握其基来源理及剖析方法。
按工作原理分类的长处是对传感器的工作原理比较清楚,有益于专业人员对传感器的深入研究剖析;弊端是不便于使用者依据用途采纳。
4.什么是传感器的静态特征?它由哪些技术指标描绘?它有线性度、灵答:传感器丈量静态量时表现的输入、输出量的对应关系为静态特征。
敏度、重复性、迟滞现象、分辨力、稳固性、漂移等技术指标。
传感器技术与应用第3版习题答案
《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器?它由哪几部分组成?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
传感器通常由敏感元件和转换元件组成。
其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2. 传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。
自动测控系统是完成这一系列技术措施之一的装置。
一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。
传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。
3. 传感器分类有哪几种?各有什么优、缺点?答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。
按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。
4. 什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。
它有线性度、灵敏度、重复性、迟滞现象、分辨力、稳定性、漂移等技术指标。
传感器技术基础与应用实训(第3版 习题解答 (3)[5页]
项目单元33.6 习题参考答案1.电感式传感器分为哪几种类型?各有何特点?答:电感式传感器是利用线圈自感和互感的变化实现非电量电测的一种装置,传感器利用电磁感应定律将被测非电量转换为电感或互感的变化。
电感式传感器种类:自感式、互感式、涡流式、压磁式、感应同步器。
工作原理:自感、互感、涡流、压磁。
2.比较差动式电感传感器和差动变压器式传感器在结构和工作原理上的异同。
答:自感式传感器与差动变压器式传感器相同点:工作原理都是建立在电磁感应的基础上,都可以分为变气隙式、变面积式和螺旋式等。
不同点:结构上,自感式传感器是将被测量的变化转化为电感线圈的电感值变化。
差动变压器式电感式传感器是把被测量的变化转换为传感器互感的变化,传感器本身是互感系数可变的变压器。
3.说明差动变隙式电感传感器的主要组成和工作原理,采用差动变隙式电感传感器有何优点。
答:差动变隙式电感传感器的主要由两个结构对称的电感线圈组成,电气参数相同,共用一个衔铁,当衔铁发生位移时,一个线圈的电感量增加,一个电感量减小,电感量的变化反应了位移的大小。
采用差动变隙式电感传感器优点:1)差动变隙式电感传感器灵敏度是单个电感传感器的两倍,2)可以改善电感传感器的线性。
4.差动变压器式传感器的零点残余电压产生的原因是什么?答:零点残余电压产生原因:主要是由传感器的两次级绕组的电气参数和几何尺寸不对称,以及磁性材料的非线性等引起的。
零点残余电压的波形十分复杂,主要由基波和高次谐波组成。
基波产生的主要原因是:传感器的两次级绕组的电气参数、几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。
高次谐波(主要是三次谐波)产生原因:是磁性材料磁化曲线的非线性(磁饱和、磁滞)。
零点残余电压一般在几十毫伏以下,在实际使用时,应设法减小Ux,否则将会影响传感器的测量结果。
5.什么是电涡流效应?怎样利用电涡流效应进行位移测量?答:电涡流效应是指金属导体置于交变磁场中会产生电涡流,且该电涡流所产生磁场的方向与原磁场方向相反的一种物理现象。
传感器技术答案(贾伯年)第三版
1-1衡量传感器静态特性的主要指标。
说明含义。
1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
2、回差――反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
4、灵敏度——传感器输出量增量与被测输入量增量之比。
5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性——即传感器在相当长时间内仍保持其性能的能力。
8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
1-2计算传感器线性度的方法,差别。
理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
1-3什么是传感器的静态特性和动态特性?为什么要分静和动?静态特性表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。
主要考虑其非线性与随机变化等因素。
动态特性是反映传感器对于随时间变化的输入量的响应特性,研究其频率响应特性与阶跃响应特性,分析其动态误差。
区分是为了在数学上分析方便。
1-4分析改善传感器性能的技术途径和措施。
1、结构、材料与参数的合理选择;2、差动技术;3、平均技术;4、稳定性处理;5、屏蔽、隔离与干扰抑制;6、零示法、微差法与闭环技术;7、补偿、校正与“有源化”;8、集成化、智能化与信息融合。
传感器第三版答案
