2019年人教版数学九年级上册 专项突破试卷 与圆有关的计算与证明附答案

合集下载

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

人教版2019年初中九年级上册数学:圆关系真题汇总(含答案)

答案:能通过.设圆x,3.9^2-(2+3.9-2.4)^2=(x/2)^2,x=3.44证明:延长CE、DF交圆于接CN、DM交于O点,易证:△3.如图,△ABC 内接于⊙O答案:当P在O点时,∵OA=OC∴∠ACP=∠BAC=30∘;当P在B点时,∵圆的直径所对的圆周角为直角,∴∠ACP=90∘;∴30∘⩽x⩽90∘.故答案为:30∘⩽x⩽90∘.10、如图所示,AB =AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)试判断DE 与BD 是否相等,并说明理由;(2)如果BC =6,AB =5,求BE 的长.证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴ED ˆ=BDˆ,∴DE=BD;(2)∵AB=5,BD=12BC=3,∴AD=4,∵AB=AC=5,∴AC⋅BE=CB⋅AD,∴BE=4.8.11、如图11,半圆的直径AB =10,点C 在半圆上,BC=6.(1)求弦AC 的长;(2)若P 为AB 的中点,PE ⊥AB 交AC 于点E ,求PE 的长.解:(1)是的直径,,,而,,;(2),,而公共,,,即,.12、如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD ⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:BC2 =BG*BF.证明:∵AB是O的直径,∠ACB=90∘,又CD⊥AB于D,∴∠BCD=∠A,又∠A=∠F.,∴∠F=∠BCD.在△BCG和△BFC中,{∠BCG=∠F∠GBC=∠CBF,∴△BCG∽△BFC.∴BCBF=BGBC.即BC2=BG⋅BF.13、如图,AD 是⊙O 的直径.(1) 如图①,垂直于AD 的两条弦B 1C 1,B 2C 2把圆周4等分,则∠B 1的度数是,∠B 2的度数是;(2) 如图②,垂直于AD 的三条弦B 1C 1,B 2C 2,B 3C 3把圆周6等分,分别求∠B 1,∠B 2,∠B 3的度数;(3) 如图③,垂直于AD 的n 条弦B 1C 1,B 2C 2,B 3 C 3,…,B n C n 把圆周2n 等分,请你用含n 的代数式表示∠B n 的度数(只需直接写出答案).解:(1)∵垂直于AD的两条弦,把圆周4等分,∴弧、弧、弧、弧的度数都是90度,弧弧,∴弧的度数是45度,,, 故答案为:22.5度,67.5度,(2)∵垂直于AD的三条弦,,把圆周6等分∴弧、弧、弧的度数都是60度,弧弧,∴弧的度数是30度,,故答案为:75度。

人教版九年级上册数学《与圆有关的弧长、面积计算》练习题(含答案)

人教版九年级上册数学《与圆有关的弧长、面积计算》练习题(含答案)

与圆有关的弧长、面积计算一 、填空题(本大题共9小题)1.,圆心角等于的扇形内部作一个正方形,使点在上,点在上,点在上,则阴影部分的面积为____________.2.如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x=的图象上,则图中阴影部分的面积于 。

3.正n 边形内接于半径为R 的圆,这个n 边形的面积为23R ,则n 等于____________.4.如图,在等腰直角三角形中,,点为的中点,已知扇形和扇形的圆心分别为点、点,且,则图中阴影部分的面积为 (结果不取近似值).5.如图,点在直径为的上,,则图中阴影部分的面积等于 .(结果中保留π).545︒AOB CDEF C OA D E 、OB F AB FCA ABC 90C ∠=︒D AB EADFBD A B 2AC =FEBAC A B C 、、23O 45BAC ∠=︒6.如图7,在Rt ABC ∆中,9042C AC BC ∠=︒==,,分别以AC BC ,为直径画半圆,则图中阴影部分的面积为 .(结果保留)7.若一个扇形的圆心角为60°,面积为cm 2,则这个扇形的弧长为 cm (结果保留π).8.将绕点逆时针旋转到使在同一直线上,若,,则图中阴影部分面积为 cm 2.9.如图,等腰的直角边长为4,以为圆心,直角边为半径作弧1,交斜边于点,于点,设弧,,围成的阴影部分的面积为,然后以为圆心,为半径作弧,交斜边于点,于点,设弧围成的阴影部分的面积为,按此规律继续作下去,得到的阴影部分的面积= .OAπABC △B A BC ''△A B C '、、90BCA ∠=°4cm 30AB BAC ︒=∠=,A'C'ARt ABC △A AB BC AC 1C 11C B AB ⊥1B 1BC 11C B 1B B 1S A 1AB 22B C AC 2C 22C B AB ⊥2B 122221B C C B B B ,,2S 3S与圆有关的弧长、面积计算答案解析一 、填空题 1. 【解析】连结,由勾股定理可计算得正方形的边长为, 则正方形的面积为,等腰直角三角形的面积为, 扇形的面积为,所以阴影部分的面积为. 2.π【解析】根据反比例函数图像双曲线具有的性质,关于原点对称,从而可知把图中两块阴影归结在一个圆中,所以图中阴影部分的面积即为⊙A 或⊙B的面积.同时点A 、B 均在双曲线上1y x=,根据xy=1,且圆均与左边轴相切,可知圆的半径=1,所以阴影部分面积=π. 3.12 4..【解析】用三角形ABC 的面积减去扇形EAD 和扇形FBD 的面积,即可得出阴影部分的面积.∵, ∴, ∵点为的中点, ∴321A5382π-OF CDEF 1CDEF 1COD 12AOB 21588π⋅=π5382π-22π-902BC AC C AC =∠=︒=,,AB =D AB AD BD ==∴【点评】本题考查了扇形面积的计算以及等腰直角三角形的性质,熟记扇形的面积公式:.5.3342-π 【解析】首先连接,,即可求得,然后求得扇形的面积与的面积,求其差即是图中阴影部分的面积.连接, ∵, ∴, ∵的直径为,∴, ∴∴ 【点评】此题考查了圆周角的性质,扇形的面积与直角三角形面积得求解方法.此题难度不大,解题的关键是注意数形结合思想的应用. 6.542π-【解析】观察图形可知:图中阴影部分面积可分隔成两部分求解.设C 点到AB 的距离为CD ,第一部分:半圆AC 的面积-ACD S ∆,第二部分:半圆BC 的面积-BCD S ∆,最后两部分求和即可.7.3π;解:设扇形的半径为R ,弧长为l , 根据扇形面积公式得;=,解得:R =1, ∵扇形的面积=lR =,解得:l =π.=ABC FBD S S S -阴影扇形△24512222360π=⨯⨯-⨯22π=-2360n r s π=OB OC 90BOC ∠=︒OBC OBC △OB OC ,45BAC ∠=︒90BOC ∠=︒OBO CO =290313360422OBC OBCSS ππ⨯===扇形,△33=42OBC OBC S S S π-=-阴影扇形△8.3;【解析】此题需要把所在的圆补充完整,设它与线段的交点为,与的交点为.从而看出整个阴影部分可以割补成扇形的面积-扇形的面积.即.9.12-π; 【解析】每一个阴影部分的面积都等于扇形的面积减去等腰直角三角形的面积.此题的关键是求得的长.根据等腰直角三角形的性质即可求解. 根据题意,得. ∴. ∴. ∴. ∴阴影部分的面积. 【点评】此题综合运用了等腰直角三角形的性质和扇形的面积公式.πBC AB D 'A B E 'ABA BDE 221(42)34ππ-=23AB AB 、14AC AB ==21AC AB ==322AC AB ==3AB =345412136022S ππ⨯-⨯=-。

人教版九年级数学上册 第二十四章 圆 解答题—中考真题汇编(二)(解析版)

人教版九年级数学上册 第二十四章 圆 解答题—中考真题汇编(二)(解析版)

