万有引力定律及其应用知识点总结
引力的相关知识点总结
引力的相关知识点总结一、引力的性质1. 引力是一种作用力,它可以改变物体的运动状态。
当一个物体受到引力作用时,它会产生加速度,从而改变运动状态。
2. 引力是质点之间的相互作用力,它不需要直接接触,只需有质点存在就能产生引力。
3. 引力是相互吸引的力,即两个物体之间的引力方向相反,大小相等。
4. 引力是一种万有力,即存在于宇宙中的所有物体间,无论它们的大小、质量和距离,都会产生引力。
这也是引力是一种非常重要的力的原因。
二、引力的定律1. 万有引力定律万有引力定律由牛顿在1687年提出,它描述了两个物体之间引力的大小和方向的关系。
定律的表达式为:F=G*(m1*m2)/r^2,其中F为引力的大小,G为万有引力常数,m1和m2分别为两个物体的质量,r为两个物体之间的距离。
2. 引力的大小与质量的关系根据万有引力定律可以得知,引力的大小与物体的质量成正比,即质量越大的物体之间的引力越大。
3. 引力的大小与距离的关系根据万有引力定律可以得知,引力的大小与物体之间的距离的平方成反比,即距离越远引力越小。
4. 引力的方向引力的方向与物体之间的相对位置有关,通常情况下引力的方向是指向物体的重心。
5. 引力是场力引力是一种场力,它可以传递作用力,即使两个物体之间有障碍物,也能产生引力。
三、引力的应用1. 行星运动引力是导致行星绕太阳运动的原因,太阳的引力作用下,行星沿着椭圆轨道绕太阳运动。
2. 地球引力地球的引力使得物体向地球中心方向运动,这是人类站立在地球上的原因。
3. 人造卫星轨道人造卫星绕地球运动的轨道是由地球引力和卫星的初速度共同决定的,引力使得卫星绕地球轨道运动。
4. 引力波引力波是一种振动的引力波,它是由质量的不均匀分布产生的引力变化造成的,是爱因斯坦在广义相对论中预言的。
5. 引力势能引力在应用上还有引力势能的概念,它是描述物体由于位置而具有的能量,它是质点在引力场中的势能。
引力势能的大小与质点与引力中心的距离有关,距离越远引力势能越小。
期末复习:万有引力定律及其应用
A
(重庆卷)16.月球与地球质量之比约为1:80,有研究 16.月球与地球质量之比约为 月球与地球质量之比约为1:80, 者认为月球和地球可视为一个由两质点构成 的双星系 它们都围绕月地连线上某点o做匀速圆周运动. 统,它们都围绕月地连线上某点o做匀速圆周运动. 据此观点,可知月球与地球绕o 据此观点,可知月球与地球绕o点运动的线速度大小 之比约为 A,1:6400 B,1:80 B, C, C, 80:1 D, D, 6400:1
C.
4π ( ) 3Gρ 1 π 2 ( ) Gρ
1 2
3 ) B. ( 4π G ρ
1 2
D
3π ) D. ( Gρ
1 2
Mm 4π 2 G 2 =m 2 R R T
4 3 M = ρ πR 3
上海物理 : 15. 月球绕地球做匀速圆周运动的向
心加速度大小为a 心加速度大小为a,设月球表面的重力加速度大 小为g 小为g1,在月球绕地球运行的轨道处由地球引力 产生的加速度大小为g 产生的加速度大小为g2,则 A. g1=a B. g2=a C. g1+g1=a D. g1-g2=a
r ∝1 m
v ∝1 m
m2 r1 = l m1 + m 2
m1 r2 = l m1 + m 2
(天津卷)6.探测器绕月球做匀速圆周运动, 6.探测器绕月球做匀速圆周运动 探测器绕月球做匀速圆周运动, 变轨后在周期较小的轨道上仍做匀速圆周运动, 变轨后在周期较小的轨道上仍做匀速圆周运动, 则变轨后与变轨前相比 A.轨道半径变小 A.轨道半径变小 B.向心加速度变小 B.向心加速度变小 C.线速度变小 C.线速度变小 D.角速度变小 D.角速度变小
pq
万有引力定律及其应用
万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。
本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。
一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。
牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。
二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。
根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。
通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。
世界各个国家的航天探索也依赖于万有引力定律。
比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。
此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。
三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。
通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。
在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。
此外,卫星之间也需要遵循万有引力定律的规律。
卫星在轨道上的相对位置和轨道调整都受到引力的影响。
科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。
四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。
通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。
卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。
万有引力定律公式总结
万有引力定律的应用总结:两个基本思路1.万有引力提供向心力:ma r Tm r m r v m r M G ====222224m πω 2.忽略地球自转的影响:mg RGM =2m(2g R GM =,黄金代换式)一、测量中心天体的质量和密度 测质量:1.已知表面重力加速度g ,和地球半径R 。
(mg R GM =2m ,则GgR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。
(r T m r Mm G 2224π= ,则2324GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。
(r v m r Mm G 22=,则G rv M 2=)4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=)5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m rM G 22m =,联立得G T M π2v 3=)测密度:已知环绕天体的质量m 、周期T 、轨道半径r 。
中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力r T m r Mm G 2224π= 则2324GT r M π=——① 又334R V M πρρ⋅==——② 联立两式得:3233RGT r πρ= 当R=r 时,有23GTπρ=注:R 中心天体半径,r 轨道半径,球体体积公式334R V π= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2RGMmg =(g 为表面重力加速度,R 为星球半径)2.离地面高h: 2)(h R GMg m +='(g '为h 高处的重力加速度) 联立得g'与g 的关系: 22)('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G=2m ,则2a r MG =(卫星离地心越远,向心加速度越小) 2.r v m rMm G 22=,则r GM v =(卫星离地心越远,它运行的速度越小)3.r m r Mm G22ω=,则3rGM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 2224π=,则GMT 32r 4π=(卫星离的心越远,它运行的周期越大)。
万有引力定律的总结与归纳
万有引力定律的总结与归纳万有引力定律是牛顿力学中的基础定律之一,它描述了任何两个物体之间的引力相互作用关系。
该定律的发现对于我们理解宇宙中的运动和相互关系有着重要的意义。
本文将对万有引力定律进行总结与归纳,以便更好地理解和应用该定律。
1. 万有引力定律的表述万有引力定律由英国科学家牛顿在17世纪末提出。
其表述如下:任何两个物体之间的引力的大小与它们的质量成正比,与它们之间的距离的平方成反比。
即引力F与质量m1和m2以及它们之间的距离r 的关系可以表示为:F =G * (m1 * m2) / r^2其中,F表示引力的大小,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
2. 引力的特征(这一小节可以讨论引力的方向、大小和性质,以及它对物体运动的影响等方面的内容)3. 万有引力定律的应用3.1 天体运动万有引力定律被广泛应用于宇宙中天体的运动研究。
例如,地球绕太阳运动、月球绕地球运动等等,都可以通过该定律来解释和计算。
通过这一定律,我们可以了解到行星的轨道形状、运动速度等信息。
3.2 地球上的应用在地球上,万有引力定律也有着重要的应用。
例如,我们可以通过该定律来计算物体在地球表面上的重量,以及物体与地球之间的万有引力。
3.3 工程设计和航天探索在工程设计中,了解和应用万有引力定律可以帮助我们计算天体的轨道、飞行速度等参数,进而指导人造卫星、飞船的设计与飞行控制。
在航天探索中,准确计算引力对航天器的影响,使得航天任务能够成功执行。
4. 万有引力定律的局限性虽然万有引力定律是牛顿力学的重要组成部分,但它在某些特殊情况下并不适用。
例如,当物体体积非常小、速度接近光速时,就需要用到更精确的理论,如相对论。
总结:万有引力定律是描述天体之间引力相互作用的基本规律。
它有着广泛的应用,不仅用于解释和计算宇宙中的天体运动,也可以应用于地球上的物体和工程设计等领域。
然而,虽然万有引力定律在牛顿力学中具有重要地位,但在特殊情况下需要用其他理论进行修正。
万有引力定律及其应用知识点总结
万有引力定律及其应用知识点总结
1、万有引力定律:,引力常量G=6.67×N·m2/kg2
2、合用条件:可作质点的两个物体间的互相作用;假如两个平均的球体 ,r 应是两球心间距 .(物体的尺寸比两物体的距离r 小得多时,能够当作质点 )
3、万有引力定律的应用: (中心天体质量 M, 天体半径 R, 天体表面重力加快度 g )
(1)万有引力 =向心力(一个天体绕另一个天体作圆周运动时,下边式中 r=R+h )
(2)重力 =万有引力
地面物体的重力加快度:mg = G g = G ≈9.8m/s2
高空物体的重力加快度:mg = G g = G <9.8m/s2
4、第一宇宙速度 ----在地球表面邻近 (轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在全部圆周运动的卫星中线速度
是最大的 .
由 mg=mv2/R 或由 = =7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、经过万有引力定律和向心力公式计算围绕速度
8、大于围绕速度的两个特别发射速度:第二宇宙速度、第三宇宙
速度 (含义 )
第1页/共1页。
高中物理万有引力部分知识点总结
高中物理——万有引力与航天知识点总结一、开普勒行星运动定律(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。
3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。
对于均匀的球体,r是两球心间的距离。
三、万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3).(1)若已知天体的半径R,则天体的密度ρ=V(M)=πR3(4)=GT2R3(3πr3)(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π)可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星(1)研究人造卫星的基本方法看成匀速圆周运动,其所需的向心力由万有引力提供.G r2(Mm)=m r(v2)=mr ω2=m 224T πr^2=ma 向.(2)卫星的线速度、角速度、周期与半径的关系①由GMm/r^2=mv^2/r 得v =GM/r ,故r 越大,v 越小②由GMm/r^2=mr ω2得ω=GMm/r^3,故r 越大,ω越小③由GMm/r^2=m(4π^2/T^2)r 得T =GM 32r 4π,故r 越大,T 越大(3)人造卫星的超重与失重 ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。
(完整版)万有引力定律公式总结
万有引力定律知识点班级: 姓名:一、三种模型1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。
2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力.3、“天体相遇"模型:两天体相遇,实际上是指两天体相距最近.二、两种学说1、地心说:代表人物是古希腊科学托勒密2、日心说:代表人物是波兰天文学家哥白尼三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。
第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等.(表达式) 四、基础公式线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m (2)2r= m (2)2r=m =m 向心加速度:a== (2r= (2)2r= (2)2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====222224m πω 2.忽略地球自转的影响:mg RGM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度测质量: 1.已知表面重力加速度g ,和地球半径R.(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。
(r T m r Mm G 2224π= ,则2324GTr M π=) 3.已知环绕天体的线速度v 和轨道半径r.(r v m rMm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m rMm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (Tr v π2=,r v m r M G 22m =,联立得G T M π2v 3=)测密度:已知环绕天体的质量m 、周期T 、轨道半径r.中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力r T m r Mm G 2224π= 则2324GTr M π=——① 又334R V M πρρ⋅==—-② 联立两式得:3233R GT r πρ= 当R=r 时,有23GTπρ= 注:R 中心天体半径,r 轨道半径,球体体积公式334R V π=七、星球表面重力加速度、轨道重力加速度问题1.在星球表面: 2RGM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2)(h R GM g m +='(g '为h 高处的重力加速度) 联立得g'与g 的关系: 22)('h R gR g += 八、卫星绕行的向心加速度、速度、角速度、周期与半径的关系1.ma r M G =2m ,则2a rM G =(卫星离地心越远,向心加速度越小) 2.r v m rMm G 22=,则r GM v =(卫星离地心越远,它运行的速度越小) 3.r m rMm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r Tm r Mm G 2224π=,则GMT 32r 4π=(卫星离的心越远,它运行的周期越大) 九、三大宇宙速度 第一宇宙速度(环绕速度):7。
万有引力与航天知识点归纳
万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。
2. 公式,其中,称为引力常量。
3. 适用条件适用于两个质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,为两球心间的距离。
二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。
若已知环绕天体的线速度和轨道半径,则。
若已知环绕天体的角速度和轨道半径,则。
若已知环绕天体的周期和轨道半径,则。
2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。
由,天体的体积。
当卫星绕天体表面运行时,则。
三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。
2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。
3. 卫星的角速度由可得,轨道半径越大,角速度越小。
4. 卫星的周期由可得,轨道半径越大,周期越大。
5. 地球同步卫星特点:周期,与地球自转周期相同。
轨道平面与赤道平面重合。
高度,线速度。
四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。
计算:由(为地球半径),可得。
这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。
2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。
3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。
五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。
2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。
物理万有引力知识点大全
物理万有引力知识点大全物理万有引力知识点一、行星运动1.地心说和日心说地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其它行星都绕地球运动,日心说认为太阳是静止不动的,地球和其它行星都绕太阳运动,日心说是形成新的世界观的基础,是对宗教的挑战。
2.开普勒第一定律开普勒第一定律指出:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,这个定律也叫做“轨道定律”,它正确描述了行星运动轨道的形状。
3.开普勒第三定律开普勒第三定律指出:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,即R3/T2=k.这个定律也叫“周期定律”.行星运动三定律是开普勒根据第谷连续20年对行星运动进行观察记录的数据,经过刻苦计算而得出的结论.二、万有引力定律1.万有引力定律的内容(l)万有引力是由于物体具有质量而在物体之间产生的一种相互作用.它的大小和物体的质量及两个物体之间的距离有关:两个物体质量越大,它们间的万有引力越大;两物体间距离越远,它们间的万有引力越小.通常两个物体之间的万有引力极其微小,在天体系统中,万有引力的作用是决定性的.(2)万有引力定律的公式是:.即两物体间万有引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比.2.引力常量及其测定(1)万有引力常量G=6.__10-11 N?m2/kg2,通常取G=6.67×10-11 N?m2/kg2.(2)万有引力常量G的值是由英国物理学家卡文迪许用扭秤装置首先准确测定的.G的测定不仅用实验证实了万有引力的存在,同时也使万有引力定律有了实用价值.3.万有引力定律的应用万有引力定律在研究天体运动中起着决定性的作用,它把地面上物体的运动规律与天体运动的规律统一起来,是人类认识宇宙的基础.万有引力定律在天文学上的下列应用:(1)用万有引力定律求中心星球的质量和密度当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有引力定律有:,可得出,由r、v或r、T就可以求出中心星球的质量;如果环绕星球离中心星球表面很近,即满足r≈R,那么由可以求出中心星球的平均密度ρ。
万有引力的定律及应用
万有引力的定律及应用万有引力定律是描述质点间万有引力作用的基本物理定律,由英国物理学家牛顿于1687年提出。
在不受其他力干扰的理想情况下,两个质点间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。
万有引力定律由以下公式给出:F =G * (m1 * m2) / r^2其中,F是两个质量为m1和m2的质点间的引力的大小,G是万有引力常数,它的数值约为6.67430 ×10^-11 N·(m/kg)^2,r是两个质点之间的距离。
应用方面,万有引力定律在天体物理学、工程学、地理学等领域都有广泛的应用。
以下是一些具体的应用:1. 行星运动:万有引力定律可以用于描述行星围绕太阳的轨道运动。
根据万有引力定律,太阳对行星的引力决定了行星的运动轨迹和速度。
利用这一定律,我们可以计算天体的轨道周期、轨道半径、行星速度等重要参数。
2. 卫星轨道:天文学家和航天科学家利用万有引力定律设计和计算卫星的轨道。
例如,地球上的人造卫星绕地球运动的轨道就是通过计算地球对卫星的引力和卫星的惯性力平衡得到的。
3. 理解地球重力:万有引力定律也可以用于解释地球上物体的重力。
地球上的物体受到地球对它们的引力作用,这个引力决定了物体的质量,以及物体受到的重力加速度。
地球上物体的重力加速度约为9.8 m/s^2。
4. 引力势能:根据万有引力定律,物体在引力场中具有势能。
利用万有引力定律,我们可以计算物体在引力场中的势能差。
例如,当物体从地球表面升到高空时,它的势能增加。
5. 测定天体质量:运用万有引力定律,我们可以通过测量天体间的引力和距离,来计算天体的质量。
例如,通过测量地球和月球间的引力和距离,我们可以确定地球和月球的质量。
总之,万有引力定律是一个十分重要的物理定律,它不仅可以解释天体运动、地球重力等现象,还有许多实际的应用。
通过对万有引力定律的研究和应用,我们可以更好地理解自然界中的各种现象,为科学研究和技术发展提供基础。
万有引力知识点总结(必备3篇)
万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。
(完整版)万有引力定律-知识点
万有引力定律及其应用二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G221r m m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221r m m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g , 所以m 2g=F 一F 向=G221r m m -m 2R ω自2因地球目转角速度很小G221r m m » m 2R ω自2,所以m 2g= G221r m m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221r m m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多. 四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G2rmM =m224Tπr ,由此可得:M=2324GT r π;ρ=V M=334R M π=3223R GT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度专题:人造天体的运动基础知识一、卫星的绕行角速度、周期与高度的关系(1)由()()22mMv Gmr h r h =++,得v =h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 二、三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
《万有引力定律的应用》 讲义
《万有引力定律的应用》讲义一、万有引力定律的发现在物理学的发展历程中,万有引力定律的发现无疑是一颗璀璨的明珠。
17 世纪,英国科学家牛顿在前人的研究基础上,通过对天体运动的深入思考和实验观察,提出了万有引力定律。
牛顿发现,任何两个物体之间都存在着相互吸引的力,这个力的大小与两个物体的质量成正比,与它们之间距离的平方成反比。
其数学表达式为:F = G (m1 m2) / r²,其中 F 表示两个物体之间的引力,G 是万有引力常量,m1 和 m2 分别是两个物体的质量,r 是它们之间的距离。
万有引力定律的发现,不仅解释了地球上物体的下落现象,还成功地解释了天体的运动规律,如行星绕太阳的运动、月球绕地球的运动等,为人类认识宇宙打开了新的大门。
二、万有引力定律在天文学中的应用1、计算天体的质量通过观测天体的运动轨道和周期,结合万有引力定律,可以计算出天体的质量。
例如,对于绕太阳运行的行星,我们可以根据其轨道半径和公转周期,计算出太阳的质量。
同样,通过观测月球绕地球的运动,也可以计算出地球的质量。
以计算太阳质量为例,假设某行星绕太阳的轨道半径为 r,公转周期为 T。
根据万有引力提供向心力,有:F = m (2π / T)² r又因为 F = G (M m) / r²,其中 M 为太阳质量,m 为行星质量。
联立可得:M =4π² r³ /(G T²)2、预测天体的运动轨迹万有引力定律可以帮助我们准确地预测天体的运动轨迹。
天文学家可以根据已知天体的位置、速度和质量等信息,通过计算万有引力的作用,预测出它们未来的运动方向和位置。
这对于研究天体的演化、发现新的天体以及保障太空探索任务的安全都具有重要意义。
3、研究星系的结构和演化星系是由大量恒星、气体和尘埃组成的巨大天体系统。
万有引力定律在研究星系的结构和演化中起着关键作用。
星系中的恒星之间通过万有引力相互作用,形成特定的结构和运动模式。
万有引力定律及其应用知识点总结
万有引力定律及其应用知识点总结
1、万有引力定律:,引力常量G=6.67× N·m2/kg2
2、适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3、万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时,下面式中r=R+h )
(2)重力=万有引力
地面物体的重力加速度:mg = G g = G ≈9.8m/s2
高空物体的重力加速度:mg = G g = G <9.8m/s2
4、第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的.
由mg=mv2/R或由= =7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、通过万有引力定律和向心力公式计算环绕速度
8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
第1页/共1页。
万有引力定律及其应用知识点与考点总结
万有引力定律及其应用知识点与考点总结F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是一个常量,m1和m2分别是这两个物体的质量,r是它们之间的距离。
1.行星运动:万有引力定律可以用来解释行星之间的相互作用。
根据这个定律,行星绕太阳运动的轨道是椭圆形的,且行星与太阳之间的引力与它们之间的距离成反比。
2.卫星运动:卫星绕地球运动的轨道也可以用万有引力定律来描述。
根据这个定律,卫星与地球之间的引力与它们之间的距离成反比,使得卫星能够保持在固定的轨道上。
3.重力加速度:万有引力定律也可以用来计算物体在地球表面上的重力加速度。
根据这个定律,地球对物体施加的引力与物体的质量成正比,因此物体的重力加速度与其质量无关。
4.弹道弧线:当物体在重力作用下以一定速度进行抛射运动时,其轨迹将会是一个弧线。
万有引力定律可以用来解释这种弧线轨迹,并计算物体的飞行距离、最大高度等参数。
5.引力势能:根据万有引力定律,物体在地球表面上的引力势能可以用地球与物体之间的距离和物体的质量来计算。
这个应用可以用来解释物体的自由落体运动和弹跳运动等现象。
1.数学表达式的理解:考生需要熟悉万有引力定律的数学表达式,理解其中的符号表示和物理意义,能够根据问题条件进行适当的数值计算。
2.引力与质量的关系:考生需要理解引力与物体质量之间的关系,能够根据物体质量的变化来判断引力的变化趋势。
3.引力与距离的关系:考生需要理解引力与物体间距离的关系,能够根据物体间距离的变化来判断引力的变化趋势。
4.引力的方向:考生需要理解引力是一种相互作用力,具有大小和方向。
对于物体间的引力,考生需要能够判断引力的方向是向内还是向外。
5.引力的应用问题:考生需要能够应用万有引力定律解决与行星运动、卫星运动、重力加速度等相关的问题,包括计算轨道参数、物体的加速度、引力势能等等。
总之,万有引力定律是物理学中的基本定律之一,具有重要的理论和实际应用意义。
理解和掌握这个定律的数学表达式和物理意义,以及应用该定律解决实际问题的能力,是物理学习的重要内容和考查要点。
万有引力定律知识点总结
一、开普勒行星运动定律定律内容图示第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
第二定律(面积定律)对任意一个行星来说,他与太阳的连线在相等的时间内扫过相等的面积。
第三定律(周期定律)所有行星的轨道半径的半长轴的三次方跟它的公转周期的平方的比值都相等,a3/T2=k。
注意:1. 开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
2.比例系数k与中心天体质量有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k值不相同。
3. T为公转周期,不是自转周期。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。
2.表达式:F=G221 r mm其中G=×10-11N•m2/kg2,称为为有引力恒量。
3.适用条件:用于计算引力大小的万有引力公式严格地说只适用于两质点间引力大小的计算,如果相互吸引的双方是质量分布均匀的球体,则可将其视为质量集中于球心的质点,此时r是两球心间的距离。
4.对万有引力定律的理解(1)普遍性:万有引力是普遍存在于宇宙中任何有质量物体之间的相互吸引力,它是自然界中物体之间的基本的相互作用之一,任何客观存在的两部分有质量的物体之间都存在着这种相互作用。
(2)相互性:两个物体相互作用的引力是一对作用力与反作用力.它们大小相等,方向相反,分别作用在两个物体上。
(3)宏观性:通常情况下,万有引力非常小,它的存在可由卡文迪许扭秤来观察,只有在质量巨大的天体间,它的存在才有宏观物理意义。
二、重力加速度重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极逐渐增大.1.若不计地球自转的影响,则物体在地球表面的重力等于地球对物体的万有引力,即2GMmmgR=, 则星球表面的重力加速度为:2GMgR=2.同理,若不计地球自转的影响,在距地球表面高h处的重力加速度为:2()hGMgR h=+3.若考虑地球自转的影响,(1)在赤道处,物体的万有引力分解为两个分力F向和mg刚好在一条直线上,则有F=F向+mg,所以mg=F一F向=2GMmR-mRω自2则赤道处重力加速度为:g=2GMR-Rω自2(而地球赤道处的向心加速度a n= Rω自2 =s2,因此一般不计其自转的影响;注意:当题目中出现地球自转时需要考虑此问题。
万有引力定律及其应用
万有引力定律及其应用万有引力定律是牛顿力学的基石之一,它描述了质量之间存在的吸引力,并且广泛应用于天体物理学、航天工程以及地球科学等领域。
本文将介绍万有引力定律的基本原理以及其应用。
一、万有引力定律的基本原理万有引力定律是由英国科学家牛顿在17世纪提出的,它表明两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。
具体表达式为:F =G * (m1 * m2) / r^2其中,F代表两个物体之间的引力,m1和m2分别是它们的质量,r 是它们之间的距离,G是一个叫做万有引力常数的物理常量。
二、万有引力定律的应用1. 天体物理学万有引力定律对于研究天体物理学起到了重要的作用。
根据该定律,科学家可以计算出行星、卫星、恒星等天体之间的引力,并且预测它们的运动轨迹。
例如,利用万有引力定律,科学家可以计算出地球和月球之间的引力,从而解释月球围绕地球的运动。
2. 航天工程在航天工程中,万有引力定律同样起到了关键的作用。
它帮助科学家研究天体的引力场以及行星轨道的选择。
基于万有引力定律,科学家可以计算出在不同行星或卫星表面的引力,从而设计出航天器的轨道和飞行路径。
3. 地球科学地球科学中也广泛应用了万有引力定律。
通过测量地球表面上不同位置的重力,科学家可以了解地球内部的密度分布情况,进而推断地球内部的结构和组成。
此外,通过引力测量还可以研究地球表面的地质构造,如山脉的形成和地壳的运动等。
4. 宇宙学在宇宙学中,万有引力定律帮助科学家研究宇宙的结构和演化。
通过测量不同天体之间的引力,科学家可以确定宇宙中物质的分布情况,理解宇宙的膨胀和星系的形成演化过程。
万有引力定律也被用来解释黑洞、星系聚团等宇宙现象。
三、结语万有引力定律作为自然界中最基本的力之一,在物理学和相关领域中具有重要地位。
它不仅解释了质量之间的相互作用,也为人类研究和认识宇宙提供了重要的工具和理论基础。
通过对万有引力定律的深入研究和应用,我们可以更好地理解和探索宇宙的奥秘。
高中物理万有引力知识点总结
高中物理万有引力知识点总结1.开普勒第三定律:T2/R3=K=4π2/GM{R:轨道半径,T:周期,K:常量与行星质量无关,取决于中心天体的质量}2.万有引力定律:F=Gm1m2/r2 G=6.67×10-11N?m2/kg2,方向在它们的连线上3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径m,M:天体质量kg}4.卫星绕行速度、角速度、周期:V=GM/r1/2;ω=GM/r31/2;T=2πr3/GM1/2{M:中心天体质量}5.第一二、三宇宙速度V1=g地r地1/2=GM/r地1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/r地+h2=m4π2r地+h/T2{h≈36000km,h:距地球表面的高度,r 地:地球的半径}注:1天体运动所需的向心力由万有引力提供,F向=F万;2应用万有引力定律可估算天体的质量密度等;3地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;4卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小一同三反;5地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1、卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾矛盾为:a、原子是不稳定的;b、原子光谱是连续谱,1913年玻尔丹麦在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。
2、玻尔理论的假设:1原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量,这些状态叫做定态。
氢原子的各个定态的能量值,叫做它的能级。
原子处于最低能级时电子在离核最近的轨道上运动,这种定态叫做基态;原子处于较高能级时电子在离核较远的轨道上运动的这些定态叫做激发态。
2原子从一种定态设能量为En跃迁到另一种定态设能量为Em时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即h=En-Em3原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律及其应用知识点总结
1、万有引力定律:,引力常量G=6.67×
N·m2/kg2
2、适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的
距离r小得多时,可以看成质点)
3、万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )
(1)万有引力=向心力 (一个天体绕另一个天体作圆周运
动时,下面式中r=R+h )
(2)重力=万有引力
地面物体的重力加速度:mg = G g = G ≈9.8m/s2 高空物体的重力加速度:mg = G g = G <9.8m/s2
4、第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运
动的卫星中线速度是最大的.
由mg=mv2/R或由 = =7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、通过万有引力定律和向心力公式计算环绕速度
8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)。