传感器技术习题解答第一章传感器的一般特性1-1:答:传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性;其主要指标有线性度、灵敏度、精确度、最小检测量和分辨力、迟滞、重复性、零点漂移、温漂。
1-2:答:(1)动态特性是指传感器对随时间变化的输入量的响应特性;(2)描述动态特性的指标:对一阶传感器:时间常数对二阶传感器:固有频率、阻尼比。
1-3:答:传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即A=ΔA/YFS*100%1-4;答:(1):传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器的线性度;(2)拟合直线的常用求法有:端基法和最小二5乘法。
1-5:答:由一阶传感器频率传递函数w(jw)=K/(1+jωη),确定输出信号失真、测量结果在所要求精度的工作段,即由B/A=K/(1+(ωη)2)1/2,从而确定ω,进而求出f=ω/(2π).1-6:答:若某传感器的位移特性曲线方程为y1=a+a1x+a2x2+a3x3+…….让另一传感器感受相反方向的位移,其特性曲线方程为y2=a-a1x+a2x2-a3x3+……,则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。
其特点输出信号中没有偶次项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。
1-7:解:YFS=200-0=200由A=ΔA/YFS*100%有A=4/200*100%=2%。
精度特级为2.5级。
1-8:解:根据精度定义表达式:A=ΔA/AyFS *100%,由题意可知:A=1.5%,YFS=100所以ΔA=A YFS=1.5因为 1.4<1.5所以合格。
1-9:解:Δhmax=103-98=5YFS=250-0=250故δH =Δhmax/YFS*100%=2%故此在该点的迟滞是2%。
1-10:解:因为传感器响应幅值差值在10%以内,且Wη≤0.5,W≤0.5/η,而w=2πf,所以 f=0.5/2πη≈8Hz即传感器输入信号的工作频率范围为0∽8Hz1-11解:(1)切线法如图所示,在x=0处所做的切线为拟合直线,其方程为:Y=a+KX,当x=0时,Y=1,故a0=1,又因为dY/dx=1/(2(1+x)1/2)|x=0=1/2=K故拟合直线为:Y=1+x/2最大偏差ΔYmax在x=0.5处,故ΔYmax=1+0.5/2-(1+0.5)1/2=5/4-(3/2)1/2=0.025YFS=(1+0.5/2)-1=0.25故线性度δL =ΔYmax/ YFS*100%=0.025/0.25*100%=0.10*100%=10%(2)端基法:设Y的始点与终点的连线方程为Y=a+KX因为x=0时,Y=1,x=0.5时,Y=1.225,所以a=1,k=0.225/0.5=0.45而由 d(y-Y)/dx=d((1+x)1/2-(1+0.45x))/dx=-0.45+1/(2(1+x)1/2)=0有-0.9(1+x)1/2+1=0(1/0.9)2=1+xx=0.234ΔYmax=[(1+x)1/2-(1+0.45x)]|x=0.234=1.11-1.1053=0.0047YFS=1+0.45*0.5-1=0.225δL端基=ΔYmax/ Y FS*100%=0.0047/0.225*100%=2.09%(3)最小二*法Xi0 0.1 0.2 0.3 0.4 0.5yi1 1.048 1.095 1.140 1.183 1.225Xi20 0.01 0.04 0.09 0.16 0.25x i yi0 0.1048 0.219 0.342 0.473 0.612求合xi yi1.751 Xi的合 1.5Xi平方的合0.55 Yi的合 6.691 Xi合的平方 2.25由公式()()xykninkniaxxyxxyxxxyxyxaiiiiiiiiiii*4695.00034.14695.005.1506.100365.1055.0*625.2751.1*65.1*691.60034.105.168.36265.255.0*625.255.0*691.65.1*751.1)**)22222((+==--=--==--=--=-∑∑-∑=-∑-∑=∑∑∑∑∑∑由 d(y-Y)/dx=d((1+x)1/2-(1.0034+0.4695*x))/dx=-0.4695+1/(2(1+x)1/2)=0有x=1/(0.939)2-1=0.134ΔYmax=[(1+x)1/2-(1.0034+0.4695x)]|x=0.234=1.065-1.066=-0.001YFS=1.0034+0.4695x-1.0034=0.235δL二*法=ΔYmax/ Y FS*100%=0.001/0.235*100%=0.0042*100%=0.42%1-12:解:此为一阶传感器,其微分方程为a1dy/dx+ay=bx所以时间常数η=a1/a=10sK=b 0/a 0=5*10-6V/Pa1- 13:解:由幅频特性有:()=+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-ωωξωωω04021/2221K A ()()3125.1arctan 36.016.0*7.0*2arctan 012arctan 947.07056.01*42120222264.010006007.010006001-=--=-⎪⎪⎭⎫⎝⎛-==+=+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-ωωωωξωϕ1- 14:解:由题意知:()()()max minmax3%H j H j H j ωωω-<因为最小频率为W=0,由图1-14知,此时输出的幅频值为│H (jw )│/K=1, 即│H (jw )│=K()max2222222max 013%0.972max max 4002max max 400139.3624110.970.97K K k kHzH j ωωωξωωωωξωωωω∴-<<+<+⎛⎫<--= ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1- 15解:由传感器灵敏度的定义有: K =m mv mmv x y μμ/51050==∆∆ 若采用两个相同的传感器组成差动测量系统时,输出仅含奇次项,且灵敏度提高了2倍,为20mv/μm.第二章 应变式传感器2-1:答:(1)金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡量传感器静态特性的主要指标。
说明含义。
线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。
回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。
重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。
各条特性曲线越靠近,重复性越好。
灵敏度——传感器输出量增量与被测输入量增量之比。
分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
稳定性——即传感器在相当长时间内仍保持其性能的能力。
漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。
静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。
计算传感器线性度的方法,差别。
理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。
“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。
这种方法的拟合精度最高。
最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。
什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。
动态特性:反映传感器对于随时间变化的输入量的响应特性。
(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。
Z-1 分析改善传感器性能的技术途径和措施。
(1)结构、材料与参数的合理选择(2)差动技术(3)平均技术(4)稳定性处理(5)屏蔽、隔离与干扰抑制(6)零示法、微差法与闭环技术(7)补偿、校正与“有源化”(8)集成化、智能化与信息融合2-1 金属应变计与半导体工作机理的异同?比较应变计各种灵敏系数概念的不同意义。
(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
(2)对于金属材料,灵敏系数Ko=Km=(1+2μ)+C(1-2μ)。
前部分为受力后金属几何尺寸变化,一般μ≈0.3,因此(1+2μ)=1.6;后部分为电阻率随应变而变的部分。
金属丝材的应变电阻效应以结构尺寸变化为主。
对于半导体材料,灵敏系数Ko=Ks=(1+2μ)+ πE 。
前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE 》(1+2μ),因此Ko=Ks=πE 。
半导体材料的应变电阻效应主要基于压阻效应。
2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。
电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。
在工作温度变化较大时,会产生温度误差。
补偿办法:1、温度自补偿法 (1)单丝自补偿应变计(2) 双丝自补偿应变计2、桥路补偿法 (1)双丝半桥式(2)补偿块法2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。
原因:上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。
无论是输出电压还是电流,实际上都与ΔRi/Ri 呈非线性关系。
措施:(1) 差动电桥补偿法差动电桥呈现相对臂“和”,相邻臂“差”的特征,通过应变计合理布片达到补偿目的。
常用的有半桥差动电路和全桥差动电路。
(2) 恒流源补偿法误差主要由于应变电阻ΔRi 的变化引起工作臂电流的变化所致。
采用恒流源,可减小误差。
2-5 如何用电阻应变计构成应变式传感器?对其各组成部分有何要求?一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性敏感元件构成传感器,用以对任何能转变成弹性元件应变的其他物理量作间接测量。
331241240123412341142R R R R R R R R U U R R R R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆∆∆∆=-+-+++ ⎪ ⎪⎝⎭⎝⎭要求:非线性误差要小(<0.05%~0.1%F.S ),力学性能参数受环境温度影响小,并与弹性元件匹配。
2-9 四臂平衡差动电桥。
说明为什么采用。
全桥差动电路,R1,R3受拉,R2,R4受压,代入,得由全等桥臂,得可见输出电压Uo 与ΔRi/Ri 成严格的线性关系,没有非线性误差。
即Uo=f(ΔR/R)。
因为四臂差动工作,不仅消除了飞线性误差,而且输出比单臂工作提高了4倍,故常采用此方法。
3-1 比较差动式自感传感器和差动变压器在结构上及工作原理上的异同。
绝大多数自感式传感器都运用与电阻差动式类似的技术来改善性能,由两单一式结构对称组合,构成差动式自感传感器。
采用差动式结构,除了可以改善非线性、提高灵敏度外,对电源电压与频率的波动及温度变化等外界影响也有补偿作用,从而提高了传感器的稳定性。
互感式传感器是一种线圈互感随衔铁位移变化的变磁阻式传感器,初、次级间的互感随衔铁移动而变,且两个次级绕组按差动方式工作,因此又称为差动变压器。
3-4 变间隙式、变截面式和螺旋式三种电感式传感器各适合用于什么场合?各有什么优缺点?变气隙式灵敏度较高,但测量范围小,一般用于测量几微米到几百微米的位移。
变面积式灵敏度较低,但线性范围较大,除E 型与四极型外,还常做成八极、十六极型,一般可分辨零点几角秒以下的微小角位移,线性范围达±10°.螺管式可测量几纳米到一米的位移,但灵敏度较前两种低。
3-5螺管式电感传感器做成细长形有什么好处?欲扩大其线性范围可以采取哪些措施?答:好处:增加线圈的长度有利于扩大线性范围或提高线性度。
措施:适当增加线圈长度、采用阶梯形线圈。
3-6 差动式电感传感器为什么常采用相敏检波电路?分析原理。
原因:相敏检波电路,它能有效地消除基波正交分量与偶次谐波分量,减小奇次谐波分量,使传感器零位电压减至极小。
3-7 电感传感器产生零位电压的原因和减小零位电压的措施。
差动自感式传感器当衔铁位于中间位置时,电桥输出理论上应为零,但实际上总存在零位不平衡电压输出(零位电压),造成零位误差。
措施:一种常用的方法是采用补偿电路,其原理为:(1)串联电阻消除基波零位电压;2)并联电阻消除高次谐波零位电压;(3)加并联电容消除基波正交分量或高次谐波分量。
另一种有效的方法是采用外接测量电路来减小零位电压。
如前述的相敏检波电路,它能有效地消除基波正交分量与偶次谐波分量,减小奇次谐波分量,使传感器零位电压减至极小。
此外还可采用磁路调节机构(如可调端盖)保证磁路的对称性,来减小零位电压。
3-9 造成自感式传感器和差动变压器温度误差的原因及其减小措施。
(1)环境温度的变化会引起自感传感器的零点温度漂移、灵敏度温度漂移以及线性度和相位的变化,造成温度误差。
应注意线膨胀系数的大小与匹配,采用弱磁不锈钢等材料作线圈骨架,或采用脱胎线圈。
(2)当温度变化时,差动变压器初级线圈的参数尤其铜阻的变化影响较大。
应提高初级线圈的品质因数,或采用稳定激励电流的方法减小温度误差。
3-12 电涡流式传感器的原理及应用。
1.测位移 电涡流式传感器的主要用途之一是可用来测量金属件的静态或动态位移,最大量程达数百毫米,分辨率为0.1%。
2.测厚度 金属板材厚度的变化相当于线圈与金属表面间距离的改变,根据输出电压的变化即可知线圈与金属表面间距331241240123412341142R R R R R R R R U U R R R R R R R R ⎛⎫⎛⎫∆∆∆∆∆∆∆∆∆=-+-++++ ⎪ ⎪⎝⎭⎝⎭33124124012341234111111424U 4R R R R R R R R U U R R R R R R R R R R U R R⎛⎫⎛⎫∆∆∆-∆-∆∆-∆-∆∆=-+-++++ ⎪ ⎪⎝⎭⎝⎭∆∆==离的变化,即板厚的变化。
3.测温度 若保持电涡流式传感器的机、电、磁各参数不变,使传感器的输出只随被测导体电阻率而变,就可测得温度的变化。
3-14 比较定频调幅式、变频调幅式和调频式三种测量电路的优缺点,并指出它们的应用场合。
(1)定频调幅式:这种电路采用石英晶体振荡器,能获得高稳定度频率的高频激励信号,输出稳定,获得广泛应用, 但线路较复杂,装调较困难,线性范围也不够宽。
(2)变频调幅式:这种电路除结构简单、成本较低外,还具有灵敏度高、线性范围宽等优点,因此监控等场合常采用它。
(3)调频式:这种电路的关键是提高振荡器的频率稳定度。
通常可以从环境温度变化、电缆电容变化及负载影响三方面考虑。
4-1 电容式传感器可分为哪几类?各自的主要用途是什么?(1) 变极距型电容传感器:在微位移检测中应用最广。
(2) 变面积型电容传感器:适合测量较大的直线位移和角位移。
(3)变介质型电容传感器:可用于非导电散材物料的物位测量。
4-2 变极距型电容传感器产生非线性误差的原因及如何减小?原因:灵敏度S 与初始极距00的平方成反比,用减少00的办法来提高灵敏度,但00的减小会导致非线性误差增大。
采用差动式,可比单极式灵敏度提高一倍,且非线性误差大为减小。
由于结构上的对称性,它还能有效地补偿温度变化所造成的误差。
4-3 为什么电容式传感器的绝缘、屏蔽和电缆问题特别重要?如何解决?电容式传感器由于受结构与尺寸的限制,其电容量都很小,属于小功率、高阻抗器,因此极易受外界干扰,尤其是受大于它几倍、几十倍的、且具有随机性的电缆寄生电容的干扰,它与传感器电容相并联,严重影响传感器的输出特性,甚至会淹没没有用信号而不能使用。
解决:驱动电缆法、整体屏蔽法、采用组合式与集成技术.5-12 霍尔效应是什么?可进行哪些参数的测量?当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
利用霍尔效应可测量大电流、微气隙磁场、微位移、转速、加速度、振动、压力、流量和液位等;用以制成磁读头、磁罗盘、无刷电机、接近开关和计算元件等等。
磁敏电阻与磁敏二极管的特点?磁敏电阻:外加磁场使导体(半导体)电阻随磁场增加而增大的现象称磁阻效应。
载流导体置于磁场中除了产生霍尔效应外,导体中载流子因受洛仑兹力作用要发生偏转,载流子运动方向偏转使电流路径变化,起到了加大电阻的作用,磁场越强增大电阻的作用越强。