第二十四章圆解答题—2019年中考真题汇编(二)1.(2019•河池)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.2.(2019•孝感)如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.3.(2019•贺州)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.(1)求∠ADB的度数;(2)求AC的长度.4.(2019•襄阳)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D,过D作直线DG∥BC.(1)求证:DG是⊙O的切线;(2)若DE=6,BC=6,求优弧的长.5.(2019•贵港)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE.(1)求证:AE是半圆O的切线;(2)若P A=2,PC=4,求AE的长.6.(2019•张家界)如图,AB为⊙O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是⊙O的切线;(2)当∠D=30°时,求阴影部分面积.7.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A 为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.8.(2019•黄石)如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=,求弦AC的长.9.(2019•新疆)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,CE⊥AB 于点E.(1)求证:∠BCE=∠BCD;(2)若AD=10,CE=2BE,求⊙O的半径.10.(2019•淮安)如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.11.(2019•咸宁)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.12.(2019•东营)如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.13.(2019•毕节市)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.14.(2019•郴州)如图,已知AB是⊙O的直径,CD与⊙O相切于点D,且AD∥OC.(1)求证:BC是⊙O的切线;(2)延长CO交⊙O于点E.若∠CEB=30°,⊙O的半径为2,求的长.(结果保留π)15.(2019•十堰)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.16.(2019•常德)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.17.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.18.(2019•资阳)如图,AC是⊙O的直径,P A切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若P A=1,求点O到弦AB的距离.19.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.20.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.第二十四章圆解答题—2019年中考真题汇编(二)参考答案与试题解析1.【分析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH=30°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.【解答】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F=45°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD=60°,∴∠OBH=30°,∴OH=OB=1,∴OG=,∴CF=CG=OC+OG=2+.【点评】本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.2.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了圆周角定理和三角形的外心.3.【分析】(1)由切线的性质得出AF⊥OA,求出∠F=30°,得出∠AOF=60°,由等腰三角形的性质得出∠ADB=∠OAF=30°.(2)由垂径定理得出BE=CE=BC=4,得出AB=AC,证明△AOB是等边三角形,得出AB=OB,由直角三角形的性质得出OE=OB,BE=OE=4,求出OE=,即可得出AC=AB=OB=2OE =.【解答】解:(1)∵AF与⊙O相切于点A,∴AF⊥OA,∵∠F=30°,∴∠AOF=60°,∵OA=OD,∠AOF=∠ADB+∠OAF,∴∠ADB=∠OAF=30°.(2)∵OA⊥BC,∴BE=CE=BC=4,∴AB=AC,∵∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠OBE=30°,∴OE=OB,BE=OE=4,∴OE=,∴AC=AB=OB=2OE=.【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA⊥BC是解题的关键.4.【分析】(1)连接OD交BC于H,如图,利用三角形内心的性质得到∠BAD=∠CAD,则=,利用垂径定理得到OD⊥BC,BH=CH,从而得到OD⊥DG,然后根据切线的判定定理得到结论;(2)连接BD、OB,如图,先证明∠DEB=∠DBE得到DB=DE=6,再利用正弦定义求出∠BDH=60°,则可判断△OBD为等边三角形,所以∠BOD=60°,OB=BD=6,则∠BOC=120°,然后根据弧长公式计算优弧的长.【解答】(1)证明:连接OD交BC于H,如图,∵点E是△ABC的内心,∴AD平分∠BAC,即∠BAD=∠CAD,∴=,∴OD⊥BC,BH=CH,∵DG∥BC,∴OD⊥DG,∴DG是⊙O的切线;(2)解:连接BD、OB,如图,∵点E是△ABC的内心,∴∠ABE=∠CBE,∵∠DBC=∠BAD,∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,∴DB=DE=6,∵BH=BC=3,在Rt△BDH中,sin∠BDH===,∴∠BDH=60°,而OB=OD,∴△OBD为等边三角形,∴∠BOD=60°,OB=BD=6,∴∠BOC=120°,∴优弧的长==8π.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线的判定和弧长公式.5.【分析】(1)根据已知条件推出△ABO∽△OCE,根据相似三角形的性质得到∠BAO=∠OAE,过O 作OF⊥AE于F,根据全等三角形的性质得到OF=OB,于是得到AE是半圆O的切线;(2)连接PB,根据圆周角定理得到BP⊥AC,根据射影定理得到AB=2,由勾股定理得到BC==2,求得BO=OC=,根据勾股定理得到AO==3,根据相似三角形的性质得到OE=3,根据勾股定理即可得到AE==3.【解答】(1)证明:∵在矩形ABCD中,∠ABO=∠OCE=90°,∵OE⊥OA,∴∠AOE=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△ABO∽△OCE,∴=,∵OB=OC,∴,∵∠ABO=∠AOE=90°,∴△ABO∽△AOE,∴∠BAO=∠OAE,过O作OF⊥AE于F,∴∠ABO=∠AFO=90°,在△ABO与△AFO中,,∴△ABO≌△AFO(AAS),∴OF=OB,∴AE是半圆O的切线;(2)解:连接PB,∵以BC边为直径作半圆O,∴BP⊥AC,∴AB2=AP•AC=2×6=12,∴AB=2,∴BC==2,∴BO=OC=,∴AO==3,∵∠AOE=∠ABO=∠ECO=90°,∴∠BAO+∠AOB=∠AOB+∠COE=90°,∴∠BAO=∠COE,∴△AOB∽△OEC,∴,∴=,∴OE=3,∴AE==3.【点评】本题考查了切线的判定和性质,矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.6.【分析】(1)连接BC,OC,OE,由E是BD的中点,可得CE=BE,证明△OCE≌△OBE,得∠OCE =∠OBE=90°,则结论得证;(2)阴影部分的面积即为四边形OBED的面积减去扇形COB的面积.【解答】解:(1)如图,连接BC,OC,OE,∵AB为⊙O的直径,∴∠ACB=90°,在Rt△BDC中,∵BE=ED,∴DE=EC=BE,∵OC=OB,OE=OE,∴△OCE≌△OBE(SSS),∴∠OCE=∠OBE,∵BD是⊙O的切线,∴∠ABD=90°,∴∠OCE=∠ABD=90°,∵OC为半径,∴EC是⊙O的切线;(2)∵OA=OB,BE=DE,∴AD∥OE,∴∠D=∠OEB,∵∠D=30°,∴∠OEB=30°,∠EOB=60°,∴∠BOC=120°,∵AB=4,∴OB=2,∴.∴四边形OBEC的面积为2S△OBE=2×=12,∴阴影部分面积为S四边形OBEC﹣S扇形BOC=12﹣=12﹣4π.【点评】此题综合考查了直角三角形的性质、等腰三角形的性质、切线的判定方法、扇形的面积计算方法.7.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF 进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,解得r=2,然后利用勾股定理计算这个圆锥的高h.【解答】解:∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD=AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF=×6×12﹣=36﹣12π;(2)设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=2,这个圆锥的高h==4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.8.【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=a,则由勾股定理可得AC的长.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴,∴,∴DA=2,∴AB=AD﹣BD=2﹣1=1,设BC=a,AC=a,由勾股定理可得:,解得:a=,∴.【点评】本题考查切线的判定、等腰三角形的性质、相似三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线.9.【分析】(1)根据切线的性质得出OC⊥CD,即可得出∠OBC+∠BCE=90°,由∠OCB+∠BCD=∠OCD=90°,根据等腰三角形的性质得出∠OBC=∠OCB,即可证得∠BCE=∠BCD;(2)由CE=2BE,通过解直角三角形得出tan∠ABC==2,进而证得△CBD∽△ACD,得出=,从而求得CD,然后根据切线长定理即可求得.【解答】(1)证明:连接OC,∵CD与⊙O相切于点C,∴OC⊥CD,∵OB=OC,∴∠OBC=∠OCB,∵CE⊥AB,∴∠OBC+∠BCE=90°,∵∠OCB+∠BCD=∠OCD=90°,∴∠BCE=∠BCD;(2)解:连接AC,∵AB是直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°,∵∠BCD+∠OCB=90°,∵OA=OC,∴∠ACO=∠CAO,∴∠BCD=∠DAC,∵∠CDB=∠ADC,∴△CBD∽△ACD,∴=∵CE=2BE,∴在Rt△BCE中,tan∠ABC==2,∴在Rt△ABC中,tan∠ABC==2,∴2=,∴CD=5,设⊙O的半径为r,∴BD=AD﹣2r=10﹣2r,∵CD2=BD•AD,∴BD=,即10﹣2r=,解得r=∴⊙O的半径为.【点评】本题考查了切线的性质,圆周角定理,三角形相似的判定和性质,解直角三角形等,熟练掌握性质定理是解题的关键.10.【分析】(1)欲证明DE是⊙O的切线,只要证明∠ODE=90°即可;(2)过O作OG⊥AF于G,得到AF=2AG,根据直角三角形的性质得到AG=OA=1,得到AF=2,推出四边形AODF是菱形,得到DF∥OA,DF=OA=2,于是得到结论.【解答】解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.【点评】本题考查切线的判定和性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.11.【分析】(1)如图,连接OF,根据直角三角形的性质得到CD=BD,得到∠DBC=∠DCB,根据等腰三角形的性质得到∠OFC=∠OCF,得到∠OFC=∠DBC,推出∠OFG=90°,于是得到结论;(2)连接DF,根据勾股定理得到BC==4,根据圆周角定理得到∠DFC=90°,根据三角函数的定义即可得到结论.【解答】解:(1)FG与⊙O相切,理由:如图,连接OF,∵∠ACB=90°,D为AB的中点,∴CD=BD,∴∠DBC=∠DCB,∵OF=OC,∴∠OFC=∠OCF,∴∠OFC=∠DBC,∴OF∥DB,∴∠OFG+∠DGF=180°,∵FG⊥AB,∴∠DGF=90°,∴∠OFG=90°,∴FG与⊙O相切;(2)连接DF,∵CD=2.5,∴AB=2CD=5,∴BC==4,∵CD为⊙O的直径,∴∠DFC=90°,∴FD⊥BC,∵DB=DC,∴BF=BC=2,∵sin∠ABC=,即=,∴FG=.【点评】本题考查了直线与圆的位置关系,平行线的判定和性质,勾股定理,解直角三角形,正确的作出辅助线是解题的关键.12.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.【点评】此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.13.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=90°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.14.【分析】(1)根据切线的性质和平行线的性质从而证得△COD≌△COB,得到∠ODC=∠OBC=90°,即可证得结论;(2)根据圆周角定理得到∠BOD=120°,然后根据弧长公式求得即可.【解答】(1)证明:连接OD,∵CD与⊙O相切于点D,∴∠ODC=90°,∵OD=OA,∴∠OAD=∠ODA,∵AD∥OC,∴∠COB=∠OAD,∠COD=∠ODA,∴∠COB=∠COD,在△COD和△COB中,∴△COD≌△COB(SAS),∴∠ODC=∠OBC=90°,∴BC是⊙O的切线;(2)解:∵∠CEB=30°,∴∠COB=60°,∵∠COB=∠COD,∴∠BOD=120°,∴的长:=π.【点评】本题考查了切线的判定和性质,平行线的性质,圆周角定理以及三角形全等的判定和性质,熟练掌握性质定理是解题的关键.15.【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=∠BAC,∵∠CDE=∠BAC.∴∠CDE=∠CAD,∵OA=OD,∴∠CAD=∠ADO,∵∠ADO+∠ODC=90°,∴∠ODC+∠CDE=90°∴∠ODE=90°又∵OD是⊙O的半径∴DE是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD==2x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴=,即==∴DE=4,x=,∴AC=3x=14,∴⊙O的半径为7.【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.16.【分析】(1)连接OD、CD,根据圆周角定理得出∠EDC=90°,根据平行线的性质得出OA⊥CD,根据垂径定理得出OA垂直平分CD,根据垂直平分线的性质得出OD=OC=OE,然后根据等腰三角形的三线合一的性质得出∠AOC=∠AOD,进而证得△AOD≌△AOC(SAS),得到∠ADO=∠ACB=90°,即可证得结论;(2)根据切割线定理求得BE,得到BC,然后根据切线长定理和勾股定理列出关于y的方程,解方程即可.【解答】(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.【点评】本题考查了切线的判定和性质,平行线的性质,垂径定理,切线长定理,切割线定理,三角形全等的判定和性质,熟练掌握性质定理是解题的关键.17.【分析】(1)由等腰三角形的性质和平行线的性质可得∠OBC=∠CBD,即可证=;(2)通过证明△ACE∽△BCA,可得,可得AC=2,由勾股定理可求AB的长,即可求⊙O 的半径;(3)过点O作OH⊥FQ于点H,连接OQ,通过证明△APC∽△CPB,可得,可求P A=,即可求PO的长,通过证明△PHO∽△BCA,可求PH,OH的长,由勾股定理可求HQ的长,即可求PQ的长.【解答】证明:(1)∵OC=OB∴∠OBC=∠OCB∵OC∥BD∴∠OCB=∠CBD∴∠OBC=∠CBD∴(2)连接AC,∵CE=1,EB=3,∴BC=4∵∴∠CAD=∠ABC,且∠ACB=∠ACB∴△ACE∽△BCA∴∴AC2=CB•CE=4×1∴AC=2,∵AB是直径∴∠ACB=90°∴AB==2∴⊙O的半径为(3)如图,过点O作OH⊥FQ于点H,连接OQ,∵PC是⊙O切线,∴∠PCO=90°,且∠ACB=90°∴∠PCA=∠BCO=∠CBO,且∠CPB=∠CP A∴△APC∽△CPB∴∴PC=2P A,PC2=P A•PB∴4P A2=P A×(P A+2)∴P A=∴PO=∵PQ∥BC∴∠CBA=∠BPQ,且∠PHO=∠ACB=90°∴△PHO∽△BCA∴即∴PH=,OH=∴HQ==∴PQ=PH+HQ=【点评】本题考查了切线的性质,圆的有关知识,相似三角形的判定和性质,勾股定理,求出P A的长是本题的关键.18.【分析】(1)由切线的性质得出P A=PB,∠P AC=90°,证出△APB是等边三角形,得出∠BAP=60°,即可得出答案;(2)作OD⊥AB于D,由垂径定理得出AD=BD=AB,由等边三角形的性质得出AB=P A=1,AD =,由直角三角形的性质得出AD=OD=,求出OD=即可.【解答】解:(1)∵P A切⊙O于点A,PB切⊙O于点B,∴P A=PB,∠P AC=90°,∵∠APB=60°,∴△APB是等边三角形,∴∠BAP=60°,∴∠BAC=90°﹣∠BAP=30°;(2)作OD⊥AB于D,如图所示:则AD=BD=AB,由(1)得:△APB是等边三角形,∴AB=P A=1,∴AD=,∵∠BAC=30°,∴AD=OD=,∴OD=,即求点O到弦AB的距离为.【点评】此题考查了切线的性质、垂径定理、切线长定理、等边三角形的判定与性质、直角三角形的性质等知识点;熟练掌握切线的性质和垂径定理是解题的关键.19.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.【分析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.【解答】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CP A,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CP A=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CP A,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA﹣OP=2,∴,∴,∴.【点评】本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.。

人教版九年级数学上册《圆的综合》期末证明题练习-附带答案

人教版九年级数学上册《圆的综合》期末证明题练习-附带答案

人教版年九年级数学上册《圆的综合》期末证明题练习-附带答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在O 的内接正八边形ABCDEFGH 中,AB=2,连接DG .(1)求证DG AB ∥;(2)DG 的长为 .2.如图①,在Rt ABC △中,,90,CA CB ACB CD =∠=︒为AB 边上的中线,以点D 为顶点的直角绕点D 旋转,两边分别与BC AC 、交于点E F 、,连接EF .(1)求证:CDF BDE ≌;(2)若4AB =,则DEF 面积的最小值为_______;(3)拓展应用:如图②,点O 是半径为2的正十二边形的中心,点A B 、在此正十二边形的边上,连接OA OB 、,若90AOB ∠=︒,则阴影部分面积为______.3.如图,AB 是O 的直径,6AB =,AC 是O 的弦,30BAC ∠=︒,延长AB 到D ,连接CD ,AC=CD .(1)求证:CD是O的切线;(2)以BC为边的圆内接正多边形的周长等于.4.如图,正方形ABCD内接于O,E是BC的中点,连接AE DE CE,,.(1)求证:AE DE=;(2)若1CE=,求四边形AECD的面积.5.如图,在矩形ABCD中,点P是边BC的中点,O是PAD的外接圆,O交边AB于点E.(1)求证:PA PD=;(2)当AE是以点O为中心的正六边形的一边时,求证:AE EP=.6.如图,O是ABC的外接圆,AB=AC.点D在AC上,连结AD,BD,延长CD至点E.求证:AD平分BDE∠.7.如图,四边形ABCD内接于O,AB=AC,BD AC⊥垂足为E.(1)若40=,求ADCBAC∠︒∠的度数;(2)求证:2BAC DAC∠=∠.8.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.9.如图,四边形ABCD内接于⊙O,已知AB=AC,延长CD至点E,使CE=BD,连结AE.(1)求证:AD平分∠BDE;(2)若AB∥CD,求证:AE是⊙O的切线.10.如图1,AB是⊙O的直径,过⊙O上一点C作直线l,AD⊥l于点D.(1)连接AC、BC,若∠DAC=∠BAC,求证:直线l是⊙O的切线;(2)将图1的直线l向上平移,使得直线l与⊙O交于C、E两点,连接AC、AE、BE,得到图2.若∠DAC=45°,AD=2cm,CE=4cm,求图2中阴影部分(弓形)的面积.11.如图所示,圆内接ABC中AB BC CA==,OD和OE为O的半径,OD BC⊥于点F,OE AC⊥倍.于点G,求证:阴影部分四边形OFCG的面积是ABC的面积的1312.如图,正方形ABCD内接于O E,是BC的中点,连接AE DE CE,,.(1)求证:AE DE=;(2)求证:2+=;AE CE DE答案: 1.(1)证明:连接AD ,正八边形ABCDEFGH ∴AB BC CD DE EF FG GH AH =======1802458BAD ︒∠=⨯=︒ 1802458ADG ︒∠=⨯=︒ ∴BAD ADG ∠=∠∴DG AB ∥.(2)∵2DE EF FG AB ==== 同理可证:EF DG ∥ EF AB ∥∴四边形DGFE 为等腰梯形∴135GFE DEF ∠=∠=︒ 作EP DG ⊥ FQ DG ⊥∵EF DG ∥∴18013545DGF ∠=︒-︒=︒在Rt QGF 中45DGF ∠=︒ 2GF =2QG QF ∴==同理可得2DP EP ==∵EF DG ∥ EP DG ⊥ FQ DG ⊥ ∴四边形PQFE 是矩形2PQ EF ∴==222222DG ∴=++=+.2.解、(1)证明:在Rt ABC 中 90ACB ∠=︒ 90A B ∴∠+∠=︒CA CB =45A B ∠CD 为AB 边上的中线12CD AB BD ∴== 1452ACD ACB ∠=∠=︒ CD AB ⊥ ,90ACD B CDB EDF ∴∠=∠∠=∠=︒ FDC EDB ∴∠=∠()AAS CDF BDE ∴△≌△;(2)解:∵CDF BDE ≌∴DF DE =∵21122DEF S DF DE DF =⨯⨯= ∴当DF 最短时 DEF 面积最小 根据垂线段最短 即DF AC ⊥ DEF 面积最小 如图∵DF AC ⊥ 45A ∠=︒∴ADF △是等腰直角三角形 AF DF = ∴22222AF DF DF AD +==∵CD 为AB 边上的中线 4AB =∴122AD AB == ∴2224DF AD ==解得:2DF =即min 2DF = ∴2min min 112DEF S DF =⨯= ∴DEF 面积的最小值为1;(3)作辅助线如图所示 其中DF OE ⊥由正十二变形的性质可得:,2OCA ODB OC OD ∠=∠==,90COD ∠=︒ 又∵90AOB ∠=︒∴AOB BOC COD BOC ∠-∠=∠-∠ 即AOC BOD ∠=∠∵,OCA ODB OC OD AOC BOD ∠=∠=∠=∠, ∴()ASA AOC BOD ≌∴AOC BOD S S =△△∴3OCG OGH ODH ODE S S S S S =++=阴影∵DF OE ⊥ 13603012DOE ∠=⨯︒=︒ ∴112DF OD ==∵112DOE S OE DF∴阴影面积33DOE S; 3.解、(1)证明:如图 连接OC∵OA OC =∴30OAC OCA ∠=∠=︒∵AC CD =∴30OAC ODC ∠=∠=︒∴180306090OCD ∠=︒-︒-︒=︒ 即OC CD ⊥又∵OC 是半径∴CD 是O 的切线;(2)解:∵60BOC ∠=︒ ∴以BC 为边的圆内接正多边形是圆内接正六边形 ∵90OCD ∠=︒ 30D ∠=︒ 6AB = ∴132BC AB ==∴以BC 为边的圆内接正六边形的周长为1863=⨯. 故答案为:18.4.解、(1)证明:∵四边形ABCD 是正方形 ∴AB CD =∴AB CD =∵E 是BC 的中点∴BE EC =∴AE DE =∴AE DE =.(2)解:连接BD AO , 过点D 作DF DE ⊥交EC 的延长线于F . ∵四边形ABCD 是正方形 ∴45DBC DEC DA DC ∠=∠=︒=, ∵90EDF ∠=︒∴904545F EDF DEF ∠=∠-∠=︒-︒=︒ ∴DE DF =∵1452AED AOD ∠=∠=︒ ∴45AED F ∠=∠=︒∵90ADC EDF ∠=∠=︒∴90ADE EDC CDF EDC ∠+∠=∠+∠=︒ ∴ADE CDF ∠=∠∴ADE CDF ≌∴AE CF =∴ADE CDF S S =△△∴DEF AECD S S =四边形∵21EF DE EC DE EC ==+=, ∴12DE DE +=∴21DE =+∴212DEF AECD S S DE ==四边形322=+.5.解、(1)四边形ABCD 是矩形 且点P 是边BC 的中点 AB DC B C BP CP ∠∠∴===,,, 在ABP 和DCP 中BP CP B C AB DC =⎧⎪∠=∠⎨⎪=⎩∴()ABP DCP SAS ≅, PA PD ∴=;(2)证明:如图 连接,OA OE OD OP ,, 并延长PO 交AD 于点M四边形ABCD 是矩形 ∴90BAD ∠=︒∵OA OD = PA PD =∴点P 、O 都在线段AD 的垂直平分线上 ∴PO 垂直平分AD∴90DMP BAD ∠∠=︒=OP AB ∴∥AE 是以点O 为中心的正六边形的一边 ∴由正六边形性质可得∶60∠AOE=∵OA OE =AOE ∴是等边三角形60AEO ∠∴=又OP AB ∥60EOP AEO ∠∠∴==60AOE EOP ∠∠∴==AE EP ∴=.6.解、∵AB AC =∴A ABC CB =∠∠∵O 是ABC 的外接圆 点D 在AC 上 ∴180ABC ADC ∠+∠=︒∵180ADE ADC ∠+∠=︒∴ABC ADE ∠=∠∵∠ACB 和∠ADB 是AB 所对圆周角∴ACB ADB∴ADE ADB ∠=∠∴AD 平分BDE ∠.7.(1)解:AB AC=40∠︒=BAC∴∠=∠=︒ABC ACB70四边形ABCD是O的内接四边形ADC BAC∴∠=︒-∠=︒180110(2)证明:BD AC⊥AEB BEC∴∠=∠=︒90ACB CBD∴∠=︒-∠90=AB AC∴∠=∠=︒-∠90ABC ACB CBD∴∠=︒-∠=∠BAC ABC CBD18022∠=∠DAC CBD∴;∠=∠BAC DAC28.(1)证明:在⊙O中∵∠BAC与∠CPB是BC对的圆周角∠ABC与∠APC是AC所对的圆周角∴∠BAC=∠CPB∠ABC=∠APC又∵∠APC=∠CPB=60°∴∠ABC=∠BAC=60°∴△ABC为等边三角形;(2)过O作OD⊥BC于D 连接OB则∠OBD=30°∠ODB=90°∵OB=2∴OD=1∴等边△ABC的边心距为1.9.(1)证明:∵四边形ABCD内接于⊙O ∴∠ABC+∠ADC=180°∴∠ABC=∠ADE∵AB=AC∴∠ABC=∠ACB∵∠ACB=∠ADB∴∠ADB=∠ADE∴AD平分∠BDE(2)解:AB∥CD∴∠ADE=∠DAB∵∠ADB=∠ADE∴∠BAD=∠ADB∴AB=BD∵CE=BD∴AB=CE∵AC=AB∴=AC AB连接OA并延长交BC于T∴AT⊥BC∵AB∥CE AB=CE∴四边形ABCE是平行四边形∴AE∥BC∴AT⊥AE∴AE是⊙O的切线.10.(1)连接OC∵OA OC=∴BAC OCA∠=∠∵∠DAC=∠BAC∴DAC OCA∠=∠∵在Rt△ADC中∠DAC+∠ACD=90°∴90ACD OCA∠+∠=︒即直线l⊥OC∴直线l是⊙O的切线;(2)∵ 四边形ACEB内接于圆∴1809045∠=︒-∠=∠=︒-∠=︒B ACE ACD DAC又∵直径AB所对圆周角90∠=︒AEB∴△ADC 与△ABE 都是等腰直角三角形 ∴2222()2(24)210BE AE AD DC DE cm ==++=++=∴221(210)202ABE S cm ∆=⨯= ∵22112522OB AB AE BE cm ==+= 连接OE 则90BOE ∠=︒∴2290(25)5360OBE S cm ππ⨯==扇形 ∴图中阴影部分面积=21(510)2OBE ABE OBE OBE S S S S cm π∆∆-=-=-扇形扇形.11. 解、连OA 、OB 和OC 如图(2)所示图(2)则OA OB OC == 又AB BC CA ==.∴ OAB OBC OCA ≌≌又OD BC ⊥于F OE AC ⊥于G 由垂径定理得AG =12AC FC =12BC∴ AG CF =.∴ Rt Rt AOG COF ≌ ∴ 13OCG OCF OCG AOG AOC ABC OFCG S S S S S S S =+=+==四边形.即阴影部分四边形OFCG 的面积是ABC 的面积的13倍.12.解、(1)证明:∵四边形ABCD 是正方形 ∴AB CD =∴AB CD =.∵E 是BC 的中点∴BE EC =∴AE DE =∴AE DE =.(2)解:连接BD 过点D 作DF DE ⊥交EC 的延长线于F .∵四边形ABCD 是正方形 ∴45DBC DEC DA DC ∠=∠=︒=,. ∵90EDF ∠=︒∴904545F ∠=︒-︒=︒ ∴DE DF =.∵90ADC EDF ∠=∠=︒ ∴ADE CDF ∠=∠. 在ADE 和CDF 中ADE CDFAED FDA DC∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴ADE CDF AAS ≌() ∴AE CF =∴2EF DE EC CF EC AE ==+=+ 即2AE CE DE +=.。

人教版数学九年级上册 专项突破试卷 与圆有关的计算与证明

人教版数学九年级上册 专项突破试卷 与圆有关的计算与证明

专项突破试卷(与圆有关的计算与证明)一、选择题1.已知Rt △ABC 的直角边AC=BC=4 cm ,若以C 为圆心,以3 cm 长为半径作圆,则这个圆与斜边AB 所在的直线的位置关系是 ( )A .相交B .相切C .相离D .不能确定2.如图,已知经过原点的⊙P 与x 轴,y 轴分别交于A ,B 两点,点C 是劣弧OB 上一点,则∠ACB 等于 ( )A .80°B .90°C .100°D .无法确定3.如图所示,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是 ( )A .AB ⊥CDB .∠A OB=4∠A CDC .D .PO=PD4.P 为⊙O 外一点,PA 为⊙O 的切线,A 是切点,若⊙O 的半径为3,PA=4,则PO 的长为 ( )A .3B .4C .5D .65.边长为a 的正六边形的面积等于 ( )A .243a B .a²C .2233aD.33a²6.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是()A.内切B.外切C.相交D.相离7.如图所示,边长为1的菱形ABCD绕点A旋转,当B,C两点恰好落在扇形AEF的弧EF 上时,弧BC的长度等于 ( )πA.6πB.4πC.3πD.28.设⊙O中最长弦的长为m,直线l与⊙O相交,点O到l的距离为d,则d与 m的关系是()A.d=mB.d<mmC.d>2mD.d<29.已知一个圆锥的底面半径为3 cm,母线长为5 cm,则圆锥的侧面积是()A.20 cm²B.15 cm²C.20π c m²D.15π cm²10.如图所示,王大伯家屋后有一块长12 m、宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊,羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3mB.5mC.7mD.9m二、填空题1.若AB=8 cm,则经过A,B两点的最小圆的半径是_________.2.如图,在⊙O中,∠A OB=100°,,则∠C AB=_________.3.已知一个直角三角形的面积为12 cm²,周长为122 cm,那么这个直角三角形的外接圆半径是_________.4.如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是_________.5.如图所示,矩形ABCD中,AB=8,AD=6,将矩形ABCD在直线l上接顺时针方向不滑动地每秒转动90°,转动3秒后停止,则顶点A经过的路线长为_________.6.如图,在Rt△ABC中,∠A CB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积是_________.7.如图,∠A CB=60°,半径为1 cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是_________cm.8.如图所示,在Rt△ABC中,∠BAC=90°,BC=6,点D为BC中点,将△ABD绕点A按逆时针方向旋转120°得到△A B′D′,则点D在旋转过程中所经过的路径长为_____.(结果保留π)三、解答题1.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点C,已知∠AOC=70°,求∠B AD 的度数.2.如图,在⊙0中,直径AB与弦CD相交于点P,∠C AB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.3.如图,AB是⊙O的直径,AC是弦,OE⊥AC于点E,过A作⊙O的切线DA,DA与OE的延长线交于点D,连接DC,BC.(1)填空:OE与BC的位置关系是_______,OE与BC的数量关系是_______,(2)求证:DC是⊙O的切线,4.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上的一点,一只小虫从A点出发,绕侧面爬行一周,再回到点A的最短路线长是多少?5.如图,已知在⊙O中,AB=43,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.6.如图所示,点P是x轴上一点,以P为圆心的圆分别与x轴、y轴交于A,B,C,D四点,已知A(-3,0),B(1,0),过点C作⊙P的切线,交x轴于点E.(1)求直线CE的解析式;(2)若点F是线段CE上一动点,点F的横坐标为m,问:m在什么范围时,直线FB与⊙P相交?(3)若直线FB与⊙P的另一个交点为N,当点N是的中点时,求点F的坐标,【专项三】一、1.A 2.B3.D4.C5.C6.C7.C8.D9.D 10.A二、1.4 cm 2.65° 3.225 4.(5,4) 5. 12π 6.6π 7.3 8.2π 三、1.解:∵∠AOC=70°,∴∠ABC=35°,∵AD ∥BC,∴∠B AD=180°-35°=145°.2.解:(1)∵∠APD=∠C+∠C AB ,∴∠C =65°-40°=25°,∴∠B=∠C=25°.(2)作OE ⊥BD 于E ,则DE=BE.又∵AO=BO ,∴OE=21AD=21×6=3,圆心O 到BD 的距离为3. 3.解:(1) OE ∥BC OE=21BC (2)证明:如图,连接OC ,设OD 与⊙O 交于点F∵DA 是⊙O 的切线,∴OA ⊥AD ,即∠DA0=90°,∵OE ⊥AC, ∴∴∠AOD=∠COD .在△DAO 和△DCO 中,⎪⎩⎪⎨⎧===ODOD COD AOD OC OA ,∠∠,∴△DAO ≌DCO(SAS).∴∠DCO=∠DA0=90°.又∵OC 为⊙0的半径,∴DC 是⊙O 的切线.4.解:将圆锥沿母线SA 作侧面展开图,得扇形SA A′,如图所示.设∠A SA ′=n °,由扇形弧长等于底面圆周长,得1803⨯πn =2π·1.∴n=120.∴∠ASA ′=120°.连接AA ′,过S 作SM ⊥A A′于M.∴∠A SM=60°.∴在Rt △ASM 中,∠SAM=30°,SA=3.∴SM=23,由勾股定理,得AM=233, ∴A A′=2AM=33.5.解:(1)连接BC.∵AC 为⊙0的直径,∴∠ABC=90°.又∵AB=43,∠A=30°,∴BC=21AC . 由勾股定理,得AC=8,∴OA=21AC=4. 又∵∠A =30°,AC ⊥BD ,∠B OC=60°.∴∠BOD=120°. ∴πππ阴影31643136012022=⋅⨯=⋅=OA S . (2)设圆锥的底面圆的半径为r ,则周长为2πr . ∴21×2πr ×4=316π,∴r=34. 6.解:(1)连接PC .因为A(-3,0),B(1,O),所以⊙P 的直径是4,所以半径R=2,OP=1.OC=31-22222==-OP PC .所以C(0,3).所以∠PCD=30°,又CE 是⊙P 的切线,所以PC ⊥CE.所以∠PEC=30°.所以PE=2PC=4,EO=PE-OP=3.所以E(3,0).设直线CE 的解析式为y=kx+b ,将C ,E 两点坐标代入解析式,得⎩⎨⎧==+.3,03b b k 解得⎪⎩⎪⎨⎧=-=.3,33b k 所以直线CE 的解析式为y=-333+x .① (2)当O ≤m ≤3且m ≠1时,直线FB 与⊙P 相交.(3)因为点N 是的中点,所以N(-1,-2).设直线NB 的解析式为y=kx+b ,把N 、B 两点坐标代入解析式,得⎩⎨⎧-=+-=+.2,0b k b k 解得⎩⎨⎧-==.1,1b k 所以直线NB 的解析式为y=x-1.② 由①、②式,得⎪⎩⎪⎨⎧+-=-=,333,1x y x y ,解得⎪⎩⎪⎨⎧-==.13,3y x 所以F (3,13-)。

人教版九年级数学上册 圆 几何综合综合测试卷(word含答案)

人教版九年级数学上册 圆 几何综合综合测试卷(word含答案)

人教版九年级数学上册 圆 几何综合综合测试卷(word 含答案)一、初三数学 圆易错题压轴题(难)1.如图①,已知Rt △ABC 中,∠ACB =90°,AC =8,AB =10,点D 是AC 边上一点(不与C 重合),以AD 为直径作⊙O ,过C 作CE 切⊙O 于E ,交AB 于F . (1)若⊙O 半径为2,求线段CE 的长; (2)若AF =BF ,求⊙O 的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E , ∴∠OEC =90°,∵AC=8,⊙O的半径为2,∴OC=6,OE=2,∴CE=2242OC OE-=;(2)设⊙O的半径为r,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,∴BC=22AB A C-=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关2.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似3.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN,设AM=x.i.若点P正好在边BC上,求x的值;ii.在M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数关系式,并求y的最大值.(2)如图2,以MN为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.【答案】(1)i.当x=2时,点P恰好落在边BC上;ii. y=,当x=时,重叠部分的面积最大,其值为2;(2)当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.【解析】试题分析:(1)i.根据轴对称的性质,可求得相等的线段与角,可得点M是AB中点,即当x=AB=2时,点P恰好落在边BC上;ii.分两种情况讨论:①当0<x≤2时,△MNP与梯形BCNM重合的面积为△MNP的面积,根据轴对称的性质△MNP的面积等于△AMN的面积,易见y=x2②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由i.知ME=MB=4-x∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,利用相似三角形的性质即可求得.(2)利用分类讨论的思想,先求的直线BC与⊙O相切时,x的值,然后得到相交,相离时x的取值范围.试题解析:(1)i.如图1,由轴对称性质知:AM=PM,∠AMN=∠PMN,又MN∥BC,∴∠PMN=∠BPM,∠AMN=∠B,∴∠B=∠BPM,∴AM=PM=BM,∴点M是AB中点,即当x=AB=2时,点P恰好落在边BC上.ii.以下分两种情况讨论:①当0<x≤2时,∵MN∥BC,∴△AMN∽△ABC,∴,∴,∴AN=,△MNP与梯形BCNM重合的面积为△MNP的面积,∴,②当2<x<4时,如图2,设PM,PN分别交BC于E,F,由(2)知ME=MB=4-x,∴PE=PM-ME=x-(4-x)=2x-4,由题意知△PEF∽△ABC,∴,∴S△PEF=(x-2)2,∴y=S△PMN-S△PEF=,∵当0<x≤2时,y=x2,∴易知y最大=,又∵当2<x<4时,y=,∴当x=时(符合2<x<4),y最大=2,综上所述,当x=时,重叠部分的面积最大,其值为2.(2))如图3,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN.在Rt△ABC中,BC==5;由(1)知△AMN∽△ABC,∴,即,∴MN=x∴OD=x,过M点作MQ⊥BC于Q,则MQ=OD=x,在Rt△BMQ与Rt△BCA中,∠B是公共角,∴△BMQ∽△BCA,∴,∴BM=,AB=BM+MA=x+x=4∴x=,∴当x=时,⊙O与直线BC相切;当x<时,⊙O与直线BC相离;x>时,⊙O与直线BC相交.考点:圆的综合题.4.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,即∠ADB+∠BDC+∠ABC=180°,∵2∠BDC+∠ADB=180°,∴∠ABC=∠BDC,∵∠BAC=∠BDC,∴∠BAC=∠ABC,∴AC=BC.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∵∠BFC=∠BAC+∠ABF,∠BAC=∠BDC,∴∠BFC=∠BDC+∠ABF,∵∠BFC=∠BDC+12∠ABD,∴∠ABF=12∠ABD,∴BT平分∠ABD,∵AE=BE∴∠ADE=∠BDE,∴DT平分∠ADB,∵TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.∴TR=TL,TR=TH,∴TL=TH,∴AT平分∠DAB.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.∵AE=BE∴∠EAB=∠EDB=∠EDA,AE=BE,∵∠TAE=∠EAB+∠TAB,∠ATE=∠EDA+∠DAT,∴∠TAE=∠ATE,∴AE=TE,∵DT=TE,∴AE=DT,∵∠AGE=∠DHT=90°,∴△EAG≌△TDH(AAS),∴AG=DH,∵AE=EB,EG⊥AB,∴AG=BG,∴2DH=AB,∵Rt△TDR≌Rt△TDH(HL),∴DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,∵AD=8,DB=12,∴AL=AH=8﹣x,BR=12﹣x,AB=2x=8﹣x+12﹣x,∴x=5,∴DH=5,AB=10,设TR=TL=TH=h,DT=m,∵S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,∴12AQ=(8+12+10)h,∴AQ=52h,∵sin∠BDE=sin∠ADE,可得hm=APAD=AP8,sin∠AED=sin∠ABD,可得APm=AQAB=AQ10=5210h,∴APm=52810mAP,解得m=42或﹣42(舍弃),∴DE=2m=82.【点睛】本题属于圆综合题,考查了圆内接四边形的性质,圆周角定理,锐角三角函数,全等三角形的判定和性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考压轴题.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.⑴求证:AC是⊙D的切线.⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD= 时,四边形BDEF为菱形;②当AB= 时,△CDE为等腰三角形.【答案】(1)见解析;(2)①30°2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,BC=1+2∴()222++=+,解得x=2+1x x(12)1∴当AB=2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.6.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)2【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2,∴12EA 2+12CF 2=12EF 2, ∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴12S △ABC =12S 矩形BGKH , ∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =2,∴CF 2(k+3),EF 2(8k ﹣3),∵EA 2+CF 2=EF 2, ∴222(32)2(3)]2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =22AB =2, ∴⊙O 的半径为2.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延长交O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且2180APB PEB ∠+∠=︒.(1)如图1,求证://PF AD ;(2)如图2,连接AE ,若90APB ∠=︒,求证:PE 平分AEB ∠;(3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,4sin 5ABD ∠=,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257 【解析】【分析】(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=︒,由四边形内角和是360︒,得180∠+∠=︒P AOB ,由同弧所对的圆心角是圆周角的一半,得到2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=︒得290PEB ∠=︒,从而45PEB ∠=︒,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=︒,得PE PK =,从而90APE EPB ︒∠=-∠,进而APE BPK ∠=∠,即可证得APE BPK ∆∆≌由此45K AEP ∠=∠=︒,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由45ADE ∠=︒,90AED ∠=︒,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ∆∆≌,由直径所对的圆周角是直角,可得90ADM ∠=︒,在Rt ADM ∆中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,在Rt OEP ∆中,由勾股定理得7PE =,在Rt OEH ∆中,由勾股定理得257PH =. 【详解】 (1)连接OA 、OB∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径,∴OA AP ⊥,OB BP ⊥,∴90OAP OBP ∠=∠=︒,∴在四边形AOBP 中,360180180P AOB ∠+∠=︒-︒=︒,∵AB AB =,∴2AOB ADB ∠=∠,∴2180P ADB ∠+∠=︒,∵2180P PEB ∠+∠=︒,∴ADB PEB ∠=∠,∴//PF AD(2)过点P 做PK PF ⊥交EB 延长线于点K∵90APB ∠=︒,∴21809090PEB ∠=︒-︒=︒,∴45PEB ∠=︒,∵PA 、PB 为圆O 的切线,∴PA PB =,∵PK PE ⊥,45PEK ∠=︒,∴PE PK = ,∵9090APE EPB KPB EPB ︒︒∠=-∠=∠=-∠,∴APE BPK ∠=∠,∴APE BPK ∆∆≌,∴45K AEP ∠=∠=︒,∴AEP PEB ∠=∠,∴PE 平分AEB ∠;(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM∵45ADE ∠=︒,90AED ∠=︒,∴DE AE =,∵OA 、OD 为半径,∴OA OD =,∵OE OE =,∴DEO AEO ∆∆≌,∴1452AEO OED AED ∠=∠=∠=︒, ∴90OEP ∠=︒,∵AM 为圆O 的直径,∴90ADM ∠=︒,∵弧AD =弧AD ,∴ABD AMD ∠=∠,在Rt ADM ∆中,8AD =,4sin 5AMD ∠=,则10AM =, ∴5OA OB ==,由题易证四边形OAPB 为正方形,∴对角线AB 垂直平分OP ,AB OP =,∵H 在AB 上,∴OH PH =,在Rt OAP ∆中,252OP OA ==延长EO 交AD 于K ,∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠,∴4DK KE ==,3OK =,1OE =∴在Rt OEP ∆中,227PE OP OE =-=在Rt OEH ∆中,222OH OE EH =+∵OH PH =,7EH PE HP PH =-=-∴()22217PH PH =+- ∴257PH =. 【点睛】本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.8.如图,在ABC ∆中,90C ∠=︒,30CAB ∠=︒,10AB =,点D 在线段AB 上,2AD =.点P 从D 点出发,沿DB 方向运动,以DP 为直径作O ,当P 运动到点B 时停止运动,设DP m =.(1)AO =___________,BP =___________.(用m 的代数式表示)(2)当m 为何值时,O 与ABC ∆的一边相切?(3)在点P 整个运动过程中,过点P 作O 的切线交折线AC CB -于点E ,将线段EP 绕点E 顺时针旋转60︒得到EF ,过F 作FG EP ⊥于G .①当线段FG 长度达到最大时,求m 的值;②直接写出点F 所经过的路径长是________.(结果保留根号)【答案】(1)22m AO =+,8BP m =-;(2)4m =或32348m =;(3)①1121153762【解析】【分析】(1)观察图中AO 和DP 的数量关系可得22DP AO =+,而BP AB AP =-,将DP m =代入即可.(2)O 与ABC ∆的一边相切有两种情况,先与AC 相切,再与BC 相切;两种情况的解答方法都是连接圆心与切点,构造直角三角形,根据条件所给的特殊角的三角函数解答. (3)①根据旋转的性质可得PF PE =,在Rt EFG ∆中根据三角函数可得cos30FG PE ︒=⋅,故当E 点与C 点重合,PE 取得最大值时,FG 有最大值,解之即可. ②明显以E 点与C 点重合前后为节点,点F 的运动轨迹分两部分,第一部分为从P 开始运动到E 点与C 点重合,即图中的12F F ,根据1212F F AC AF CF =--求解;第二部分,根据tanEF EPEBFEB EB∠==为定值可知其轨迹为图中的2F B,在2Rt F BC中用勾股定理求解即可.【详解】(1)2222DP mAO=+=+,8BP AB AP m=-=-(2)情况1:与AC相切时,Rt AOH∆中,∵30A∠=︒∴2AO OH=∴22mm+=解得4m=情况2:与BC相切时,Rt BON∆中,∵60B∠=︒∴3cos2ONBOB==即3282mm=-解得32348m=-(3)①在Rt EFG∆中,∵30EFG A∠=∠=︒,90EGF∠=︒,∴3cos30cos302FG EF PE EP︒︒=⋅=⋅=,∴当FG 最大时即PE 最大 当点E 与点C 重合时,PE 的值最大.易知此时53553102AC BC EP AB ⨯⨯===. 在Rt EAP ∆中,∵30A ∠=︒∴1532AP EP ==∴1511222m DP ==-= (3)F 轨迹如图:从1F 到2F 到B1133233233AF AE EF AD PE =-=-==, 253CF CP ==, 故1212235311353F F AC AF CF =--== 2F 到B 轨迹是线段理由如下:∵60FEP ∠=︒,30PEB ∠=︒,∴90FEB ∠=︒.∴tan EF EP EBF EB EB∠==为定值, ∴点F 的第二段的轨迹是线段2BF . 在2Rt F BC 中,2222225357522BF BC F C ⎛⎫=+=+= ⎪ ⎪⎝⎭, 所以点F 1153762 【点睛】本题是综合了圆的性质,直线与圆相切的条件,锐角三角函数,勾股定理以及旋转的性质等知识的动点动图问题,熟练掌握各个知识点是基础,充分理解题意并作图,化动为静是解答关键.9.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度【答案】(1)证明见解析;(2)证明见解析;(3)2410MN =. 【解析】【分析】(1)由垂径定理即可证明; (2)利用等弧所对的圆周角相等和三角形外角性质即可得到结论;(3)由∠MPC=∠NQD 可得:∠BGL=∠BLG ,BL=BG ,作BR ⊥MN ,GT ⊥AF ,HK ⊥AB ,证明:GH 平分∠AGT ,利用相似三角形性质和角平分线性质求得△AGT 三边关系,再求出HK 与GH ,OS ⊥MN ,再利用相似三角形性质求出OS ,利用勾股定理求MN 即可.【详解】解:()1证明:∵BC BD =,AB 为直径,∴AB ⊥CD∴∠AEC=90°;()2连接,OM ON ,∵点M 是弧AC 的中点,点N 是弧DF 的中点,∴AM CM =,FN DN =,∴,OM AC ON FD ⊥⊥,∵OM=ON ,∴M N ∠=∠,∵90M MPC N NQB ∠+∠=∠+∠=︒,MPC NQD ∴∠=∠;()3如图3,过G 作GT ⊥AF 于T ,过H 作HK ⊥AB 于K ,过B 作BR ⊥MN 于R ,过O 作OS ⊥MN 于S ,连接OM ,设BG=m ,∵△ABH 的面积等于8,AG=6 ∴HK=166m +, ∵BC BD =,∴∠BAC=∠BFD ,由(2)得∠MPC=∠NQD∴∠AGM=∠FLN∴∠BGL=∠BLG∴BL=BG ,∵BR ⊥MN∴∠ABR=∠FBR∵GH ⊥MN∴GH ∥BR∴∠AGH=∠ABR∵AB 是直径,GT ⊥AF∴∠AFB=∠ATG=90°∴GT ∥BF ,又∵GH ∥BR∴∠TGH=∠FBR∴∠AGH=∠TGH ,又∵HK ⊥AG ,HT ⊥GT ,∴HT=HK=166m +, ∵FH=BG=m , ∴FT=16(8)(2)66m m m m m +--=++, ∵GT ∥BF , ∴AT AG FT BG=, ∴6(8)(2)(6)m m AT m m +-=+,616m AH m -=,48(6)(38)m KG TG m m ==+-, ∵222AT TG AG +=,代入解得:m=4;∴AB=10,OM=5,GK=245,HK=85,OG=1∴GH=5, ∵OS ⊥MN∴∠OSG=∠GKH=90°,GH ∥OS∴∠HGK=∠GOS∴△HGK ∽△GOS , ∴OS GK OG GH=,∴OS =∴MG =∴MN =【点睛】 本题考查了圆的性质,圆周角定理,垂径定理,相似三角形判定和性质,勾股定理等,综合性较强,尤其是第(3)问难度很大,计算量大,解题的关键是熟练掌握所学的知识,正确作出辅助线,运用数形结合的思想进行解题.10.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.(1)判断直线AB与⊙O的位置关系,并说明理由.(2)若PC=43,求 PB的长.(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.【答案】(1)AB与⊙O相切,理由见解析;(2)43PB=;(3)656r≤<【解析】【分析】(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;(3)根据题意得出OE=12AC=12AB=2216r2-,利用OE=22162r r-≤,即可求出取值范围.【详解】解:(1)连接OB,如图:∵OP=OB,∴∠OPB=∠OBP=∠APC,∵AC=AB , ∴∠C=∠ABP ,∵AC ⊥AO ,∴∠CAP=90°,∴∠C+∠APC=90°,∴∠ABP+∠OBP=90°,即OB ⊥AB ,∴AB 为切线;(2)∵AB=AC∴22AB AC =,∴2222CP AP OA OB -=-,设半径为r ,则2222(43)(6)6r r --=-解得:r=2;作OH ⊥BP 与H ,则△ACP ∽△HOP ,∴PH OP AP CP=,即443PH = ∴23PH =, ∴432PB PH ==; (3)如图,作出线段AC 的垂直平分线MN ,作OE ⊥MN ,∴四边形AOEM 是矩形,∴OE=AM=12AC=12 又∵圆O 与直线MN 有交点,∴r ,2r ≤,∴22364r r -≤,∴5r ≥ 又∵圆O 与直线AC 相离,∴r <6,6r ≤<. 【点睛】此题主要考查了圆的综合以及切线的判定与性质和勾股定理以及等腰三角形的性质等知识,得出EO 与AB 的关系进而求出r 取值范围是解题关键.。

2019年辽宁中考专题突破训练(22)与圆有关的计算(含解析)

2019年辽宁中考专题突破训练(22)与圆有关的计算(含解析)

第22讲 与圆有关的计算 (时间40分钟 满分80分)一、选择题(每小题3分,共18分)1.(2019·南宁)如图,⊙O 是△ABC 的外接圆,BC =2,∠BAC =30°,则劣弧BC ︵的长等于( A ) A.2π3 B.π3 C.23π3 D.3π3第1题图第2题图2.(2019·山西)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD.若AC =10 cm ,∠BAC =36°,则图中阴影部分的面积为( B )A .5π cm 2B .10π cm 2C .15π cm 2D .20π cm 23.(2019·荆门)如图,从一块直径为24 cm 的圆形纸片上剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( C )A .12 cmB .6 cmC .3 2 cmD .2 3 cm第3题图第4题图4.(2019·河南)如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为点O′,B ′,连接BB′,则图中阴影部分的面积是( C )A.2π3 B .23-π3C .23-2π3 D .43-2π3(导学号 58824187)5.(2019·丽水)如图,点C 是以AB 为直径的半圆O 的三等分点,AC =2,则图中阴影部分的面积是( A ) A.4π3- 3 B.4π3-2 3 C.2π3- 3 D.2π3-32第5题图第6题图6.(2019·烟台)如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则DE ︵的长为( B )A.13πB.23πC.76πD.43π 二、填空题(每小题3分,共18分)7.(2019·台州)如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为120°,AB 长为30厘米,则BC ︵的长为_20π_厘米.(结果保留π)8.(2019·菏泽)一个扇形的圆心角为100°,面积为15π cm 2,则此扇形的半径长为9.(2019·日照)如图,四边形ABCD 中,AB =CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB =6,则扇形(图中阴影部分)的面积是_6π_.(导学号 58824188)第9题图第10题图10.(2019·十堰改编)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为11.(2019·青岛)如图,直线AB ,CD 分别与⊙O 相切于B ,D 两点,且AB⊥CD,垂足为P ,连接BD ,若BD =4,则阴影部分的面积为_2π-4_.第11题图第12题图12.(2019·武汉改编)如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是_π_.(导学号 58824189)三、解答题(本大题4小题,共44分)13.(11分)(2019·随州)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E.(1)求证:AD 平分∠BAC;(2)若CD =1,求图中阴影部分的面积(结果保留π). (1)证明:如解图,连接DE ,OD ,∵BC 相切⊙O 于点D , ∴∠CDA =∠AED,∵AE 为直径,∴∠ADE =90°, ∵AC ⊥BC ,∴∠ACD =90°,∴∠DAO =∠CAD,∴AD 平分∠BAC; (2)解:S 阴影=1-π4.14.(11分)(2019·鞍山模拟)如图,在△BCE 中,点A 是边BE 上一点,以AB 为直径的⊙O 与CE 相切于点D ,AD ∥OC ,点F 为OC 与⊙O 的交点,连接AF. (1)求证:CB 是⊙O 的切线;(2)若∠ECB=60°,AB =6,求图中阴影部分的面积.(导学号 58824190) (1)证明:如解图,连接OD ,与AF 相交于点G ,∵CE 与⊙O 相切于点D , ∴OD ⊥CE ,∴∠CDO =90°,∵AD ∥OC ,∴∠ADO =∠DOC,∠DAO =∠BOC, ∵OA =OD ,∴∠ADO =∠DAO,∴∠DOC =∠BOC,在△CDO 和△CBO 中,⎩⎪⎨⎪⎧CO =CO ,∠DOC =∠BOC,OD =OB ,∴△CDO ≌△CBO(SAS),∴∠CBO =∠CDO=90°,∴CB 是⊙O 的切线;(2)解:由(1)可知∠DCO=∠BCO,∠DOC =∠BOC,∵∠ECB =60°,∴∠DCO =∠BCO=12∠ECB=30°,∴∠DOC =∠BOC=60°,∴∠DOA =60°, ∵OA =OD ,∴△OAD 是等边三角形, ∴AD =OD =OF ,∵∠GOF =∠ADO, 在△ADG 和△FOG 中,⎩⎪⎨⎪⎧∠GOF=∠ADG,∠FGO =∠AGD,AD =OF ,,∴△ADG ≌△FOG(AAS),∴S △ADG =S △FOG ,∵AB =6,∴⊙O 的半径r =3, ∴S 阴影=S 扇形ODF =60π×32360=32π.15.(11分)(2019·长沙)如图,AB 与⊙O 相切于点C ,OA ,OB 分别交⊙O 于点D ,E ,CD ︵=CE ︵. (1)求证:OA =OB ;(2)已知AB =43,OA =4,求阴影部分的面积. (1)证明:如解图,连接OC ,∵AB 与⊙O 相切于点C , ∴∠ACO =90°, 由于CD ︵=CE ︵,∴∠AOC =∠BOC,∴∠A =∠B,∴OA =OB ;(2)解:由(1)可知:△OAB 是等腰三角形,∴BC =12AB =23,∴sin ∠COB =BC OB =32,∴∠COB =60°,∴∠B =30°,∴OC =12OB =2,∴S 扇形OCE =60π×22360=2π3,△OCB 的面积为:12×23×2=23,∴S 阴影=23-23π.16.(11分)(2019·潍坊)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE⊥AC,交AB 的延长线于点F ,连接DA. (1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π) (1)证明:如解图,连接OD ,∵D 为BC ︵的中点,∴∠CAD =∠BAD,∵OA =OD ,∴∠BAD =∠ADO,∴∠CAD =∠ADO, ∵DE ⊥AC ,∴OD ⊥EF ,∴EF 为半圆O 的切线; (2)解:连接OC 、CD ,∵DA =DF ,∴∠BAD =∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F =30°,∠BAC =60°.∵DF =63,∴OD =DF·tan30°=6,∵DA =63,∠CAD =30°,∴DE =DA·sin30°=33,EA =DA·cos30°=9, ∵∠COD =180°-∠AOC-∠DOF=60°, ∴CD ∥AB ,故S △ACD =S △COD ,∴S 阴影=S △AED -S 扇形COD =12×9×33-60360π×62=2732-6π.2019-2020学年数学中考模拟试卷一、选择题1.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A.6B.8C.14D.162.如图,⊙O 与BC 相切于点B ,弦AB ∥OC ,若∠C =40°,则∠AOB 的度数是( )A.60B.70°C.80°D.90°3.2019年3月份,雷州市市区一周空气质量报告中某项污染指数的数据是35,32,33,35,36,33,35,则这组数据的众数是( )A .36B .35C .33D .324.如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论①∠DCF =12∠BCD ;②S △BEC =2S △CEF ;③∠DFE =3∠AEF ;④当∠AEF =54°时,则∠B =68°,中一定成立的是( )A.①③B.②③④C.①④D.①③④5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算中正确的是( ) A .235()a a = B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+7.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%8.如图,己知点A 是双曲线y=kx -1(k>0)上的一个动点,连AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y=mx -1(m<0)上运动,则m 与k 的关系是( )A .m= -kB .m=C .m= -2kD .m= -3k9.y =x 2+(1﹣a )x+1是关于x 的二次函数,当x 的取值范围是1≤x≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( ) A .a≤﹣5 B .a≥5 C .a =3D .a≥310.如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )A. B. C. D.11.2016年西峡香菇年出口值达到4380000000亿元,成为国内最大的干香菇出口货源集散中心.其中数学4380000000用科学记数法表示为( ) A .743810⨯ B .84.3810⨯ C .94.3810⨯D .104.3810⨯12.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B 的得票为( )A .300B .90C .75D .85二、填空题13.如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径是6,若点P 是⊙O 上的一点,PB =AB ,则PA 的长为_____.14.因式分解:3223x 6x y 3xy -+=______.15.已知∠A 是锐角,且A=_____. 16.关于x 的方程=3的解为_____.17.要了解全市中考生的数学成绩在某一范围内的学生所占比例的大小,需知道相应样本的______(填“平均数”或“频数分布”) 18.不等式组的解集是__________.三、解答题19.如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,延长AE 交BC 的延长线于点F . (1)求证:△DAE ≌△CFE ; (2)若AB =BC+AD ,求证:BE ⊥AF ;(3)在(2)的条件下,若∠D =90°,AD AF =10,则点E 到AB 的距离是 .(直接写出结果即可,不用写出演推过程)20.如图,△ABC (∠B >∠A ).(1)在边AC上用尺规作图作出点D,使∠ADB+2∠A=180°(保留作图痕迹);(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,求∠C的度数.21.已知:点D是△ABC边BC上的中点,DE⊥AC,DF⊥AB,垂足分别是点E、F.(1)若∠B=∠C,BF=CE,求证:△BFD≌△CED.(2)若∠B+∠C=90°,求证:四边形AEDF是矩形.22 |+(3)0+(﹣1)201923.某公司销售一种产品,进价为20元/件,售价为80元/件,公司为了促销,规定凡一次性购买10万件以上的产品,每多买1万件,每件产品的售价就减少2元,但售价最低不能低于40元/件,设一次性购买x万件(x>10)(1)若x=15,则售价应是元/件;(2)若以最低价购买此产品,求x的值;(3)当x>10时,求此产品的利润y(万元)与购买数量x(万件)的关系式;(4)经营中公司发现售出19万件的利润反而比售出24万件的利润还多,在促销条件不变的情况下,为了使每次销售的越多总利润也越多,最低售价应调整到多少元/件?并说明理由.24.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1mtan33°≈0.65)25.如图,在△ABC中,AB=BC,∠B=90°,点D为线段BC上一个动点(不与点B,C重合),连接AD,将线段AD绕点D顺时针旋转90°得到线段DE,连接EC.(1)①依题意补全图1;②求证:∠EDC=∠BAD;(2)①小方通过观察、实验,提出猜想:在点D运动的过程中,线段CE与BD的数量关系始终不变,用等式表示为 ;②小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF . 想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC . 想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……请你参考上面的想法,帮助小方证明(2)①中的猜想.(一种方法即可)【参考答案】*** 一、选择题二、填空题1314.23x(x y) 15.30° 16.x =2 17.频数分布 18.三、解答题19.(1)见解析;(2)见解析;(3 【解析】 【分析】(1)根据AD ∥BC 可知∠ADC=∠ECF ,再根据E 是CD 的中点,可证明△ADE ≌△FCE ;(2)由(1)知△ADE ≌△FCE ,得到AE=EF ,AD=CF ,由于AB=BC+AD ,等量代换得到AB=BC+CF ,即AB=BF ,证得△ABE ≌△FBE ,即可得到结论;(3)在(2)的条件下有△ABE ≌△FBE ,得到∠ABE=∠FBE ,由勾股定理求DE 的长,根据角平分线的性质即可得到结果.(1)∵AD ∥BC ,∴∠ADC =∠ECF ,∵E 是CD 的中点,∴DE =EC ,∵在△ADE 与△FCE 中,ADC ECF DE ECAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△FCE (ASA );(2)由(1)知△ADE ≌△FCE ,∴AE =EF ,AD =CF ,∵AB =BC+AD ,∴AB =BC+CF ,即AB =BF ,在△ABE 与△FBE 中,AB BF AE EF BE BE =⎧⎪=⎨⎪=⎩,∴△ABE ≌△FBE (SSS ),∴∠AEB =∠FEB =90°,∴BE ⊥AE ;(3)在(2)的条件下有△ABE ≌△FBE ,∴∠ABE =∠FBE ,∴E 到BF 的距离等于E 到AB 的距离,由(1)知△ADE ≌△FCE ,∴AE =EF =12AF =5, ∵∠D =90°,∴DE==∴CE =DE,∵CE ⊥BF ,∴点E 到AB.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,等腰三角形的性质、勾股定理等知识.证明三角形全等是解题的关键.20.(1)作AB 的垂直平分线,交边AC 于D ,如图所示:见解析;(2)∠C =40°.(1)作AB的垂直平分线,交边AC于D即可;(2)依据等腰三角形的性质以及三角形内角和定理,即可得到∠C的度数.【详解】(1)作AB的垂直平分线,交边AC于D,如图所示:∴点D即为所求;(2)∵CB=CD,∴∠CDB=∠CBD,由(1)可得,DA=DB,∴∠A=∠ABD=35°,∴∠CDB=70°,∴△BCD中,∠C=40°.【点睛】本题主要参考了等腰三角形的性质以及线段垂直平分线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.(1)见解析;(2)见解析.【解析】【分析】(1)由“SAS”可证△BFD≌△CED;(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.【详解】(1)∵点D是△ABC边BC上的中点∴BD=CD又∵DE⊥AC,DF⊥AB,垂足分别是点E、F∴∠BFD=∠DEC=90°∵BD=CD,∠BFD=∠DEC,BF=CE∴△BFD≌△CED(SAS)(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°∴∠A=90°∵∠BFD=∠DEC=90°∴∠A=∠BFD=∠DEC=90°∴四边形AEDF是矩形.本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.22.2【解析】【分析】结合绝对值,二次根式,指数幂和三角函数值计算,计算结果,即可。

人教版九年级数学上册作业课件 第二十四章 圆 专题训练(十三) 与圆的切线有关的计算与证明

人教版九年级数学上册作业课件 第二十四章 圆 专题训练(十三) 与圆的切线有关的计算与证明
人教版
第二十四章 圆
专题训练(十三) 与圆的切线有关的计算与证明
类型1 已知圆的切线,求角的度数或线段长 1.(山西中考)如图,四边形OABC是平行四边形,以点O为圆心,OC 为半径的⊙O与AB相切于点B,与AO相交于点D,AO的延长线交⊙O于 点E,连接EB交OC于点F.求∠C和∠E的度数.
解:连接 OB,∵⊙O 与 AB 相切于点 B,∴OB⊥AB,∵四边形 ABCO 为平行四边形,∴AB∥OC,OA∥BC,∴OB⊥OC,∴∠BOC=90°, ∵OB=OC,∴△OCB 为等腰直角三角形,∴∠C=∠OBC=45°,∵
则点 D 为⊙M 与 x 轴的切点,即 PM=MD,设 P(x,-34 x2+94 x+3), M(x,-34 x+3),则 PD=-34 x2+49 x+3,MD=-34 x+3,∴(-43 x2 +49 x+3)-(-34 x+3)=-34 x+3,解得 x1=1,x2=4(不合题意舍去), ∴⊙M 的半径为 MD=-43 +3=94 ;当⊙M 与 y 轴相切时,如图②所示, 延长 PM 交 AB 于点 D,过点 M 作 ME⊥y 轴于点 E,则点 E 为⊙M 与 y 轴的切点,即 PM=ME,PD-MD=EM=x,
6.(天水中考)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D. 过点A作⊙O的切线与OD的延长线交于点P,PC,AB的延长线交于点F.
(1)求证:PC是⊙O的切线; (2)若∠ABC=60°,AB=10,求线段CF的长.
解:(1)证明:连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD, ∴PA=PC,∵OP=OP,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP, ∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC, ∴PC是⊙O的切线

人教版九年级数学上册初中圆测试题及答案(两套题)(含知识点)

人教版九年级数学上册初中圆测试题及答案(两套题)(含知识点)

圆基础知识+两套题附参考答案与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180rn π ,弧长公式为180r n lπ=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n 2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中r 为 底面圆 的半径 ,l 为 圆柱 的高.)4. 圆锥的侧面积公式:S=πr l (其中r 为 底面 的半径 ,l 为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案

人教版九年级数学上册《圆的有关性质》能力测试题及参考答案一、选择题1.如图是一个半径为5cm的圆柱形输油管的横截面,若油面宽AB=8cm,则油面的深度为()A.2cmB.2.5cmC.3cmD.3.5cm第1题第2题第3题第4题2.如图,AB是⊙O的直径,点C,D是⊙O上的两点,连接AC,OD,CD,且AC//OD,若AB=6,∠ACD=15°,则AC的长为()A.2√2B.4C.3√2D.3√33.如图,点A,B,C,D都在⊙O上,BD为⊙O的直径,若∠A=65°,则∠DBC的值是()A.15°B.25°C.35°D.65°4.如图,AB为⊙O的直径,点C,D都在⊙O上,若BD=BC,∠ABC=65°,则∠BOD 的度数()A.65°B.60°C.50°D.25°5.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD,∠BAC=28°,则∠D的度数是()A.56°B.58°C.60°D.62°第5题第6题第7题第8题6.如图,四边形ABCD内接于⊙O,∠BOD=84°,则∠C的度数为()A.88°B.92°C.106°D.138°7.如图,在⊙O中,弦AB,CD相交于点P,∠A=45°,∠APD=80°,则∠B的大小是().A.35°B.45°C.60°D.70°8.如图,点A,B,C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交⊙O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°̂的中点,连接9.如图,在⊙O中,弦AB⊥CD,垂足为E,F为CBDAF,BF,AC,AF交CD于点M,过点F作FH⊥AC,垂足为G,交⊙O于点H.̂=DF̂②HC = BF③MF = FC④DF̂+AĤ= BF̂+AF̂.其中现有以下结论:①CF成立的有()A.1个B.2个C.3个D.4个10.如图,点P在⊙O的直径AB上,作正方形PCDE和正方形PFGH,其中点D,G在直径所在的直线上,点C,E,F,H 都在⊙O 上.若两个正方形的面积之和为16,OP=√2,则DG 的长是( ) A.6√2 B.2√14 C.7 D.4√3第10题 第11题 第12题 第13题11.如图,⊙O 经过菱形ABCD 的顶点A,B,C,顶点D 在⊙O 内,延长AD,CD 与⊙O 分别交于点E,F,连接 BE,BF.下列结论:①BE=BF ②AB ̂=AF ̂=EF ̂③∠ABC=90°+ 12∠EBF,其中正确的结论是( ) A.①② B. ①③ C. ②③ D.①②③12.如图,△ABC 内接于⊙O,∠BAC=45°,AD ⊥BC,垂足为D,BD=6,DC=4,则AB 的长( )A.6√2B.10C.12D.6√513.如图,在半径为√13的⊙O 中,弦AB 与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD 的长( )A.2√6B.2√10C.2√11D.4√314.过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A.(4,176) B .(4,3) C.(5,176) D .(5,3) 15.如图,△ABC 为等边三角形,AB=3.若P 为△ABC 内一动点,且满足∠PAB=∠ACP,则线段PB 长度的最小值为( )A.1.5B.√3C.√3D.216.如图,AB 为⊙O 的直径,C 为⊙O 上的一点,AB=4,∠AOC=120°,P 为⊙O 上的一动点,Q 为AP 的中点,连接CQ,则线段CQ 的最大值为( )A.3B.1+√6C.1+3√2D.1+√7二、填空题17.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E 的度数_______.18.如图,AB,CD 是⊙O 的直径,弦BE 与CD 交于点F,F 为BE 中点,AF//ED,若AF 的长为 2√3,则BC 的长为___.第17题 第18题 第19题19.如图,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E,AB̂=BF ̂,CE =1,AB=6,则弦AF 的长度为___. 20.如图,⊙E 与y 轴相交于A,B 两点(点A 在点B 的上方),与x 轴的正半轴相交于点C,且圆心E 的坐标为(m,0),半径为5;直线l 的函数表达式为y=34x+n,且经过点A 并与x 轴相交于点D(-/2,0).若以C为顶点的抛物线过点B,则该抛物线的函数表达式为___.第20题第21题第22题21.如图,AB是⊙O的弦,AB= 6√3,∠AOB=120°,C为⊙O上的一动点,D,E分别是AC,OB的中点,连接DE,则线段DE的取值范围是____.22.如图,等边△ABC的边长为3,F为BC上的动点,DF⊥AB于点D,EF⊥AC于点E,则DE长的最小值为____.三、解答题̂的中点,连结CD,CA,AD.23.如图 1,AB是⊙O的直径,点D为AB下方⊙O上一点,点C为ABD(1)求证:OC平分∠ACD.(2)如图 2,延长AC,DB相交于点E.①求证:OC//BE.②若CE = 4√5,BD =6,求⊙O的半径.24.如图,⊙O为Rt△ABC的外接圆,∠ACB=90°,BC=4√3,AC=4,点D是⊙O上的动点,且点C,D 分别位于AB的两侧.(1)求⊙O的半径;(2)当CD=4√2时,求∠ACD的度数;(3)设AD的中点为M,在点D的运动过程中,线段CM是否存在最大值?若存在,求出CM的最大值;若不存在,请说明理由.25.如图,在△ACE 中,AC=CE,⊙O 经过点A,C 且与边AE,CE 分别交于点D,F,点B 是AĈ上一点,且DF̂=BC ̂,连接AB,BC,CD. (1)求证:△CDE ≌△ABC;(2)若AC 为⊙O 的直径,填空:①当∠E =______时,四边形ABCD 为正方形;②当∠E =____时,四边形OCFD 为菱形.26.已知⊙O 中,弦AB=AC,点P 是∠BAC 所对弧上一动点,连接PA,PB.(1)如图①,把△ABP 绕点A 逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA,PB,PC 之间的关系.参考答案一、选择题1-5 ADBCD 6-10 DABCB 11-15 BDCAB 16 D二、填空题17. 215° 18.2√619.485 20.y=−116(x −8)221.3√3-3≤DE ≤3√3+322.94 三、解答题23.(1)提示:圆心角定理,垂径定理.(2)①略②半径长5.24(1)半径长4.(2)15°(3)2√ 3+225.(1)略(2)①45°②60°26.(1)略(2)①PA=PB+PC。

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习及参考答案

人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。

人教版九年级数学上册《圆》期末证明题练习-附有答案

人教版九年级数学上册《圆》期末证明题练习-附有答案

人教版年九年级数学上册《圆》期末证明题练习-附有答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,AB是半圆O的直径,AE为弦,C为弧AE的中点,CD AB⊥于点D,交AE于点F,BC交AE于点G.求证:AF FC=.2.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x 轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(﹣2,4),试求MC的长及直线DC的解析式.3.如图,已知△ABC内接于⊙O,AB=AC,∠BOC=120°,延长BO交⊙O于点D.(1)试求∠BAD的度数;(2)求证:△ABC为等边三角形.4.已知:如图,O过正方形ABCD的顶点,A B,且与CD边相切于点E.点F是BC与O的交点,连接OB,OF,AF,点G是AB延长线上一点,连接FG,且1902G BOF ∠+∠=︒.(1)求证:FG 是O 的切线; (2)如果正方形边长为8,求O 的半径.5.已知:如图,在O 中,弦AB CD ∥.求证:AD BC =.6.如图,已知在⊙O 中,M 、N 分别是半径OA 、OB 的中点,且CM⊥OA,DN⊥OB.求证:AC BD =.7.如图,AB 是⊙O 直径,点C 是⊙O 上一点,过点C 作⊙O 的切线CG ,过点B 作CG 的垂线,垂足为点D ,交⊙O 于点E ,连接CB .(1)求证:CB 平分∠ABD ; (2)若BC =5,BD =3,求AB 长.8.如图,在ABC 中AB BC =,以AB 为直径的O 与AC 交于点D ,过点D 作O 的切线DE ,分别交BC AB 、的延长线于点F E 、.(1)求证:DE BC ⊥; (2)若2BE =,30A ∠=︒求图中阴影部分面积.9.已知ABC 内接于O ,过点A 作直线EF .(1)如图1所示,若AB 为O 的直径,要使EF 成为O 的切线,还需要添加的一个条件是________________.(2)如图2所示,如果AB 是不过圆心O 的弦,且CAE B ∠=∠,那么EF 是O 的切线吗?试证明你的判断.10.如图,在ABC 中,以边AB 为直径作O 分别交BC ,AC 于点D ,E ,点D 是BC 中点,连接OE ,OD .(1)求证:ABC 是等腰三角形.(2)若6AB =,40A ∠=︒求AE 的长和扇形EOD 的面积.11.如图,AB 是O 的直径,C ,D 都是O 上的点,且AD 平分CAB ∠,过点D 作AC 的垂线交AC 的延长线于点E ,交AB 的延长线于点F .(1)求证:EF 是O 的切线; (2)若13AB = 5AC = 求CE 的长.12.如图 在ABC 中 BO 平分ABC ∠ 以点O 为圆心 OA 的长为半径的O 与AB 相切于点A .(1)求证:BC 是O 的切线; (2)若6AB = 10BC = 求OA 的长.13.如图1 半圆O 的直径为AB 点M 为半圆上一动点(不与点A B 重合) 点N 为弧AM 的中点 ND AB ⊥于点D 过点M 的切线交DN 的延长线于点C 连结OM .(1)若//MC AB (如图2所示)①求证:AD CN =; ②填空:四边形OMCD 是哪种特殊的四边形?(直接写出结论)__________.(2)填空:当ANM ∠=______°时 四边形ANMO 为菱形.(直接写出结论)答案:1.解∵C 为弧AE 的中点∴∠B=∠CAF∵AB 是半圆O 的直径∴90ACB ∠=︒∴90ACD DCB ∠+∠=︒.∵CD AB ⊥∴90CDB ∠=︒∴90B DCB ∠+∠=︒.∴B ACD ∠=∠.∵C 是AE 的中点∴B CAE ∠=∠.∴ACD CAE ∠=∠∴AF FC =.2. 解:(1)答:直线DC 与⊙O 相切于点M . 证明如下:连OM ∵DO∥MB∴∠1=∠2 ∠3=∠4.∵OB=OM∴∠1=∠3.∴∠2=∠4.在△DAO 与△DMO 中 {24AO OMDO DO=∠=∠=.∴△DAO≌△DMO.∴∠OMD=∠OAD.由于FA⊥x 轴于点A∴∠OAD=90°.∴∠OMD=90°.即OM⊥DC.∴DC 切⊙O 于M .(2)由D (-2 4)知OA=2(即⊙O 的半径) AD=4. 由(1)知DM=AD=4 由△OMC∽△DAC 知2142MC OM AC AD ===. ∴AC=2MC在Rt△ACD 中 CD=MC+4.由勾股定理 有(2MC )2+42=(MC+4)2 解得MC=83或MC=0(不合题意 舍去).∴MC 的长为83.∴点C (1030).设直线DC 的解析式为y=kx+b . 则有100{342k b k b=+=-+. 解得3452k b ⎧=-⎪⎪⎨⎪=⎪⎩.∴直线DC 的解析式为y=-34x+52.3 (1)解:∵BD 是⊙O 的直径∴∠BAD=90°.(2)证明:∵∠BOC=120°∴∠BAC=12∠BOC=60°. 又∵AB=AC∴△ABC 是等边三角形.4. (1)证明:∵四边形ABCD 是正方形 ∴90ABF ∠=︒∴AF 是O 的直径∵12BAF BOF ∠=∠ 1902G BOF ∠+∠=︒∴90BAF G ∠+∠=︒∴90AFG ∠=︒ 即AF FG ⊥∴FG 是O 的切线.(2)解:如图所示 连接OE∵O 与CD 相切于点E 即CD 是O 的切线∴OE CD ⊥ 且OB OF =(圆的半径相等) 过O 作OH BC ⊥于H 则四边形OECH 是矩形 BH FH = ∴,OH CE CH OE ==∵,8AO OF AB == 即,O H 分别是,AF BF 的中点∴142OH AB ==设OB OE CH r ===∴8BH BC OE r =-=-在Rt BOH 中∵222OB BH OH =+∴222(8)4r r =-+∴=5r .5.证明:过点O 作OE AB ⊥于点E 交CD 于点F 交CD 于点M 连接OA OBOC OD 如图:∵OE AB ⊥ //AB CD∴OF CD ⊥∴在OAB 中 OA OB =;在OCD 中 OC OD = ∴AOE BOE ∠=∠ COF DOF ∠=∠∴AOE DOF BOE COF ∠+∠=∠+∠∴AOD BOC ∠=∠∴AD BC =6.解:连接OC OD 则OC =OD=OA=OB. ∵M N 分别是半径OA OB 的中点 ∴OM=ON. ∵CM⊥OA DN⊥OB∴∠OMC=∠OND=90°.在Rt△OMC和Rt△OND中OM=ON OC=OD ∴Rt△OMC≌Rt△OND(HL).∴∠MOC=∠NOD.∴AC=BC.7.(1)证明:如图1 连接OC则OC=OB∴∠OCB=∠OBC∵CG是⊙O的切线BD⊥CG∴∠OCD=∠BDC=90°∴OC∥BD∴∠OCB=∠DBC∴∠OBC=∠DBC∴BC平分∠OBD;(2)解:∵BD=3 BC=5 ∠BDC=90°∴CD=4过点B作BH⊥OC于点H则四边形BDCH为矩形∴CH=BD=3 BH=CD=4设OC=OB=r则OH=OC-CH=r-3 在Rt△OHB中OH2+BH2=OB2∴(r-3)2+42=r2解得:r=256∴AB=2r=2×256=253.8.(1)证明:连接OD如图所示:∵AB BC=OA OD=∴A C∠=∠A ODA∠=∠∴C ODA∠=∠∴BC OD∥又∵DE是O的切线∴DE OD∴DE BC⊥;(2)解:由(1)得:60DOE A ODA∠=∠+∠=︒∵BC OD∥∴60EBF DOE∠=∠=︒∵DE BC ⊥ ∴30E ∠=︒∴2OE OD =∵OD OB =∴2OB BE OD ===∴23DE =∴ODE 的面积112232322OD DE =⋅=⨯⨯= 扇形OBD 的面积260223603ππ=⨯= ∴阴影部分的面积2233π=-.9.解1)90BAE ∠=︒或EAC ABC ∠=∠ 或AE AB ⊥等(其他填法正确也可)(2)是;作直径AM 连MC则90ACM ∠=︒ M B ∠=∠ M CAM ∴∠+∠=90B CAM ∠+∠=︒ CAE B ∠=∠90CAM CAE ∴∠+∠=︒AE AM ∴⊥AM 为直径EF ∴是O 的切线.10.(1)连接AD∵AB 为O 直径∴90ADB ∠=︒ 即AD BC⊥又∵D 是BC 中点∴AD 是线段BC 的中垂线∴AB AC =∴ABC 是等腰三角形;(2)∵40,A OA OE =︒=∠∴40A AEO ∠=∠=︒∴100AOE ∠=︒∵6AB =∴3OA OE ==∴100π35π1803AE l ⨯==∵,AB AC OB OD ==∴70ABC ODB ∠=︒=∠∴140AOD ∠=︒∴40EOD ∠=︒∴240π3π360EOD S ⨯==扇形. 11.(1)证明:如图1 连接ODAD 平分CAB ∠OAD EAD ∴∠=∠OD OA =ODA OAD ∴∠=∠ODA EAD ∴∠=∠∴OD AE ∥90ODF AEF ∠=∠=︒且D 在O 上 EF ∴是O 的切线;(2)连接BC 交OD 于HAB 是O 的直径90ACB ∴∠=︒13AB = 5AC =BC ∴=22AB AC -=22135-12= 90E ACB ∠=∠=︒∴BC EF ∥90OHB ODF ∴∠=∠=︒OD BC ∴⊥CH ∴=126BC =CH BH = OA OB =OH ∴=12 2.5AC =6.5 2.54DH ∴=-=90E HCE EDH ∠=∠=∠=︒∴四边形ECHD 是矩形6ED CH ∴== 4CE DH ==.12.(1)解:过点O 作OE BC ⊥于点E 如图所示∵AB 是O 的切线∴OA AB ⊥∴90A ∠=︒∵BO 平分ABC ∠∴ABO EBO ∠=∠∵OE BC ⊥∴90BEO ∠=︒∵OB OB =∴()AAS BAO BEO ≌∴OA OE =∴OE 是O 的半径 OE BC ⊥ ∴BC 是O 的切线;(2)解:∵在Rt ABC △中 6AB = 10BC = ∴22221068AC BC AB =-=-=在Rt BAO 和Rt BEO △中 BO BO OA OE=⎧⎨=⎩ ∴()Rt Rt HL BAO BEO ≌△△ ∴6BE BA ==∴1064CE BC BE =-=-=设OA x = 则OE x = 8CO AC AO x =-=- 在Rt CEO △中 由勾股定理得222=+CO CE OE ∴()22284x x -=+.解得:3x = ∴3OA =.13.解:(1)①如图2 连结ON∵点N 为弧AM 的中点切O于点M CM.AB ND CD切O于点M CM+∠CMNAB ND∴90NCM ADN ∠=∠=︒∴90DAN AND ∠+∠=︒∴AND NMC ∠=∠又AN NM = 90NCM ADN ∠=∠=︒ ∴ADN NCM △≌△∴AD CN =;②∵CM 切O 于点M∴OM CM ⊥∵//MC AB ND AB ⊥∴CM CD ⊥∴∠CDO=∠CMO=∠DOM =90︒ ∴四边形CDOM 是矩形故答案为:矩形;(2)当120ANM ∠=︒时 四边形ANMO 为菱形. 证明:连接ON∵点N 为弧AM 的中点∴AN NM =∵OA=OM ON=ON∴△AON ≌△MON∴ANO MNO∠=∠∵120∠=︒ANM∴60∠=∠=︒ANO MNO∵OA=OA=OM∴△AON和△MON都是等边三角形∴AN=AO=MO=MN∴四边形ANMO为菱形.故答案为:120.。

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。

在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。

七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。

在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。

参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。

圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。

轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。

垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。

三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。

四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。

五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。

推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。

六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

人教版九年级数学上册《圆》期末证明题练习-附答案

人教版九年级数学上册《圆》期末证明题练习-附答案

人教版年九年级数学上册《圆》期末证明题练习-附答案学校:___________班级:___________姓名:___________考号:___________1.如图,在ABC中90C∠=︒,点D是AB边上一点,以BD为直径的O与边AC相切于点E,与边BC交于点F,过点E作EH AB⊥于点H,连接BE(1)求证:EH EC=;(2)若4AB=,2A=求AD的长.sin32.如图,以AB为直径的O经过ABC的顶点C,AE,BE分别平分BAC∠,AE的延∠和ABC长线交O于点D,连接BD.(1)判断BDE△的形状,并证明你的结论;(2)若10AB=,210BE=求BC的长.3.如图,AB为半圆O的直径,C是半圆O上一点,D是AC的中点,过点D作直线l AC∥,AF⊥直线l,垂足为F,BC的延长线交直线l于点E.(1)求证:直线l是O的切线.(2)若O的半径为1,求AF BE+的值.4.如图,将含30︒角的直角三角板ABC放入半圆O中90∠=︒,A,B,C三点恰好在半圆OACB上,延长AB到点E,作直线CE,使得30∠=∠=︒·BCE BAC(1)求证:EC是半圆O的切线.(2)若8AB=,求阴影部分的面积.5.如图,以ABC的边AB为直径作O,交边AC于点D,BC为O的切线,弦DE AB⊥于点F,连接BE.(1)求证:ABE C∠∠=.(2)若点F为OB中点,且1OF=,求线段ED的长.6.如图,ABC内接于O,CD与AB的延长线相交于点D,且BCD BAC∠=∠.求证:CD是O 的切线.7.如图,在ABC中AB BC=,以AB为直径的O与AC交于点D,过D作O的切线交AB的延长线于E,交BC于F.(1)求证:DF BC⊥;(2)已知6BE=求O的半径.DE=,38.如图,O是ABC的外接圆,BD是O的直径AB AC=,AE//BC,E为BD的延长线与AE 的交点.(1)求证:AE是O的切线;(2)若75∠=︒,BC=2,求CD和AE长.ABC9.如图,在ABC中90∠=︒,AD是ABC的角平分线,以AD为弦,圆心O在边AB上作OC交AC于E.(1)判断BC 与O 的位置关系并说明理由;(2)若30B ∠=︒,AE=2,求DE 的长.10.如图1,AB 是O 的直径,点C 是O 上一点,连接AC ,半径OD ∥弦AC(1)求证:弧BD =弧CD 的长.(2)在如图1上,连接BC 、AD 相交于点F ,BC 与OD 相交于点E ,连接CD ,若O 的半径为5,6AC =求CD 的长.(3)如图2,在OD 的延长线上取一点P ,使12CAP BAP ∠=∠,AP 交弧BC 于点.G 若10AB =,61CP =求AG 的长.11.如图,O 的直径AB 垂直弦CD 于点F ,点P 在AB 的延长线上,CP 与O 相切于点C .(1)求证:PCB PAD ∠=∠;(2)若O 的直径为4,弦DC 平分半径,求图中阴影部分的面积.12.如图,在ABC中,O为AC上一点,以点O为圆心,OC为半径作圆,与BC相切于点C,延长BO交O于点D,连接CD,AB CD且CAB CBD∠=∠.(1)求证:AB是O的切线;(2)若6BC=,求图中阴影部分的面积.13.如图,已知四边形ABCD是O的内接四边形,连接AB,CD,且DA平分EDC∠.求证:(1)ABC是等腰三角形.(2)若45∠=︒,O的半径为6cm,求点O到BC的距离.BDC14.如图O是ABC的外接圆=45∥,AB交OC于∠︒,延长BC于D,连接AD,使得AD OCABCE.(1)求证:AD 与O 相切;(2)若25AE =,CE=2.①求O 的半径;②求AB 的长度.15.如图,在O 中,AB 是直径,点C 是圆上一点,在AB 的延长线上取一点D ,连接CD ,使BCD A ∠=∠.求:(1)求证:直线CD 是O 的切线;(2)若120,9ACD AD ∠=︒=,求扇形OAC 的面积16.如图,AB 为O 的直径,点C 、D 都在O 上,且BD 平分ABC ∠,过点D 作DE BC ⊥,交BC 的延长线于点E .(1)求证:DE 是O 的切线.(2)延长ED 交BA 的延长线于点F .若30F ∠=︒,AB=8,则BE 的长为______.答案: 1.解、(1)如图,连接OEAC 与O 相切∴OE AC ⊥,且BC AC ⊥∴OE BC ∥∴CBE OEB ∠=∠EO OB =∴EBO OEB ∠=∠∴CBE EBO ∠=∠,且CE BC ⊥ EH AB ⊥ ∴CE EH =;(2)2sin3OE A OA== ∴设2OE a = ()30AO a a =≠∴2OB OE a ==324AB AO OB a a =+=+=∴45a =44AD AB BD a =-=-∴45AD =. 2.(1)解:BDE 为等腰直角三角形,证明如下: 证明:∵AE 平分BAC ∠ BE 平分ABC ∠ ∴BAE CAD CBD ∠=∠=∠ ABE EBC ∠=∠.∵BED BAE ABE ∠=∠+∠ DBE DBC CBE ∠=∠+∠ ∴BED DBE ∠=∠.∴BD ED =.∵AB 为直径∴90ADB ∠=︒.∴BDE 是等腰直角三角形.(2)解:如图:连接OC CD OD OD 交BC 于点F .∵DBC CAD BAD BCD ∠=∠=∠=∠ ∴BD DC =.∵OB OC =∴OD 垂直平分BC .∵BDE 是等腰直角三角形 210BE = ∴25BD =.∵10AB =∴5OB OD ==.设OF t = 则5DF t =-.在Rt BOF △和Rt BDF △中 22225(25)(5)t t -=--.解得 3t =. ∴4BF =.∴8BC=.3.解、(1)证明:如图所示连接OD CD OC,,.∵D是AC的中点∴AD CD=∴AD CD=又∵OA OC=∴点O和点D都在线段AC的垂直平分线上即OD垂直平分线AC ∴OD AC⊥.又∵直线l AC∥∴直线l OD⊥∵OD是O的半径∴直线l是O的切线.(2)解:如图过点D作DM AB⊥垂足为M由(1)得90ODF∠=︒∵AB为半圆O的直径∴90∠=∠=︒ADB ACB∴90∠=∠=︒FDO ADB∴FDO ADO ADB ADO∠=∠∠∠即FDA ODB∠-=∠-∵OD OB=∴FDA ODB OBD ∠=∠=∠. 又∵DM AB ⊥∴90OBD BDM ∠+∠=︒. ∵90ADM BDM ∠+∠=︒ ∴ADM OBD ∠=∠∴ADF ADM ∠=∠又∵AF EF ⊥∴AF AM =.同理可得BDE BDM ∠=∠ ∵D 是AC 的中点∴AD CD =∴DBM DBE ∠=∠又∵BD BD =∴()ASA BDM BDE ≌ ∴MB BE =∴AF BE AM MB AB +=+= 即2AF BE +=.4.解、(1)证明:如图 连接OC∵90ACB ∠=︒∴AB 是O 的直径 即O 在AB 上 ∵,OA OC =30BAC ∠=︒,∴30,OCA OAC ∠∠==︒∴903060OCB ∠=︒-︒=︒∵30BCE ∠=︒,∴306090,OCE ∠=︒+︒=︒∴OC CE ⊥∴EC 是半圆O 的切线;(2)解:∵30,90,BAC ACB ∠∠=︒=︒ ∴903060,ABC ∠=︒-︒=︒∵OB OC =∴BOC 是等边三角形∵8AB =∴4OB =∴2260483603603OAC n r S πππ⨯===扇形 13444322BOC S =⨯⨯⨯= ∴8433BOC OBC S S S π=-=-阴影扇形. 5解、(1)证明:∵BC 为O 的切线 ∴BC AB ⊥∵DE AB⊥∴BC DE∥∴C ADE∠=∠∵ABE ADE∠=∠∴ABE C∠=∠;(2)解:连接OE∵点F为OB中点且1OF=∴22==OB OF∴2==OE OB根据勾股定理可得:223=-=EF OE OF∵DE AB⊥∴223==.DE EF6.解、证明:如图过点C作O的直径CE连接BE 则90∠=︒CBE∴∠+∠=︒BEC BCE90∠=∠∠=∠,BEC BAC BAC BCDBCD BEC∴∠=∠BCD BCE∴∠+∠=︒90∴⊥CD CEOC是O的半径∴CD是O的切线.7.解、(1)证明:如图连接OD∵DE是O的切线⊥∴90∠=︒即OD DEODE∵AB BC=∴A C∠=∠∵OA OD=∴A ADO∠=∠∴C ADO∠=∠∴∥OD BC∴DF BC⊥;(2)设O的半径为r则OB OD r==∵3BE=∴3=+OE r在Rt DOE△中222DE=+=6OD DE OE∴()22263r r +=+ 解得: 4.5r =即O 的半径为4.5.8.(1)证明:连接并延长AO 交BC 于点F 连接OC 则OA OB OC ==∴1802AOB OAB OBA -∠∠=∠=1802AOC OAC OCA -∠∠=∠= ∵AB AC =∴ACB ABC ∵2AOB ACB ∠=∠ 2AOC ABC =∠∠ ∴AOB AOC ∠=∠∴18018022AOB AOC -∠-∠= ∴OAB OAC ∠=∠∴AF BC ⊥∵AE BC ∥∴90OAE AFB ∠=∠=︒∴OA 是O 的半径 且AE OA ⊥ ∴AE 是O 的切线;(2)∵75ACB ABC ∠=∠=︒ ∴18030BAC ACB ABC ∠=︒-∠-∠=︒∴223060BOC BAC ∠=∠=⨯︒=︒ ∴BOC 是等边三角形 180120COD BOC ∠=︒-∠=︒ ∴2OC OA BC ===∴CD 的长为120π24π1803⨯= ∵AE 是O 的切线∴90OAE ∠=︒在Rt OAE △中 1302AOE BOF BOC ∠==∠=∠= ∴2OE AE =由勾股定理得:233AE =. 9.(1)解(1)BC 与O 相切 理由如下: 连接OD∵OA OD =∴OAD ODA ∠∠= 又∵AD 是ABC 的角平分线 ∴OAD CAD ∠∠=∴ODA CAD ∠∠=∴OD AC∴90ODB C ∠∠==︒∴OD BC ⊥∵OD 是O 的半径∴BC 与O 相切;(2)连接OE∵90ODB C ∠∠==︒ 30B ∠=︒ ∴60BOD BAC ∠∠==︒ ