2016年杨浦区初三数学第一次模拟测试卷 2016.4
2016年上海浦东新区初三一模数学试卷答案
⎧ 4a − 2b + c43; c = −5
⎨ b = −2
⎩
⎩
c = −8
c = −8
∴二次函数的解析式为y
=
2 x
−
2x
−
8
.
(2) 写出抛物线顶点坐标和对称轴.
学生版
教师版
答案版
答 案 顶点坐标为(1, −9),对称轴为x = 1.
答案 D
解 析 A.有一个顶角(或底角)相等的两个等腰三角形相似,所以A选项错误.
B.两边对应成比例且它们的夹角相等的两个三角形相似,所以B选项错误.
C.四个内角都对应相等的两个四边形不一定相似,所以C选项错误.
D.斜边和一条直角边对应成比例的两个直角三角形相似,所以D选项正确.
故选D.
填空题(本大题共12小题,每题4分,满分48分)
∴ , −−→
2
GA = − a ⃗
3
2018/12/04 −−→
∴用向量a表⃗ 示向量GA为−
2
. a ⃗
3
14. 如图,在△ABC 中,AC = , 6 BC = , 是 9 D △ABC 的边BC 上的点,且∠C AD = ∠B,那么C D的长是
.
答案 4
解析
∵ , , ∠C = ∠C ∠C AD = ∠B
∴ ∽ , △AC D △BC A
∴ , AC
CD
=
BC
AC
即 , 6
CD
=
9
6
∴C D的长是4,
故答案为:4.
15.
如图,直线 ,如果 AA1//BB1//C C1
AB
=
1 ,AA1 = , 2 C C1 = 6,那么线段BB1的长是
2016届九年级中考一模数学试题(扫描版)
学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。
2016杨浦初三一模数学试卷分析
杨浦2015学年度第一学期期末考试初 三 数 学 试 卷 2016.1(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.将抛物线22y x =向上平移2个单位后所得抛物线的表达式是……………( ▲ ) (A )222+=x y ;(B )2)2(2+=x y ; (C )2)2(2-=x y ;(D )222-=x y . 2.以下图形中一定属于互相放缩关系的是………………………………………( ▲ ) (A )斜边长分别是10和5的两直角三角形; (B )腰长分别是10和5的两等腰三角形; (C )边长分别为10和5的两菱形; (D )边长分别为10和5的两正方形.3.如图,已知在△ABC 中,D 是边BC 的中点,a BA =,b BC =,那么DA 等于…( ▲ )(A )b a -21; (B )b a 21-; (C )a b -21; (D )a b 21-.4.坡比等于1∶3的斜坡的坡角等于 ……………………………………………( ▲ ) (A )︒30;(B )︒45; (C )︒50;(D )︒60.5.下列各组条件中,一定能推得△ABC 与△DEF 相似的是…………………( ▲ ) (A )∠A =∠E 且∠D =∠F ; (B )∠A =∠B 且∠D =∠F ; (C )∠A =∠E 且AB EFAC ED =;(D )∠A =∠E 且AB FDBC DE=. 6.下列图像中,有一个可能是函数20)y ax bx a b a =+++≠(的图像,它是…( ▲ )(A ) (B ) (C ) 1 x y x y11 1 AC(第3题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.如果23x y y -=,那么xy = ▲ .8.如图,已知点G 为△ABC 的重心,DE 过点G ,且DE //BC , EF //AB ,那么:CF BF = ▲ . 9.已知在△ABC 中,点D 、E 分别在边AB 和BC 上,AD =2,DB =1,BC =6,要使DE ∥AC ,那么BE = ▲ .10.如果△ABC 与△DEF 相似,△ABC 的三边之比为3:4:6,△DEF 的最长边是10cm ,那么△DEF 的最短边是 ▲ cm .11.如果AB //CD ,23AB CD =,AB 与CD 的方向相反,那么AB = ▲ CD . 12.计算:︒-︒30cot 60sin = ▲ . 13.在△ABC 中,∠C =90°,如果1sin 3A =,AB =6,那么BC = ▲ . 14.如果二次函数2y x bx c =++配方后为2(2)1y x =+-,那么c 的值是 ▲ . 15.抛物线1422-+-=x x y 的对称轴是直线 ▲ .16.如果1(1,)A y -,2(2,)B y -是二次函数2+y x m =图像上的两个点,那么y 1 ▲ y 2(请填入“>”或“<”).17.请写出一个二次函数的解析式,满足:图像的开口向下,对称轴是直线1x =-,且与y 轴的交点在x 轴下方,那么这个二次函数的解析式可以 是 ▲ .18.如图,已知将△ABC 沿角平分线BE 所在直线翻折, 点A 恰好落在边BC 的中点M 处,且AM =BE ,那么 ∠EBC 的正切值为 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)如图,已知两个不平行的向量a 、b . 先化简,再求作:13(3)()22a b a b +-+.(不要求写作法,但要指出所作图中表示结论的向量)ba(第19题图) ACDE · G(第8题图)(第18题图)E20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)已知二次函数20)y ax bx c a =++≠(的图像上部分点的横坐标x 与纵坐标y 的对应值如下表所示:x … -1 0 2 4 … y…-511m…求:(1)这个二次函数的解析式;(2)这个二次函数图像的顶点坐标及上表中m 的值.21.(本题满分10分,其中每小题各5分)如图,梯形ABCD 中,AD //BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F . 求:(1)AF :FC 的值;(2)EF :BF 的值.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分) 如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A 、C 两点处测得该塔顶端F 的仰角分别为α和β,矩形建筑物宽度AD =20 m ,高度DC =33 m . (1) 试用α和β的三角比表示线段CG 的长;(2) 如果=48=65αβ︒︒,,请求出信号发射塔顶端到地面的高度FG 的值(结果精确到1m ).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(本题满分12分,其中每小题各6分)已知:如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,点F 在边AB 上,BA BF BC ⋅=2,CF 与DE 相交于点G . (1)求证:DF AB BC DG ⋅=⋅; (2)当点E 为AC 中点时,求证:2EG AFDG DF=.AB C DE F (第21题图) (第23题图)ABCDE GF (第22题图)E24.(本题满分12分,其中每小题各4分)已知在平面直角坐标系中,抛物线c bx x y ++-=221与x 轴交于点A 、B ,与y 轴交于点C ,直线4+=x y 经过A 、C 两点. (1)求抛物线的表达式;(2)如果点P 、Q 在抛物线上(P 点在对称轴左边),且PQ //AO ,PQ =2AO .求点P 、Q 的坐标;(3)动点M 在直线4+=x y 上,且△ABC 与△COM 相似,求点M 的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知菱形ABCD 的边长为5,对角线AC 的长为6(如图1),点E 为边AB 上的动点,点F 在射线AD 上,且∠ECF =∠B ,直线CF 交直线AB 于点M . (1) 求∠B 的余弦值;(2) 当点E 与点A 重合时,试画出符合题意的图形,并求BM 的长;(3) 当点M 在边AB 的延长线上时,设BE =x ,BM =y ,求y 关于x 的函数解析式,并写出定义域.A B C D(图1)A B C D (备用图) (第25题图) A O B Cy (第24题图)杨浦区2015学年度第一学期期末考试初 三 数 学 答 案 2016.1一、选择题:(本大题共6题,每题4分,满分24分)1. A ; 2. D ; 3. B ; 4. A ; 5. C ; 6. C ; 二、填空题:(本大题共12题,每题4分,满分48分) 7.53; 8.1:2; 9.2;10. 5; 11.32-;12. 13.2; 14.5;15.x=1;16.<;17.221y x x =---等;18.23;三、解答题:(本大题共7题,满分78分) 19.解:13(3)()22a b a b +-+13322a b a b =+-------------------------(1分) 2a b =-+----------------------------------------------------------------------(4分)画图正确4分(方法不限),结论1分.20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)由题意可得:154211c a b c a b =⎧⎪-+=-⎨⎪++=⎩-----------------------------------(3分)解得:1=-24c a b =⎧⎪⎨⎪=⎩,即解析式为2241y x x =-++---------------------------(3分)(2)∵222412(1)3y x x x =-++=--+,∴顶点坐标是(1,3), ------(2分)∴当x=4时,y=-15,即m=-15. ------------------------------(2分)21.(本题满分10分,其中每小题各5分)解:(1)延长BE 交AD 的延长线于点M ,∵AD//BC , ∴DE DM EC BC =,AF AMFC BC=-------------------------------------------(2分) ∵点E 为边DC 的中点,∴DM=BC ,∵BC=2AD ,∴DM=2AD ,∴AM=AD+DM=3AD, ----------------------------------(1分)∴3322AF AD FC AD ==------------------------------------------------------------------(2分) (2)∵AD//BC ,∴32FM AM BF BC ==,1EM DEBE EC==,-------------(1分,1分)∴52BM BF =,21BM BE =∴54BE BF =,---------------------------------------(1分) ∴14EF BF =-----------------------------------------------------------------------(2分) 22.(本题满分10分,其中第(1)小题6分,第(2)小题4分) 解:(1)如图,延长AD 交FG 于点E .在Rt △FCG 中,tan β=FGCG ,∴tan FG CG β=⋅----------------------(2分)在Rt △F AE 中,tan α=FEAE ,∴tan FE AE α=⋅------------------------(1分)∵FG -FE =EG =DC =33,∴tan tan =33CG AE βα⋅-⋅-----------------------------------------------(1分) ∵AE=AD+DE=AD+CG =20+CG , ∴tan 20+)tan =33CG CG βα⋅-⋅(, ∴3320tan tan tan CG αβα+=-.----------------------------------------------------------(2分)(2)∵tan FG CG β=⋅,∴33tan 20tan tan tan -tan FG βαββα+⋅=-------(1分)∴33 2.1+20 1.1 2.1FG=2.1-1.1⨯⨯⨯ = 115.5≈116.--------------------------(2分)答:该信号发射塔顶端到地面的高度FG 约是116 m .-------------------------(1分)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分) (1) 证明:∵BA BF BC ⋅=2,∴BC BABF BC=,------------------------------------(1分) 又∵∠B=∠B ,∴△BCF ∽△BAC ,------------------------------------------(2分) ∵DE //BC ,∴△FDG ∽△FBC ,----------------------------------------------(1分)∴△FDG ∽△CBA ,--------------------------------------------------------------(1分)∴FD DGCB BA=,即DF AB BC DG ⋅=⋅.----------------------------------(1分) (2) 证明:∵DF AB BC DG ⋅=⋅,∴DF BCDG AB=, ∵△BCF ∽△BAC ,∴=BC CFAB AC,----------------------------------------------------(1分) ∵E 为AC 中点, ∴AC=2CE ,∴1=2CF CFAC CE,∴12BC CF AB CE =----------------(1分) ∵△BCF ∽△BAC ,∴∠BCF=∠BAC,又∵DE //BC ,∴∠EGC=∠BAC,而∠ECG=∠FCA, ∴△CEG ∽△CFA ,------------------------------------------------(2分)∴CF AFCE EG =,----------------------------------------------------------------------------(1分) ∴12DF AF DG EG =,即2EG AF DG DF=---------------------------------------------------(1分)24.(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵直线4+=x y 经过A ,C 两点,∴A (-4,0),C (0,4),--------------(2分)∵抛物线c bx x y ++-=221过点A 、C , ∴抛物线的表达式是2142y x x =--+。
2016上海中考数学模拟试卷(2016.4)(2021年整理)
2016上海中考数学模拟试卷(2016.4)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016上海中考数学模拟试卷(2016.4)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016上海中考数学模拟试卷(2016.4)(word版可编辑修改)的全部内容。
2015学年第二学期初三数学质量调研试卷(2016.4)(满分150分,考试时间120分钟)考生注意:1.本试卷含三个大题,共25题,考试过程中可以使用不带存储记忆功能的计算工具; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1. 5的负倒数为(A ) 25; (B) 5-; (C ) 51; (D ) 51-.2. 下面四个命题中,为真命题的是(A) 若b a >,则22b a >; (B ) 若b a >,则ba 11<; (C) 若b a >,则22bc ac >; (D ) 若b a >、d c >,则d b c a ->-。
3。
“双十一”购物节后,小明同学对班上同学中的12位进行抽样调查并用数字1—12对每位被调查者进行编号,统计每位同学在购物节中消费金额,结果如下表所示: 根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为(A ) 400、300; (B ) 300、400; (C) 400、400; (D ) 300、300。
2016年上海市浦东新区中考数学一模试卷
6.(4 分)(2016•浦东新区一模)下列命题是真命题的是( )
A.有一个角相等的两个等腰三角形相似
B.两边对应成比例且有一个角相等的两个三角形相似
C.四个内角都对应相等的两个四边形相似
D.斜边和一条直角边对应成比例的两个直角三角形相似
【分析】根据相等的角可能为顶角或底角可对 A 进行判断;根据相似三角形的判
A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 6.(4 分)下列命题是真命题的是( )
第 1页(共 25页)
A.有一个角相等的两个等腰三角形相似 B.两边对应成比例且有一个角相等的两个三角形相似 C.四个内角都对应相等的两个四边形相似 D.斜边和一条直角边对应成比例的两个直角三角形相似
13.(4 分)已知 AD 是△ABC 的中线,点 G 是△ABC 的重心, = ,那么用向 量 表示向量 为 . 14.(4 分)如图,在△ABC 中,AC=6,BC=9,D 是△ABC 的边 BC 上的点,且∠ CAD=∠B,那么 CD 的长是 .
第 2页(共 25页)
15.(4 分)如图,直线 AA1∥BB1∥CC1,如果 BB1 的长是 .
第 7页(共 25页)
又∵对称轴 x=﹣ <0, ∴b<0, 所以 A 正确. 故选 A. 【点评】考查二次函数 y=ax2+bx+c 系数符号的确定.
5.(4 分)(2016•浦东新区一模)如图,Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,下列结论中错误的是( )
A.AC2=AD•AB B.CD2=CA•CB C.CD2=AD•DB D.BC2=BD•BA 【分析】直接根据射影定理对各选项进行判断. 【解答】解:∵∠ACB=90°,CD⊥AB 于点 D, ∴AC2=AD•AB,CD2=DA•DB,BC2=BD•BA. 故选 B. 【点评】本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上 射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中 项.
【数学】2016年上海市浦东新区中考一模数学试卷含解析
A.AC2=AD•AB B.CD2=CA•CB
C.CD2=AD•DB D.BC2=BD•BA
第 1 页(共 24 页)
6. (4 分)下列命题是真命题的是(
)
A.有一个角相等的两个等腰三角形相似 B.两边对应成比例且有一个角相等的两个三角形相似 C.四个内角都对应相等的两个四边形相似 D.斜边和一条直角边对应成比例的两个直角三角形相似 二、填空题(本大题共 12 小题,每题 4 分,满分 48 分)7.已知,那么. 7. (4 分)已知 ,那么 = + )= . .
25. (14 分)如图,在边长为 6 的正方形 ABCD 中,点 E 为 AD 边上的一个动点 (与点 A、D 不重合) ,∠EBM=45°,BE 交对角线 AC 于点 F,BM 交对角 线 AC 于点 G,交 CD 于点 M. (1)如图 1,联结 BD,求证:△DEB∽△CGB,并写出 DE:CG 的值; (2)联结 EG,如图 2,若设 AE=x,EG=y,求 y 关于 x 的函数解析式,并写 出函数的定义域; (3)当 M 为边 DC 的三等分点时,求 S△EGF 的面积.
23. (12 分)如图,在△ABC 中,D 是 BC 边的中点,DE⊥BC 交 AB 于点 E, AD=AC,EC 交 AD 于点 F. (1)求证:△ABC∽△FCD; (2)求证:FC=3EF.
第 4 页(共 24 页)
24. (12 分)如图,抛物线 y=ax2+2ax+c(a>0)与 x 轴交于 A(﹣3,0) 、B 两 点(A 在 B 的左侧) ,与 y 轴交于点 C(0,﹣3) ,抛物线的顶点为 M. (1)求 a、c 的值; (2)求 tan∠MAC 的值; (3)若点 P 是线段 AC 上一个动点,联结 OP.问:是否存在点 P,使得以点 O、 C、P 为顶点的三角形与△ABC 相似?若存在,求出 P 点的坐标;若不存在, 请说明理由.
初三上2016年杨浦区一模
2016年上海市杨浦区中考数学一模试卷2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2【解答】解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为(0,2),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+2.故选A.2.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形【解答】解:斜边长分别是10和5的两直角三角形,直角边不一定成比例,所以不一定属于互相放缩关系,A不正确;腰长分别是10和5的两等腰三角形不一定属于互相放缩关系,B不正确;边长分别是10和5的两个菱形不一定属于互相放缩关系,C不正确;边长分别是10和5的两个正方形属于互相放缩关系,D正确,故选:D.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.【解答】解:△在△ABC中,D是边BC的中点,△==,△=﹣=﹣.故选B.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°【解答】解:坡角α,则tanα=1:,则α=30°.故选A.5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.△A=△E且△D=△F B.△A=△B且△D=△FC.△A=△E且D.△A=△E且【解答】解:A、△D和△F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、△A=△B,△D=△F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、△A=△E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( ) A.B.C.D.【解答】解:在函数y=ax2+bx+a+b(a≠0)中,当a<0,b<0时,则该函数开口向下,顶点在y轴左侧,一定经过点(0,a+b),点(0,a+b)一定在y轴的负半轴,故选项A、B错误;当a>0,b<0时,若函数过点(1,0),则a+b+a+b=0,得a与b互为相反数,则y=ax2﹣ax=ax(x﹣1),则该函数与x轴的两个交点是(0,0)或(1,0),故选项D错误;当a>0,b<0时,若函数过点(0,1),则a+b=1,只要a、b满足和为1即可,故选项C 正确;故选C.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=.【解答】解:△,△2y=3(x﹣y),整理,得3x=5y,△=.故答案为.8.如图,点G为△ABC的重心,DE过点G,且DE△BC,EF△AB,那么CF:BF=1:2.【解答】解:如图,连接AG并延长,交BC于H.△点G为△ABC的重心,△AG=2GH.△DE△BC,△CE:AE=GH:AG=1:2,△EF△AB,△CF:BF=CE:AE=1:2.故答案为1:2.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC平行,那么BE=2.【解答】解:BE=2,理由是:如图:△AD=2,DB=1,△AB=2+1=3,△BC=6,BE=2,△=,△△B=△B,△△BED△△BCA,△△BED=△C,△DE△AC.故答案为:2.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是5cm.【解答】解:设△DEF的最短边为x,△ABC的三边分别为3a,4a,6a,△△ABC与△DEF相似,△3a:x=6a:10,△x=5,即△DEF的最短边是5cm.故答案为5.11.如果AB△CD,2AB=3CD,与的方向相反,那么=﹣.【解答】解:△AB△CD,2AB=3CD,与的方向相反,△2=﹣3,△=﹣.故答案为:﹣.12.计算:sin60°﹣cot30°=【解答】解:原式=﹣=﹣.13.在△ABC中,△C=90°,如果sinA=,AB=6,那么BC=2.【解答】解:sinA==,得BC=AB×=6×=2,故答案为:2.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为5.【解答】解:△y=(x﹣2)2+1=x2﹣4x+4+1=x2﹣4x+5,△c的值为5.故答案是:5.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线x=1.【解答】解:抛物线y=﹣2x2+4x﹣1的对称轴是直线x=﹣=1.故答案为x=1.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1<y2(填“<”或者“>”)【解答】解:△二次函数y=x2+m中a=1>0,△抛物线开口向上.△x=﹣=0,﹣1<﹣2,△A(﹣1,y1),B(﹣2,y2)在对称轴的左侧,且y随x的增大而减小,△y1<y2.故答案为:<.17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).△图象的开口向下,△a<0,可取a=﹣1;△对称轴是直线x=﹣1,△﹣=﹣1,得b=2a=﹣2;△与y轴的交点在x轴的下方,△c<0,可取c=﹣1;△函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M 处,且AM=BE,那么△EBC的正切值是.【解答】解:设AM与BE交点为D,过M作MF△BE交AC于F,如图所示:△M为BC的中点,△F为CE的中点,△MF为△BCE的中位线,△MF=BE,由翻折变换的性质得:AM△BE,AD=MD,同理:DE是△AMF的中位线,△DE=MF,设DE=a,则MF=2a,AM=BE=4a,△BD=3a,MD=AM=2a,△△BDM=90°,△tan△EBC===.故答案为:.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)【解答】解:=+3﹣﹣=﹣+2.如图:=2,=﹣,则=﹣+2,即即为所求.20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x…﹣1024…y…﹣511m…求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.【解答】解:(1)依题意,得,解得;△二次函数的解析式为:y=﹣2x2+4x+1.(2)当x=4时,m=﹣2×16+16+1=﹣15,由y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故其顶点坐标为(1,3).21.如图,梯形ABCD中,AD△BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.【解答】解:(1)延长BE交直线AD于H,如图,△AD△BC,△△DEH△△CEB,△=,△点E为边DC的中点,△DE=CE,△DH=BC,而BC=2AD,△AH=3AD,△AH△BC,△△AHF△△CFB,△AF:FC=AH:BC=3:2;(2)△△DEH△△CEB,△EH:BE=DE:CE=1:1,△BE=EH=BH,△△AHF△△CFB,△FH:BF=AF:FC=3:2;设BF=2a,则FH=3a,BH=BF+FH=5a,△EH=a,△EF=FH﹣EH=3a﹣a=a,△EF:BF=a:2a=1:4.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)【解答】解:(1)设CG=xm,由图可知:EF=(x+20)•tanα,FG=x•tanβ,则(x+20)tanα+33=xtanβ,解得x=;(2)x===55,则FG=x•tanβ=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE△BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.【解答】证明:(1)△BC2=BF•BA,△BC:BF=BA:BC,而△ABC=△CBF,△△BAC△△BCF,△DE△BC,△△BCF△△DGF,△△DGF△△BAC,△DF:BC=DG:BA,△DF•AB=BC•DG;(2)作AH△BC交CF的延长线于H,如图,△DE△BC,△AH△DE,△点E为AC的中点,△AH=2EG,△AH△DG,△△AHF△△DGF,△=,△.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ△AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ△AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)△MCO=△CAB=45°,①当△MCO△△CAB时,=,即=,CM=.如图1,过M作MH△y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,△M(﹣,);当△OCM△△CAB时,=,即=,解得CM=3,如图2,过M作MH△y轴于H,MH=CH=CM=3,当x=3时,y=﹣3+4=1,△M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且△ECF=△B,直线CF交直线AB于点M.(1)求△B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.【解答】解:(1)连接BD、AC交于点O,作AH△BC于H,如图1所示:则AO=OC=3,BO=4,△S△ABC=BC×AH=AC×BO=×6×4=12,△×5×AH=12,解得:AH=,由勾股定理得:BH===,△cos△B===;(2)当点E与点A重合时,符合题意的图形,如图2所示:△四边形ABCD为菱形,△△FAC=△ACB,△△ECF=△B,△△ABC△△ECF,△=,即=,解得:EF=,△BC△AF,△△MBC△△MAF,△===,△=,解得:BM=;(3)作EH△BC于H,作EG△BC交CF于G,如图3所示:由(1)知cos△B=,BE=x,△BH=x,EH===x,△CE===,△EG△BC,△△GEC=△ECB,,△△BCE△△CEG,△,则EG==,△,整理得:y=,即y关于x的函数解析式为y=(<x≤5).。
2016中考数学一模模拟试卷(附答案)
2016年中考数学一模模拟试卷(附答案)面对中考,考生对待考试需保持平常心态,复习时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最佳的解题方法,进一步提高解题能力。
下文准备了2016年中考数学一模模拟试卷。
一、选择题1.(2013•成都)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=-x+3B.y=C.y=2xD.y=-2x2+x-71.C2.(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°2.D3.(2013•潍坊)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[]=5,则x的取值可以是()A.40B.45C.51D.563.C4.(2013•乌鲁木齐)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,-b).如f(1,2)=(1,-2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,-9))=()A.(5,-9)B.(-9,-5)C.(5,9)D.(9,5)4.D5.(2013•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.5.C二、填空题6.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.6.30°7.(2013•宜宾)如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.7.4π8.(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△AB C,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有条.8.39.(2013•乐山)对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n-≤x给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(x-1)=4,则实数x的取值范围是9≤x ④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).9.①③④三、解答题10.(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC 于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.10.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠CBD=∠ABD=36°,∠BDC=72°,∴AD=BD,BC=BD,∴△ABC∽△BDC,∴,即,∴AD2=AC•CD.∴点D是线段AC的黄金分割点.(2)∵点D是线段AC的黄金分割点,∴AD=AC=.11.(2013•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°-α),cosα=-cos(180°-α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2-mx-1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.11.解:(1)由题意得,sin120°=sin(180°-120°)=sin60°=,cos120°=-cos(180°-120°)=-cos60°=-,sin150°=sin(180°-150°)=sin30°=;(2)∵三角形的三个内角的比是1:1:4,∴三个内角分别为30°,30°,120°,①当∠A=30°,∠B=120°时,方程的两根为,-,将代入方程得:4×()2-m×-1=0,解得:m=0,经检验-是方程4x2-1=0的根,∴m=0符合题意;②当∠A=120°,∠B=30°时,两根为,,不符合题意;③当∠A=30°,∠B=30°时,两根为,,将代入方程得:4×()2-m×-1=0,解得:m=0,经检验不是方程4x2-1=0的根.综上所述:m=0,∠A=30°,∠B=120°.12.(2013•安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:;(3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD 中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)12.解:(1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;(2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;(3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC(HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.如图5,当点E在四边形ABCD的外部时,同理可以证明△EFB≌△EHC,∴∠EBF=∠ECH.∵BE=CE,∴∠3=∠4,∴∠EBF-∠3=∠ECH-∠4,即∠1=∠2,∴四边形ABCD是“准等腰梯形”.精心整理,仅供学习参考。
2016年上海市杨浦区中考数学一模试卷含答案解析
2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣22.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( ) A.B.C.D.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=__________.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=__________.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=__________.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是__________cm.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=__________.12.计算:sin60°﹣cot30°=__________13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=__________.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为__________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线__________.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1__________y2(填“<”或者“>”)17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为__________.18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是__________.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2【考点】二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为(0,2),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+2.故选A.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.2.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形【考点】相似图形.【分析】根据相似图形的概念进行判断即可.【解答】解:斜边长分别是10和5的两直角三角形,直角边不一定成比例,所以不一定属于互相放缩关系,A不正确;腰长分别是10和5的两等腰三角形不一定属于互相放缩关系,B不正确;边长分别是10和5的两个菱形不一定属于互相放缩关系,C不正确;边长分别是10和5的两个正方形属于互相放缩关系,D正确,故选:D.【点评】本题考查的是相似图形的概念,形状相同的图形称为相似形.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.【考点】*平面向量.【分析】首先由在△ABC中,D是边BC的中点,可求得,然后由三角形法则求得.【解答】解:∵在△ABC中,D是边BC的中点,∴==,∴=﹣=﹣.故选B.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是关键.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度就是坡角的正切值即可求解.【解答】解:坡角α,则tanα=1:,则α=30°.故选A.【点评】本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【考点】相似三角形的判定.【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( )A.B.C.D.【考点】二次函数的图象.【专题】探究型.【分析】根据函数y=ax2+bx+a+b(a≠0),对a、b的正负进行分类讨论,只要把选项中一定错误的说出原因即可解答本题.【解答】解:在函数y=ax2+bx+a+b(a≠0)中,当a<0,b<0时,则该函数开口向下,顶点在y轴左侧,一定经过点(0,a+b),点(0,a+b)一定在y轴的负半轴,故选项A、B错误;当a>0,b<0时,若函数过点(1,0),则a+b+a+b=0,得a与b互为相反数,则y=ax2﹣ax=ax(x﹣1),则该函数与x轴的两个交点是(0,0)或(1,0),故选项D错误;当a>0,b<0时,若函数过点(0,1),则a+b=1,只要a、b满足和为1即可,故选项C 正确;故选C.【点评】本题考查二次函数的图象,解题的关键是运用分类讨论的数学思想解答问题.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=.【考点】比例的性质.【分析】先由已知条件可得2y=3(x﹣y),整理后再根据比例的性质即可求得的值.【解答】解:∵,∴2y=3(x﹣y),整理,得3x=5y,∴=.故答案为.【点评】本题是基础题,考查了比例的基本性质,比较简单.比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=1:2.【考点】三角形的重心.【分析】连接AG并延长,交BC于H.先根据重心的性质,得出AG=2GH.再由平行线分线段成比例定理,得出CF:BF=CE:AE=GH:AG=1:2.【解答】解:如图,连接AG并延长,交BC于H.∵点G为△ABC的重心,∴AG=2GH.∵DE∥BC,∴CE:AE=GH:AG=1:2,∵EF∥AB,∴CF:BF=CE:AE=1:2.故答案为1:2.【点评】此题主要考查了重心的概念和性质以及平行线分线段成比例定理,难度中等.三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=2.【考点】平行线分线段成比例;相似多边形的性质;相似三角形的性质.【分析】求出=,根据相似三角形的判定得出△BED∽△BCA,推出∠BED=∠C,根据平行线的判定得出即可.【解答】解:BE=2,理由是:如图:∵AD=2,DB=1,∴AB=2+1=3,∵BC=6,BE=2,∴=,∵∠B=∠B,∴△BED∽△BCA,∴∠BED=∠C,∴DE∥AC.故答案为:2.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定,平行线的判定的应用,能推出△BED∽△BCA是解此题的关键.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是5cm.【考点】相似三角形的性质.【专题】计算题.【分析】设△DEF的最短边为x,由△ABC的三边之比为3:4:6,则可设△ABC的三边分别为3a,4a,6a,由于△ABC与△DEF相似,根据相似三角形的性质得到3a:x=6a:10,即可求出x=5.【解答】解:设△DEF的最短边为x,△ABC的三边分别为3a,4a,6a,∵△ABC与△DEF相似,∴3a:x=6a:10,∴x=5,即△DEF的最短边是5cm.故答案为5.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=﹣.【考点】*平面向量.【分析】由AB∥CD,2AB=3CD,与的方向相反,可得2=﹣3,继而求得答案.【解答】解:∵AB∥CD,2AB=3CD,与的方向相反,∴2=﹣3,∴=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意根据题意得到2=﹣3是解此题的关键.12.计算:sin60°﹣cot30°=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:原式=﹣=﹣.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=2.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:sinA==,得BC=AB×=6×=2,故答案为:2.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为5.【考点】二次函数的三种形式.【分析】把配方后的函数解析式转化为一般形式,然后根据对应项系数相等解答.【解答】解:∵y=(x﹣2)2+1=x2﹣4x+4+1=x2﹣4x+5,∴c的值为5.故答案是:5.【点评】本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.抛物线y=﹣2x2+4x﹣1的对称轴是直线x=1.【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴是x=﹣进行计算.【解答】解:抛物线y=﹣2x2+4x﹣1的对称轴是直线x=﹣=1.故答案为x=1.【点评】此题考查了抛物线的对称轴的求法,能够熟练运用公式法求解,也能够运用配方法求解.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1<y2(填“<”或者“>”)【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点,其对称轴为x=0,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1<y2.【解答】解:∵二次函数y=x2+m中a=1>0,∴抛物线开口向上.∵x=﹣=0,﹣1<﹣2,∴A(﹣1,y1),B(﹣2,y2)在对称轴的左侧,且y随x的增大而减小,∴y1<y2.故答案为:<.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【考点】二次函数的性质.【专题】开放型.【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=﹣1;∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;∴函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.【点评】本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a <0时,抛物线开口向下;二次函数与y轴交于点(0,c).18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是.【考点】翻折变换(折叠问题).【分析】设AM与BE交点为D,过M作MF∥BE交AC于F,证出MF为△BCE的中位线,由三角形中位线定理得出MF=BE,由翻折变换的性质得出:AM⊥BE,AD=MD,同理由三角形中位线定理得出DE=MF,设DE=a,则MF=2a,AM=BE=4a,得出BD=3a,MD=AM=2a,即可得出结果.【解答】解:设AM与BE交点为D,过M作MF∥BE交AC于F,如图所示:∵M为BC的中点,∴F为CE的中点,∴MF为△BCE的中位线,∴MF=BE,由翻折变换的性质得:AM⊥BE,AD=MD,同理:DE是△AMF的中位线,∴DE=MF,设DE=a,则MF=2a,AM=BE=4a,∴BD=3a,MD=AM=2a,∵∠BDM=90°,∴tan∠EBC===.故答案为:.【点评】本题考查了翻折变换的性质、三角形中位线定理、平行线的性质、三角函数;熟练掌握翻折变换的性质,通过作辅助线由三角形中位线定理得出MF=BE,DE=MF是解决问题的关键.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】首先利用平面向量的加减运算法则化简原式,再利用三角形法则画出图形.【解答】解:=+3﹣﹣=﹣+2.如图:=2,=﹣,则=﹣+2,即即为所求.【点评】此题考查了平面向量的运算法则以及作法.注意作图时准确利用三角形法则是关键.20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)用待定系数法求出二次函数的解析式;(2)把x=4,y=m代入解析式即可求得m的值,用配方法或公式法求二次函数的顶点坐标.【解答】解:(1)依题意,得,解得;∴二次函数的解析式为:y=﹣2x2+4x+1.(2)当x=4时,m=﹣2×16+16+1=﹣15,由y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故其顶点坐标为(1,3).【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.【考点】相似三角形的判定与性质.【专题】计算题.(1)延长BE交直线AD于H,如图,先由AD∥BC得到△DEH∽△CEB,则有=,【分析】易得DH=BC,加上BC=2AD,所以AH=3AD,然后证明△AHF∽△CFB,再利用相似比可计算出AF:FC的值;(2)由△DEH∽△CEB得到EH:BE=DE:CE=1:1,则BE=EH=BH,由△AHF∽△CFB得到FH:BF=AF:FC=3:2;于是可设BF=2a,则FH=3a,BH=BF+FH=5a,EH=a,接着可计算出EF=FH﹣EH=a,然后计算EF:BF的值.【解答】解:(1)延长BE交直线AD于H,如图,∵AD∥BC,∴△DEH∽△CEB,∴=,∵点E为边DC的中点,∴DE=CE,∴DH=BC,而BC=2AD,∴AH=3AD,∵AH∥BC,∴△AHF∽△CFB,∴AF:FC=AH:BC=3:2;(2)∵△DEH∽△CEB,∴EH:BE=DE:CE=1:1,∴BE=EH=BH,∵△AHF∽△CFB,∴FH:BF=AF:FC=3:2;设BF=2a,则FH=3a,BH=BF+FH=5a,∴EH=a,∴EF=FH﹣EH=3a﹣a=a,∴EF:BF=a:2a=1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长即可.(2)根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:(1)设CG=xm,由图可知:EF=(x+20)•tanα,FG=x•tanβ,则(x+20)tanα+33=xtanβ,解得x=;(2)x===55,则FG=x•tanβ=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.【点评】本题考查了仰角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)由BC2=BF•BA,∠ABC=∠CBF可判断△BAC∽△BCF,再由DE∥BC可判断△BCF∽△DGF,所以△DGF∽△BAC,然后利用相似三角形的性质即可得到结论;(2)作AH∥BC交CF的延长线于H,如图,易得AH∥DE,由点E为AC的中点得AH=2EG,再利用AH∥DG可判定△AHF∽△DGF,则根据相似三角形的性质得=,然后利用等线段代换即可得到.【解答】证明:(1)∵BC2=BF•BA,∴BC:BF=BA:BC,而∠ABC=∠CBF,∴△BAC∽△BCF,∵DE∥BC,∴△BCF∽△DGF,∴△DGF∽△BAC,∴DF:BC=DG:BA,∴DF•AB=BC•DG;(2)作AH∥BC交CF的延长线于H,如图,∵DE∥BC,∴AH∥DE,∵点E为AC的中点,∴AH=2EG,∵AH∥DG,∴△AHF∽△DGF,∴=,∴.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴的直线与抛物线的交点关于对称轴对称得出P、Q关于直线x=﹣1对称是解题关键;利用两组对边对应成比例且夹角相等的两个三角形得出CM的长是解题关键.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.【考点】相似形综合题.【分析】(1)连接BD、AC交于点O,作AH⊥BC于H,由菱形的性质得出AO=OC=3,BO=4,由△ABC的面积求出AH=,由勾股定理得出BH,即可得出结果;(2)由菱形的性质得出∠FAC=∠ACB,证出△ABC∽△ECF,得出对应边成比例=,求出EF,由平行线得出△MBC∽△MAF,得出==,即可得出结果;(3)作EM⊥BC于M,作EG∥BC交CF于G,由(1)知cos∠B=,BE=x,得出BM=x,由勾股定理得出EM=x,CE==,由平行线得出∠GEC=∠ECB,,证出△BCE∽△CEG,得出对应边成比例,得出EG==,代入比例式即可得出y关于x的函数解析式为y=(<x≤5).【解答】解:(1)连接BD、AC交于点O,作AH⊥BC于H,如图1所示:则AO=OC=3,BO=4,∵S△ABC=BC×AH=AC×BO=×6×4=12,∴×5×AH=12,解得:AH=,由勾股定理得:BH===,∴cos∠B===;(2)当点E与点A重合时,符合题意的图形,如图2所示:∵四边形ABCD为菱形,∴∠FAC=∠ACB,∵∠ECF=∠B,∴△ABC∽△ECF,∴=,即=,解得:EF=,∵BC∥AF,∴△MBC∽△MAF,∴===,∴=,解得:BM=;(3)作EH⊥BC于H,作EG∥BC交CF于G,如图3所示:由(1)知cos∠B=,BE=x,∴BH=x,EH===x,∴CE===,∵EG∥BC,∴∠GEC=∠ECB,,∴△BCE∽△CEG,∴,则EG==,∴,整理得:y=,即y关于x的函数解析式为y=(<x≤5).【点评】本题是相似形综合题目,考查了菱形的性质、相似三角形的判定与性质、平行线的性质、勾股定理、三角函数等知识;本题综合性强,难度较大,特别是(3)中,需要运用勾股定理和证明三角形相似得出比例式才能得出结果.。
上海各区初三数学一模卷
上海各区初三数学一模卷Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( )A. 100tan αB. 100cot αC. 100sin αD. 100cos α3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B. 22(1)1y x =-+ C. 22(1)3y x =++ D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒C. 80︒D. 100︒ 二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm 14. 如果3a b c +=,2a b c -=,那么a = (用b 表示) 15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是 三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AF AB =,过A 作AG ∥BC交CF 的延长线于点G ;(1)设AB a =,AC b =,试用向量a 和b 表示向量AG ; (2)在图中求作向量AG 与AB 的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积.22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2AC AD AB =⋅;(2)若AD DFAC CG=,求证:2CG DF BG =⋅;24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ; (1)求点D 、点M 的坐标;(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B 二. 填空题7. (4,0)- 9. 减小 10.32x =11. 23 12. 1213. 20 14. 45b15. 60 16. 2.4 17. 3 18. 12三. 解答题19.(1)2233AG a b =-;(2)略;20.(1)223y x x =-++;(2)向上平移4个单位; 21.(1)6BD =;(2)26; 22.2t =;23.(1)略;(2)略;24.(1)(2,3)D 、(2,0)M ;(2)32a =-或12a =-;25.(1)13;(2)344x x y -=(02)x <<;(3)相似;2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( ) (A )BC DE //; (B )B AED ∠=∠;(C )ACABAD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( ) (A )1≥x ;(B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =,B =b,那么=AC ____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD ____.10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP AP AB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积.21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =,=b.求:(1)向量DC (用向量a 、b 表示);(2)B tan 的值.图F A BCDE 图ABCDA B C D EF图1图AB CD EF22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B 处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到小时).(参考数据:41.12≈,73.13≈).23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅. (1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.图6AD E24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域; (2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷BA C备用图图8Q PDBACE(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B ) (A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D ) (A )BC DE //; (B )B AED ∠=∠;(C )ACABAD AE =; (D ) BCAC DE AE =.5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A ) (A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B C =b,那么=AC __b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP AP AB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___. 18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分; 满分78分)图FA B C DE图ABCDA B C D EF图119.(本题满分10分)解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x ,解得11-=x 、52=x ;∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A . ∴ADC BOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB =,=b 2121=;∴b a21+=.(2)∵ACB DCF ∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ;在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =;∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD ⋅=2;又BD AD =,∴AB DF AD ⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =.24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--.25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABACBD EC ; ∴x BD EC ==;y x PE --=3;∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x xy ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;Q PD BACEF∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2; 即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =, ∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠;又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23xDE =; ∵BC DE //,∴AB ADBC DE =;即33223x x -=; 解得 7324254-=x .2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1) 2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( )A. 34B.43C. 35D. 453.如图,下列能判断BC ED ∥的条件是( ) A. ED AD BC AB = B. ED AEBC AC =C.AD AE AB AC = D. AD ACAB AE=4.已知1O 与2O 的半径分别是2和6,若1O 与2O 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4 <12O O <6 C. 4<12O O <8 D. 4<12O O <10 5.已知非零向量a 与b ,那么下列说法正确的是( )A. 如果a b =,那么a b =;B. 如果a b =-,那么a b ∥C. 如果a b ∥,那么a b =;D. 如果a b =-,那么a b =6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( ) A. 相离 B. 相切 C. 相交 D.不能确定二、填空题(本大题共12题,每题4分,满分48分) 7. 如果()340x y x =≠,那么xy=__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________. 9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________.10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________.11. 设α是锐角,如果tan 2α=,那么cot α=___________.第3题图DEABC12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________. 13. 已知A 的半径是2,如果B 是A 外一点,那么线段AB 长度的取值范围是__________.14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为米,那么旗杆BC 的高度为_________米.OBA第17题图第16题图第15题图第14题图GEDC DCAACD EB16. 如图,1O 与2O 相交于A B 、两点,1O 与2O 的半径分别是112O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________. 18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.BAC第18题图三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 如图,在ABC ∆中,D 是AB 中点,联结CD . (1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =,DC b =,请用向量a 、b 表示AC 和AB (直接写出结果)BA第20题图D21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分) 如图,ABC ∆中,CD AB ⊥于点D ,D 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D 的半径;(2)CE的长.第21题图B22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分) 如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC 的坡角为30°,坝底宽AB 为()米. (1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.H G N M D FEBA C第22题图23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G. (1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0) (1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式;(3)O 为坐标原点,以A 为圆心OA 长为半径画A ,以C 为圆心,12OC 长为半径画圆C ,当A 与C 外切时,求此抛物线的解析式.DBGEFCA第23题图第24题图25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =. (1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域; (3)当AOF∆是等腰三角形时,求BE 的长.D 第25题备用图OQPD FE第25题图B C A2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( );35.A ;53.B 83.C 85.D2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )125.A 512.B 1312.C 135.D 3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( ))0,2-.(A )-2,0.(B )0,2.(C )2,0.(D4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )321y y y .>>A 231y y B.y >> 123y y y .>>C 213y y y .>>D5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BC AB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )①.A ②.B ③.C ④.D6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )13.A 132.B 23.C 32.D二、填空题7.如果)b -a 2(3b a =+,用a 表示b ,那么b =8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为11.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q 和S,使点P、Q、S在一条直线上,且直线PS与河垂直,在过点S且与直线PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,那么PQ为m.12.如果两圆的半径分别为2cm和6cm,圆心距为3cm,那么两圆的位置关系是;13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为1:2的山坡上种植树,也要求株距为4m,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O∠的值∠)为60,A,B,C都在格点上,那么tan ABC是;17.如图,O 的半径是4,ABC ∆是O 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF为 ;18.如图,已知 ABC ∆中,45ABC ∠=,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =,DC b =. (1)请用a 、b 来表示DE ;(2)在原图中求作向量DE 在a 、b 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E .求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .(1)求证:BCCE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ∆为等腰三角形时,求PE 的长.参考答案6..A7.53a 8.1:2 9.252 12.内含14.()221y x =-- . 15.253153105 19.56 20(1).2133DE a b =+ (2)略 米/秒 平方厘米23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭ 25.(1)略(2)24(04)2x x y x +=<≤ (3)4或42017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是( )A.sinA=B.cosA=C.tanA=D.cotA=2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=, =,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m 的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F 为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).。
杨浦区2015学年度初三质量调研数学试卷答案 2016
杨浦区2015学年度初三质量调研数学试卷答案2016.4一、选择题1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.C 二、填空题7.-1;8b 等; 9.4m =; 10.2x ≠;11.4; 12.14; 13.1233a b -+ ;14.2.4; 15.0.05;16.2y x=等;17.65;18 三、解答题19.解:原式=1+3+6-(8分)=(2分) 20.解:由213(1)x x ->-,得2x <.-----------------------------------------------(3分)由552x x -<+,得53x >-.------------------------------------------------------------(3分) 所以不等式组的解集为523x -<<.---------------------------------------------------(2分)其非负整数解为0和1.------------------------------------------------------------------(2分) 21. (1)证明:∵∠ACB =90°,N 为AB 的中点,D 为BN 中点,∴1122CN AB CD BM ==,.-----------------------------------------(1分,1分) ∴12CN CD AB BM ==,即CN CD AB BM=.-----------------------------------------(1分) (2)解:联结ND ,∵N 、D 分别为AB 、BM 的中点,∴ND =12AM .-------(1分)∵12CN CD AB MB ==,∴CN CD ND AB MB AM ==.∴△CND ∽△BAM .---------------------(1分) ∴∠NCD =∠ABM . -------------------------------------------------------------------------(1分)作MH ⊥AB 于H ,∵∠A =30°,∴设MH =k ,则AM =2k ,AH .------------(1分)∴AC =2AM =4k ,AB =cos AC A =.---------------------------------------------------(1分)∴BH AB AH =-==.--------------------------------------------(1分)∴cot ∠ABM =BH MH =.----------------------------------------------------------------(1分)22. 解:(1)设y 关于x 函数解析式为y =kx (k ≠0),--------------------------------(1分) 则600=20k ,得k =30.-----------------------------------------------------------------(1分) 所以y =30x (0<x ≤20). --------------------------------------------------------------(2分) (2)因为前18分钟内的平均速度与后8分钟内的平均速度之比为2:3,所以设前18分钟内的平均速度为2v ,后8分钟内的平均速度3v .--------(1分) 则21838600v v ⨯+⨯=.--------------------------------------------------------------(2分)解得v =10.--------------------------------------------------------------------------------(1分) 所以,前18分钟内的平均速度为20米/分,行走的路程=360米.----------(1分) 所以,点C 的纵坐标为240.---------------------------------------------------------(1分) 23.证明:(1)∵DC //AB ,∴∠A +∠ADE =180°.-----------------------------------(1分)∵∠A =90°,∴∠ADE =90°.-------------------------------------------------------(1分) ∵纸片沿过点D 的直线翻折,点A 落在边CD 上的点E 处,折痕为DF , ∴△ADF ≌△EDF . ∴∠A =∠DEF =90°.且AD =ED .--------------(1分,1分) ∴四边形ADEF 为矩形. -----------------------------------------------------------(1分) ∵AD =ED ,∴矩形ADEF 为正方形.-----------------------------------------(1分) (2) 联结DG ,∵DC //AB ,BG =CD , ∴四边形DCBG 为平行四边形.∴CB =DG .------------------------------------------------------------------------------(1分) ∵四边形ADEF 为正方形,∴∠A =∠EF A =90°,AD =EF . ∵AG =GF ,∴△DAG ≌△EFG .∴DG =EG .∴CB =EG .----------------------------------------------------------------------------(3分) ∵BG =CD =CE +DE ,∴BG CE >,即BG ≠CE .∵DC //AB ,∴四边形GBCE 为梯形. -------------------------------------------(1分) ∵CB =EG ,∴梯形GBCE 为等腰梯形. ----------------------------------------(1分) 24.解:(1)∵283y ax ax =-+的对称轴是直线x =4,----------------------------(1分)∴B (4,0),A (0,3). ∴AB =5.---------------------------------------------------(1分) ∵AB =BD ,且0a <,∴D (4,5).---------------------------------------------------(1分) 将点D 的坐标代入283y ax ax =-+,解得18a =-.∴抛物线的表达式是2138y x x =-++.--------------------------------------------(1分) (2)过点P 作PH ⊥BD 于点H ,∵DP //AB ,∴∠BDP =∠ABD .∵BD //y 轴,∴∠OAB =∠ABD . ∴∠BDP =∠OAB .-----------------------------(1分)∴4tan tan 3PH BDP OAB DH =∠=∠=. ∴设PH =4k ,DH =3k , 0k >,由于点P 在x =4的右侧,∴P 点坐标为(4+4k ,5-3k ).∵点P 在抛物线上,∴215-3(44)(44)38k k k =-++++.---------------------(1分)整理得2230k k -=,∴30(2k k ==,或舍).------------------------------------(1分)∴P (101,2).---------------------------------------------------------------------------------(1分)(3)情况一:点G 在x 轴下方,记为1G , ∵点1G 在直线BD 上, ∴∠ABD =∠BA 1G +∠A 1G B , ∵∠A 1G B =12∠ABD ,∴∠BA 1G =∠A 1G B . ∴AB =B 1G ,∵AB =5,∴B 1G =5.--------------------------------------------------------(1分) ∴1154102ABG S ∆=⨯⨯=.-------------------------------------------------------------------(1分) 情况二:点G 在x 轴上方,记为2G ,作AF ⊥BD 于点F ,取2G ,使21G F GF =,∴21AG AG =.∴∠1AG B =∠A 2GB . ∵∠A 1G B =12∠ABD ,∴∠A 2G B =12∠ABD .∴点2G 符合题意. ∵B 1G =5,A (0,3),∴F 1G =8.∴F 2G =8.∴FB =11.---------------------------------(1分)∴21114222ABG S ∆=⨯⨯=.--------------------------------------------------------------------(1分) 25.解:(1)过C 作CE ⊥AB 于点E ,联结CO ,则CO =BO =3.∵tan B =BE =a , CE =. ∴CB =3a . -------------------------------------(1分) ∴在△COE 中,222OC OE EC =+即229(3)8a a =-+.------------------------------------(1分) ∴23a =.-----------------------------------------------------------------------------------------------(1分) ∴32CB a ==.----------------------------------------------------------------------------------------(1分) (2)方法一:∵△MBC 与△MOC 相似,∠M =∠M ,∴MC MO COMB MC BC==. ∵BC =2,OC =3,∴23MC MB =.-----------------------------------------------------------------------(1分) ∴设MC =2x ,MB =3x ,∴2(3)2(23)x x x =+,解得65x =,∴MC =185, MB =125.------(2分)作OH ⊥DC 于点H , ∵O 为圆心,CD 是弦,∴CH =DH .------------------------------------(1分) 设CH =k ,则在Rt △MHO 中,222OM MH OH =+. 即2221218(3)()9k k +=++-,解得1k =,∴CD =2CH =2. ------------------------------(1分)(3)方法一:延长ON 交BC 的延长线于点G ,过点G 作GQ ⊥AB 于点Q ,∵ON 平分∠DOB ,∴∠GOB =∠GOD .∵OD //BC ,∴∠G =∠GOD .∴∠GOB =∠G .∴GB =OB =3.∵CB =2,∴GC =1.------------------------------------------------------------------------------------(1分)在△GOB 中,∵tan B =GB =3,∴GQ =BQ =1.∴OQ =2,∴OG =.------------------------------------------------------------------------------(2分)∵BC //OD , ∴GC GN DO NO =,即GC OG ONDO NO-=.------------------------------------------------(1分)∴1=,∴ON =.-----------------------------------------------------------------(1分)。
2016上海市各区县初三一模数学精彩试题及问题详解
2016上海长宁区初三数学一模试题(满分150分) 2016.1.6 一、选择题。
(本题共6个小题,每题4分,共24分)1、如果两个三角形的相似比是1:2,那么他们的面积比是( ). A.1:2 B.1:4 C.1:2 D.2:12、如图,在△ABC 中,∠ADE=∠B ,DE:BC=2:3,则下列结论正确的是( ). A.AD:AB=2:3 B.AE:AC=2:5 C.AD:DB=2:3 D.CE:AE=3:23、在Rt △ABC 中,∠C=90°,AB=2,AC=1,则sinB 的值是( ).A.22 B.23 C.21 D.2 4、在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ). A.直角三角形 B.等腰三角形 C.钝角三角形 D.锐角三角形 5、已知⊙O 1的半径r 为3cm ,⊙O2的半径R 为4cm ,两圆的圆心距O O 21为1cm ,则这两个圆的位置关系的( ).A.相交B.内含C.内切D.外切6二次函数1)2(2-+=x y 的图像可以由二次函数2x y =的图像平移得到,下列平移正确的是( ).A.先向左平移2个单位,再向上平移1个单位B.先向左平移2个单位,再向下平移1个单位C.先向右平移2个单位,再向上平移1个单位D.先向右平移2个单位,再向下平移1个单位 二、填空题。
(本大题共12小题,每题4分,满分48分) 7、已知抛物线12+=x y 的顶点坐标是( ).8、已知抛物线32++=bx x y 的对称轴为直线x=1,则实数b 的值为( )9、已知二次函数bx ax y +=2,阅读下面表格信息,由此可知y 与x 的函数关系式是( ).10、已知二次函数2)3(-=x y 图像上的两点A (3,a )和B (x ,b ),则a 和b 的大小关系是a ( )b.11、圆是轴对称图形,它的对称轴是( ).12、已知⊙O 的弦AB=8cm ,弦心距OC=3cm ,那么该圆的半径是( )cm.13、如图,AB 是⊙O 的直径,弦CD 垂直AB ,已知AC=1,BC=22,那么sin ∠ACD 的值是( ).14、王小勇操纵一辆遥控汽车从A 处沿北偏西60°方向走10m 到B 处,再从B 处向正南方走20m 到C 处,此时遥控汽车离A 处( )m.15、已知△ABC 中,AD 是中线,G 是重心,设m AD =,那么用m 表示AG =( ). 16、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=( ).17、如果把两条邻边中较短边与较长边的比值为215-的矩形称作黄金矩形。
2016年中考第一次模拟考试数学试卷(含部分答案)
∴四边形EBFD是平行四边形.…………………4分(其它方法参照给分.)
(2)GF∥EH,AE∥FC.…………………………9分
24解:(1)证明:如图①,连接OC,则OC⊥EF,且OC=OA,…………1分
∴∠OCA=∠OAC.
∵AD⊥EF,
∴OC∥AD.
∴∠OCA=∠CAD,
∴∠CAD=∠OAC.…………3分
AD∥BC,∠ABC=∠ADC.………………1分
∵BE平分∠ABC,
∴∠ABE=∠EBC=∠ABC.
∵DF平分∠ADC,
∴∠ADF=∠CDF=∠ADC.
∵∠ABC=∠ADC.
∴∠ABE=∠EBC=∠ADF=∠CDF.………2分
∵AD∥BC,
∴∠AEB=∠EBC.
∴∠AEB=∠ADF.
∴EB∥DF.………………………………………3分
即∠CAD=∠BAC.…………4分
(2)与∠CAD相等的角是∠BAG.…………5分
证明如下:如图②,连接BG.
∵四边形ACGB是⊙O的内接四边形,
∴∠ABG+∠ACG=180°.…………6分
∵D,C,G共线,
∴∠ACD+∠ACG=180°.∴∠AC Nhomakorabea=∠ABG.
∵AB是⊙O的直径,
∴∠BAG+∠ABG=90°
画树状图得:
……………………………………4分
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为:.………………………………………………………6分
(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:.
∴建议小明在第一题使用“求助”.………………9分
上海各区初三数学一模卷
2016学年上海市杨浦区初三一模数学试卷一. 选择题(本大题共6题,每题4分,共24分) 1. 如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A.2:1 B. 2:3 C. 3:1 D. 3:22. 在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A.100tan α B. 100cot α C. 100sin α D. 100cos α3. 将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( )A. 22(1)5y x =-+B. 22(1)1y x =-+C. 22(1)3y x =++D. 22(3)3y x =-+4. 在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5. 下列命题不一定成立的是( )A. 斜边与一条直角边对应成比例的两个直角三角形相似B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( ) A. 40︒B. 60︒C. 80︒D. 100︒二. 填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm14. 如果3a b c +=r r r ,2a b c -=r r r ,那么a =r (用b r表示)15. 已知α为锐角,tan 2cos30α︒=,那么α= 度16. 如图是一斜坡的横截面,某人沿着斜坡从P 处出发,走了13米到达M 处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是1:i =17. 用“描点法”画二次函数2y ax bx c =++(0)a ≠的图像时,列出了如下表格:那么该二次函数在0x =时,y =18. 如图,△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是三. 解答题(本大题共7题,共10+10+10+10+12+12+14=78分) 19. 如图,已知△ABC 中,点F 在边AB 上,且25AFAB =,过A 作AG ∥BC 交CF 的延长线于点G ;(1)设AB a =u u u r r ,AC b =u u u r r ,试用向量a r 和b r 表示向量AG u u u r; (2)在图中求作向量AG u u u r 与AB u u u r的和向量;(不要求写作法,但要指出所作图中表示结论的向量)20. 已知抛物线2y x bx c =-++经过点(1,0)B -和点(2,3)C ;(1)求此抛物线的表达式;(2)如果此抛物线上下平移后过点(2,1)--,试确定平移的方向和平移的距离.21. 已知:如图,梯形ABCD 中,AD ∥BC ,ABD C ∠=∠,4AD =,9BC =,锐角DBC ∠的正弦值为23;(1)求对角线BD 的长;(2)求梯形ABCD 的面积. 22. 如图,某客轮以每小时10海里的速度向正东方向航行,到A 处时向位于南偏西30°方向且相距12海里的B 处的货轮发出送货请求,货轮接到请求后即刻沿着北偏东某一方向以每小时14海里的速度出发,在C 处恰好与客轮相逢,试求货轮从出发到与客轮相逢所用的时间.23. 已知,如图,在△ABC 中,点D 、G 分别在边AB 、BC 上,ACD B ∠=∠,AG 与CD 相交于点F ; (1)求证:2ACAD AB =⋅;(2)若AD DF AC CG=,求证:2CG DF BG =⋅; 24. 在直角坐标系xOy 中,抛物线2443y ax ax a =-++(0)a <的顶点为D ,它的对称轴与x 轴交点为M ;(1)求点D 、点M 的坐标; (2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,求a 的值;25. 在Rt △ABC 中,90ACB ︒∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ; (1)如图,当点P 为边BC 的中点时,求M ∠的正切值;(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域;(3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;参考答案一. 选择题1. D2. B3. D4. C5. C6. B 二. 填空题7. 8.(4,0)- 9. 减小 10. 32x =11. 23 12. 1213. 20 14. 45br 15. 60 16. 2.4 17. 3 18. 12三. 解答题19.(1)2233AG a b=-u u u r r r ;(2)略; 20.(1)223y x x =-++;(2)向上平移4个单位;21.(1)6BD =;(2)26; 22.2t=;23.(1)略;(2)略;24.(1)(2,3)D 、(2,0)M ;(2)32a =-或12a =-;25.(1)13;(2)344x x y -=(02)x <<;(3)相似; 2016学年第一学期徐汇区学习能力诊断卷及答案初三数学 试卷(时间100分钟 满分150分)一.选择题(本大题共6题,每题4分,满分24分) 1.如果y x 32=,那么下列各式中正确的是( )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( )(A )2)3(22--=x y ; (B )2)3(22+-=x y ;(C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( )(A )6000米; (B )31000米; (C )32000米;(D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( )(A )1≥x ;(B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分) 7.已知线段9=a,4=c ,如果线段b 是c a 、的比例中项,那么=b _____.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r,B C =b ρ,那么=AC ____.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF,那么=BD ____.10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是_____.11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:____(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是______.13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF______.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ______. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是______.16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是______.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是______.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是______. 三.(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分) 19.计算:130cos 45tan 45cot 30cot 60sin 2-︒︒+︒-︒-︒.20.(本题共2小题,每题5分,满分10分)将抛物线442+-=x x y 沿y 轴向下平移9个单位,所得新抛物线与x 轴正半轴交于点B ,与y 轴交于点C ,顶点为D .求:(1)点D C B 、、坐标;(2)BCD ∆的面积. 21.(本题共2小题,每题5分,满分10分)如图4,已知梯形ABCD 中,BC AD //,4=AB ,3=AD ,AC AB ⊥,AC 平分DCB ∠,过点D 作AB DE //,分别交BC AC 、于E F 、,设AB a =u u u r r,=b ρ.求:(1)向量(用向量a r 、b r表示);(2)B tan 的值.22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分)如图5,一艘海轮位于小岛C 的南偏东︒60方向、距离小岛120海里的A 处,该海轮从A 处沿正北方向航行一段距离后,到达位于小岛C 北偏东︒45方向的B处.(1)求该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离(结果保留根号); (2) 如果该海轮以每小时20海里的速度从B 处沿BC 方向行驶,求它从B 处到达小岛C 的航行时间(结果精确到小时).(参考数据:41.12≈,73.13≈).23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分)图3F ABCDE 图2ABCDA B C D EF图1图4ABC DEF如图6,已知ABC ∆中,点D 在边BC 上,B DAB ∠=∠,点E 在边AC 上,满足CE AD CD AE ⋅=⋅.(1)求证:AB DE //;(2)如果点F 是DE 延长线上一点,且BD 是DF 和AB 的比例中项,联结AF .求证:AF DF =.24.(本题共3小题,每题4分,满分12分)如图7,已知抛物线32++-=bx x y 与x 轴交于点A 和点B (点A在点B 的左侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .(1)求点D 的坐标;(2)联结BC CD 、,求DBC ∠的余切值;(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.25.(本题满分14分)如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且QE 2=BQ 并延长,交边AC 于点P .设x BD =,y AP =.(1)求y 关于x 的函数解析式及定义域;(2)当PEQ ∆是等腰三角形时,求BD 的长;(3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值.2016学年第一学期徐汇区学习能力诊断卷及答案B AC备用图图8QPDBAC E 图6AB D E初三数学 试卷(时间100分钟 满分150分)考生注意∶1.本试卷含三个大题,共25题;答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】 1.如果y x 32=,那么下列各式中正确的是( B )(A )32=y x ; (B )3=-y x x ; (C )35=+y y x ; (D )52=+y x x . 2.如果一斜坡的坡比是4.2:1,那么该斜坡坡角的余弦值是( D ) (A )512; (B )125; (C )135; (D )1312. 3.如果将某一抛物线向右平移2个单位,再向上平移2个单位后所得新抛物线的表达式是2)1(2-=x y ,那么原抛物线的表达式是( C )(A )2)3(22--=x y ; (B )2)3(22+-=x y ; (C )2)1(22-+=x y ; (D )2)1(22++=x y .4.在ABC ∆中,点E D 、分别在边AC AB 、上,联结DE ,那么下列条件中不能判断ADE ∆和ABC ∆相似的是( D )(A )BC DE //; (B )B AED ∠=∠;(C )AC AB AD AE =; (D ) BCACDE AE =. 5.一飞机从距离地面3000米的高空测得一地面监测点的俯角是︒60,那么此时飞机与监测点的距离是( C )(A )6000米; (B )31000米; (C )32000米; (D )33000米.6.已知二次函数3422-+-=x x y ,如果y 随x 的增大而减小,那么x 的取值范围是( A )(A )1≥x ; (B )0≥x ; (C )1-≥x ; (D )2-≥x .二.填空题(本大题共12题,每题4分,满分48分)7.已知线段9=a,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =u u u r r ,B =b ρ,那么=__b a ϖϖ-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP APAB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___.15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.三.(本大题共题,第19—22题7每题10分;第23、24题每题12分;第25题14分;满分78分) 19.(本题满分10分)解:原式123113232-+--⨯=232133-++-=332--= 20.(本题共2小题,每题5分,满分10分)解:(1)由题意,得新抛物线的解析式为542--=x x y ,∴可得)5,0(-C 、)9,2(-D ;令0=y ,得0542=--x x,解得11-=x 、52=x ;∴点B 坐标是)0,5(.(2)过点D 作y DA ⊥轴,垂足为A .∴ADCBOC AOBD BCD S S S S ∆∆∆--=梯形552142219)52(21⨯⨯-⨯⨯-⨯+⨯=15=. 21.(本题共2小题,每题5分,满分10分)图3 F ABC D E图2ABCDAB CD EF图1解:(1)∵BC AD //∴ACB DAC ∠=∠;又AC 平分DCB ∠∴ACB DCA ∠=∠;∴DCA DAC ∠=∠;∴DC AD =;∵AB DE //,AC AB ⊥,可得AC DE ⊥;∴CF AF =;∴CE BE =.∵BC AD //,AB DE //,∴四边形ABED 是平行四边形;∴AB DE =;∴=DE a AB ϖ=,=EC b BC ϖ2121=;∴b a DC ϖϖ21+=.(2)∵ACB DCF∠=∠,︒=∠=∠90BAC DFC ;∴DFC ∆∽BAC ∆;∴21==CA CF BC DC ;又3==AD CD ,解得6=BC ; 在BAC Rt ∆中,︒=∠90BAC ,∴52462222=-=-=AB BC AC ;∴25452tan ===AB AC B . 22.(本题共2小题,第(1)小题4分,第(2)小题6分,满分10分) 解:(1)过点C 作AB CD ⊥,垂足为D .由题意,得︒=∠30ACD ;在ACD Rt ∆中,︒=∠90ADC ,∴ACCDACD =∠cos ; ∴3602312030cos =⨯=︒⋅=AC CD (海里). (2)在BCD Rt ∆中,︒=∠90BDC ,︒=∠45DCA ,∴BCCDBCD =∠cos ; ∴4.14644.2606602236045cos =⨯≈==︒=CD BC (海里);∴3.732.7204.146≈=÷(小时).答:该海轮从A 处到B 处的航行过程中与小岛C 之间的最短距离是360海里;它从B 处到达小岛C 的航行时间约为3.7小时.23.(本题共2小题,第(1)小题4分,第(2)小题8分,满分12分) 23.证明:(1)∵CE AD CD AE ⋅=⋅,∴CDADCE AE =;∵B DAB ∠=∠,∴BD AD =; ∴CDBDCE AE =;∴AB DE //. (2)∵BD 是DF 和AB 的比例中项,∴AB DF BD⋅=2;又BD AD =,∴AB DF AD⋅=2;∴ADABDF AD =; ∵AB DE //,∴BAD ADF ∠=∠;∴ADF ∆∽DBA ∆;∴1==BDADDF AF ;∴AF DF =. 24.(本题共3小题,每题4分,满分12分)解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBC AO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠;又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ;当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠;∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M .∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F . ∴21==QE DQ PE DF ;又BC DE //,∴1==AB AC BD EC ; ∴x BD EC ==;y x PE --=3; ∵AC DF //,∴AB BD AP DF =;即323x y y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ; ︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,QPD B ACEF∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠;又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x . 2016学年上海市长宁区、金山区初三一模数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线()212y x =--+的顶点坐标是( ) A. (-1,2) B. (1,2) C. (2,-1) D. (2,1)2.在ABC ∆中,90C ∠=︒,5AB =,4BC =,那么A ∠的正弦值是( ) A. 34 B.43 C. 35 D. 453.如图,下列能判断BC ED ∥的条件是( ) A. ED AD BC AB = B. ED AE BC AC= C. AD AE AB AC = D. AD AC AB AE= 4.已知1O e 与2O e 的半径分别是2和6,若1O e 与2O e 相交,那么圆心距12O O 的取值范围是( )A. 2<12O O <4 <12O O <6C. 4<12O O <8D. 4<12O O <105.已知非零向量a r 与b r ,那么下列说法正确的是( )A. 如果a b =r r ,那么a b =r r ;B. 如果a b =-r r ,那么a b r r ∥C. 如果a b r r ∥,那么a b =r r ;D. 如果a b =-r r ,那么a b =r r6.已知等腰三角形的腰长为6cm ,底边长为4cm ,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是( )A. 相离B. 相切C. 相交D.不能确定二、填空题(本大题共12题,每题4分,满分48分)第3题图D E A B C7. 如果()340x y x =≠,那么x y =__________. 8. 已知二次函数221y x x =-+,那么该二次函数的图像的对称轴是__________.9. 已知抛物线23y x x c =++于y 轴的交点坐标是(0,-3),那么c =__________.10. 已知抛物线2132y x x =--经过点(-2,m ),那么m =___________. 11. 设α是锐角,如果tan 2α=,那么cot α=___________.12. 在直角坐标平面中,将抛物线22y x =先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是__________.13. 已知A e 的半径是2,如果B 是A e 外一点,那么线段AB 长度的取值范围是__________.14. 如图,点G 是ABC ∆的重心,联结AG 并延长交BC 于点D ,GE AB ∥交BC 与E ,若6AB =,那么GE =___________.15. 如图,在地面上离旗杆BC 底部18米的A 处,用测角仪测得旗杆顶端C 的仰角为30°,已知测角仪AD 的高度为米,那么旗杆BC 的高度为_________米.16. 如图,1O e 与2O e 相交于A B 、两点,1O e 与2O e 的半径分别是1,12O O =2,那么两圆公共弦AB 的长为___________.17. 如图,在梯形ABCD 中,AD BC ∥,AC 与BD 交于O 点,:1:2DO BO =,点E 在CB 的延长线上,如果:=1:3AOD ABE S S ∆∆,那么:BC BE =_________.18. 如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.三、解答题(本大题共7题,满分78分)19 . (本题满分10分)计算:21tan 45sin 30tan 30cos60cot 303sin 45︒︒⋅︒-︒⋅︒+︒20.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在ABC ∆中,D 是AB 中点,联结CD .(1)若10AB =且ACD B ∠=∠,求AC 的长.(2)过D 点作BC 的平行线交AC 于点E ,设DE a =u u u r r ,DC b =u u u r r ,请用向量a r 、b r 表示AC u u u r 和AB u u u r (直接写出结果)21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,ABC ∆中,CD AB ⊥于点D ,D e 经过点B ,与BC 交于点E ,与AB 交与点F .已知1tan 2A =,3cot 4ABC ∠=,8AD =.求(1)D e 的半径;(2)CE 的长. 22.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,拦水坝的横断面为梯形ABCD ,AB CD ∥,坝顶宽DC 为6米,坝高DG 为2米,迎水坡BC的坡角为30°,坝底宽AB 为()米.(1)求背水坡AD 的坡度;(2)为了加固拦水坝,需将水坝加高2米,并保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB 的宽度.23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知正方形ABCD ,点E 在CB 的延长线上,联结AE 、DE ,DE 与边AB 交于点F ,FG BE ∥且与AE 交于点G.(1)求证:=GF BF .(2)在BC 边上取点M ,使得BM BE =,联结AM 交DE 于点O .求证:FO ED OD EF ⋅=⋅24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系中,抛物线22y x bx c =-++与x 轴交于点A 、B (点A 在点B 的右侧),且与y 轴正半轴交于点C ,已知A (2,0)(1)当B (-4,0)时,求抛物线的解析式;(2)O 为坐标原点,抛物线的顶点为P ,当tan 3OAP ∠=时,求此抛物线的解析式;(3)O 为坐标原点,以A 为圆心OA 长为半径画A e ,以C 为圆心,12OC 长为半径画圆C e ,当A e 与C e 外切时,求此抛物线的解析式.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)已知ABC ∆,5AB AC ==,8BC =,PDQ ∠的顶点D 在BC 边上,DP 交AB 边于点E ,DQ 交AB 边于点O 且交CA 的延长线于点F (点F 与点A 不重合),设PDQ B ∠=∠,3BD =.(1)求证:BDE CFD ∆∆∽;(2)设BE x =,OA y =,求y 关于x 的函数关系式,并写出定义域;(3)当AOF ∆是等腰三角形时,求BE 的长.2017年崇明县初三数学一模试卷一、选择题:1.如果)均不为,(0y x 3y 5x =,那么y x :的值是( )2.在ABC R △t 中,,13,1290∠==°=BC AC A ,那么B tan 的值是( )3.抛物线23x y =向上平移2个单位长度后所得新抛物线的顶点坐标为( )4.设),2(),,1(),y -2(321y C y B A ,是抛物线a )1x (y 2++=上的三点,那么321y y y ,,的大小关系为( )5.如图,给出下列条件:①;ACD B ∠∠=②;∠∠ACB ADC =③BCAB CD AC =④,2AB AD AC •=其中不能判定ACD ABC ~△△的条件为( )6.如图,圆O 过点C B 、,圆心O 在等腰直角三角形ABC 内部,,6,190∠==°=BC OA BAC ,那么圆O 的半径为( )二、填空题 7.如果)b -a 2(3b a ρρρρ=+,用a ρ表示b ρ,那么b ρ=8.如果两个相似三角形的对应高之比为21:,那么他们的对应中线的比为 9.已知线段AB 的长度为4,C 是线段AB 的黄金分割点,且CB CA >那么CA 的长度为 ___10.如图,,∥∥FC BE AD 他们依次交直线21l l 、于点C B A 、、和点,、、F E D 如果2,7.53AB DF BC ==,那么DE 的长为 11.如图,为了估计河的宽度,在河的对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 在一条直线上,且直线PS 与河垂直,在过点S 且与直线PS 垂直的直线a 上选择适当的点T ,PT 与过点Q 且与PS 垂直的直线b 的交点为R .如果QS =60m ,ST =120m ,QR =80m ,那么PQ 为 m .12.如果两圆的半径分别为2cm 和6cm ,圆心距为3cm ,那么两圆的位置关系是 ;13.如果一个圆的内接正六边形的周长为36,那么这个圆的半径为 ;14.如果一条抛物线的顶点坐标为(2,1)-,并过点(0,3),那么这条抛物线的解析式为 ;15.如图,在平地上种植树时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为1:2的山坡上种植树,也要求株距为4m ,那么相邻两树间的坡面距离为 m.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(O ∠)为60o ,A ,B ,C 都在格点上,那么tan ABC ∠的值是 ;17.如图,O e 的半径是4,ABC ∆是O e 的内接三角形,过圆心O 分别作AB ,BC ,AC 的垂线,垂足为E ,F ,G ,连接EF ,如果1OG =,那么EF 为 ;18.如图,已知 ABC ∆中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD V 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为 ;三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算: 2sin 30cot 602sin 453tan 60⋅+-o o o o o20.(本题10分,第一小题6分,第二小题4分)如图,在ABC △中,点D 、E 分别在边AB 、AC 上,如果DE BC ∥,12AD BD =,DA a =u u u r r ,DC b =u u u r r . (1)请用a r 、b r 来表示DE u u u r ; (2)在原图中求作向量DE u u u r 在a r 、b r 方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21. (本题满分10分)如图,小东在教学楼距地面9米高的窗口C 处,测得正前方旗杆顶部A 点的仰角为︒37 旗杆底部B 的俯角为︒45,升旗时,国旗上端悬挂在距地面25.2米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:60.037sin ≈︒,80.037cos ≈︒,75.037tan ≈︒)22. (本题满分10分)如图,矩形EFGD 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,且EF DE 2=,ABC ∆中,边BC 的长度为cm 12,高AH 为cm 8 ,求矩形DEFG 的面积.23. (本题满分12分,其中每小题各6分)如图,在Rt ABC V 中,︒=∠90ACB ,AB CD ⊥,M 是CD 边上一点,BM DH ⊥于点H ,DH 的延长线交AC 的延长线于点E .求证:(1)AED ∆∽CBM ∆;(2)CD AC CM AE ⋅=⋅.24.(本题满分12分,其中每小题各4分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点)3,0(A ,与x 轴的正半轴交于点)0,5(B ,点D 在线段OB 上,且1=OD ,联结AD 、将线段AD 绕着点D 顺时针旋转︒90.得到线段DE ,过点E 作直线x l ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求EDF ∠cot 的值;(3)点G 在直线l 上,且︒=∠45EDG ,求点G 的坐标.25. (本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在ABC ∆中,︒=∠90ACB ,23cot =A ,26=AC ,以BC 为斜边向右侧作等腰直角EBC ∆,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ∆,CD 交线段BE 于点F ,联结BD .(1)求证:BCCE CD PC =; (2)若x PE =,BDP ∆的面积为y ,求y 关于x 的函数解析式,并写出定义域; (3)当BDF ∆为等腰三角形时,求PE 的长.参考答案6..A7.53a v 8.1:2 9.252- 12.内含 14.()221y x =-- . 15.25 16.3 17.15 18.310519.56 20(1).2133DE a b =+u u u r r r 23.略 24.(1)2312355y x x =-++ (2)2 (3)(4,6)或34,2⎛⎫- ⎪⎝⎭ 25.(1)略(2)24(04)2x x y x +=<≤ (3)4或424- 2017年上海市宝山区初三数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是( )A .sinA=B .cosA=C .tanA=D .cotA=2.如果C 是线段AB 的黄金分割点C ,并且AC >CB ,AB=1,那么AC 的长度为( )A .B .C .D .3.二次函数y=x 2+2x +3的定义域为( )A .x >0B .x 为一切实数C .y >2D .y 为一切实数4.已知非零向量、之间满足=﹣3,下列判断正确的是( )A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向 B.南偏西60°方向C.南偏东30°方向 D.南偏东60°方向6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中是AD和AB的比例中项.第9题图第10题图第12题图10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为.18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;(2)设=,=,求向量(用向量、表示).21.如图,AB、CD分别表示两幢相距36米的大楼,高兴同学站在CD大楼的P处窗口观察AB大楼的底部B点的俯角为45°,观察AB大楼的顶部A点的仰角为30°,求大楼AB的高.22.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图象指出当m的函数值大于0的函数值时x的取值范围.23.如图,点E是正方形ABCD的对角线AC上的一个动点(不与A、C重合),作EF⊥AC交边BC于点F,联结AF、BE交于点G.(1)求证:△CAF∽△CBE;(2)若AE:EC=2:1,求tan∠BEF的值.24.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.25.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.2017年上海市宝山区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.已知∠A=30°,下列判断正确的是()A.sinA=B.cosA=C.tanA=D.cotA=故选:A.2.如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()A.B.C.D.故选:C.3.二次函数y=x2+2x+3的定义域为()A.x>0 B.x为一切实数C.y>2 D.y为一切实数故选B4.已知非零向量、之间满足=﹣3,下列判断正确的是()A.的模为3 B.与的模之比为﹣3:1C.与平行且方向相同D.与平行且方向相反故选:D.5.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向 B.南偏西60°方向C.南偏东30°方向 D.南偏东60°方向故选:A.6.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限故选C.二、填空题:(本大题共12小题,每题4分,满分48分)7.已知2a=3b,则=.8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16.9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA=.11.计算:2(+3)﹣5=2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8.13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2.14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2.15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i=1:.17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5.解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.三、解答题:(本大题共7小题,满分78分)19.计算:﹣cos30°+0.解:原式=﹣+1=+﹣+1=++1.20.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且DE=BC.(1)如果AC=6,求CE的长;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一次模拟考试卷—1—
杨浦区2015学年度第二学期初三质量调研 数 学 试 卷 2016.4
(完卷时间 100分钟 满分 150分) 考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、 选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1.下列等式成立的是
(A
2±; (B )22
=7
π; (C
3
2; (D )a b a b +=+.
2.下列关于x 的方程一定有实数解的是 (A )2x m =;
(B )2x m =; (C )
1
+1
m x =; (D
m . 3.下列函数中,图像经过第二象限的是 (A )2y x =;
(B )2y x
=
; (C )2y x =-; (D )22y x =-.
4.下列图形中既是轴对称图形,又是中心对称图形的是 (A )正五边形; (B )正六边形; (C )等腰三角形;(D )等腰梯形. 5.某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是
(A )2;
(B )3;
(C )8;
(D )9.
6.已知圆O 是正n 边形12n A A A 的外接圆,半径长为18,如果 12A A 的长为π,那么边数n 为 (A )5; (B )10; (C )36; (D )72.
初三数学第一次模拟考试卷—2—
二、 填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:
b a a b b a
+--= ▲ . 8.
b 的一个有理化因式: ▲ .
9.如果关于x 的方程2
10mx mx -+=有两个相等的实数根,那么实数m 的值是 ▲ . 10.函数1
2y x x
=
+-的定义域是 ▲ . 11.如果函数2y x m =-的图像向左平移2个单位后经过原点,那么m = ▲ . 12.在分别写有数字 -1,0,2,3的四张卡片中随机抽取一张,放回后再抽取一张.如果以
第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为 ▲ .
13.在△ABC 中,点M 、N 分别在边AB 、AC 上,且AM ∶MB =CN ∶NA =1∶2,如果=A B a ,AC b =
,
那么=MN
▲ (用,a b 表示).
14.某大型超市有斜坡式的自动扶梯,人站在自动扶梯上,沿着斜坡向上方向前进13米时,
在铅垂方向上升了5米,如果自动扶梯所在的斜坡的坡度i =1∶m ,那么m = ▲ . 15.某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如
图所示的频率分布直方图(不完整),则图中m 的值是 ▲ . 16.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,写出一个函数(0)k
y k x
=
≠, 使它的图像与正方形OABC 的边有公共点,这个函数的解析式可以是 ▲ .
17.在矩形ABCD 中,AB =3,AD =4,点O 为边AD 的中点,如果以点O 为圆心,r 为半径
的圆与对角线BD 所在的直线相切,那么r 的值是 ▲ .
18.如图,将□ABCD 绕点A 旋转到□AEFG 的位置,其中点B 、C 、D 分别落在点E 、F 、
G 处,且点B 、E 、D 、F 在一直线上.如果点E 恰好是对角线BD 的中点,那么AB AD
的值是 ▲ .
(第15题图)
(第16题图)
(第18题图)
A
三、解答题(本大题共7题,满分78分)19.(本题满分10分)
计算:0-1
1
++6cos30
3
︒
)().
20.(本题满分10分)
解不等式组:
()
2131
5
5
2
x x
x
x
--
⎧
⎪
⎨-
+
⎪
⎩
>,
<,
并写出它的所有非负整数
....解.
21.(本题满分10分,第(1)小题3分,第(2)小题7分)
已知:在Rt△ABC中,∠ACB=90°,∠A=30°,点M、N分别是边AC、AB的中点,点D是线段BM的中点.
(1)求证:
CN CD
AB MB
=;
(2)求∠NCD的余切值.
22.(本题满分10分,第(1)小题4分,第(2)小题6分)
某山山脚的M处到山顶的N处有一条长为600米的登山路,小李沿此路从M走到N,停留后再原路返回,其间小李离开M处的路程y米与离开M处的时间x分(x>0)之间的函数关系如图中折线OABCD所示.
(1)求上山时y关于x的函数解析式,并写出定义域;
(2)已知小李下山的时间共26分钟,其中前
18分钟内的平均速度与后8分钟内的平均速度
之比为2∶3,试求点C的纵坐标.
(第21题图)
x(分)
初三数学第一次模拟考试卷—3—
初三数学第一次模拟考试卷—4—
23.(本题满分12分,每小题各6分)
已知:如图,在直角梯形纸片ABCD 中,DC //AB , AB CD AD >>,∠A =90°,将纸片沿过点D 的直线翻折,使点A 落在边CD 上的点E 处,折痕为DF ,联结EF 并展开纸片. (1)求证:四边形ADEF 为正方形;
(2)取线段AF 的中点G ,联结GE ,当BG =CD 时, 求证:四边形GBCE 为等腰梯形.
24.(本题满分12分,每小题各4分)
已知在直角坐标系中,抛物线2830)y ax ax a =-+<(与y 轴交于点A ,顶点为D ,其对称轴交x 轴于点B ,点P 在抛物线上,且位于抛物线对称轴的右侧. (1)当AB =BD 时(如图),求抛物线的表达式;
(2)在第(1)小题的条件下,当DP //AB 时,求点P 的坐标; (3)点G 在对称轴BD 上,且∠AGB =
1
2
∠ABD ,求△ABG 的面积.
25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)
已知:半圆O 的直径AB =6,点C 在半圆O
上,且tan ABC ∠=D 为
AC 上一点,联结DC (如图).
(1)求BC 的长;
(2)若射线DC 交射线AB 于点M ,且△MBC 与△MOC 相似,求CD 的长;
(3)联结OD ,当OD //BC 时,作∠DOB 的平分线交线段DC 于点N ,求ON 的长.
(第24题图)
x
x
(第23题图)
(第
25题备用图)
(第25题图)。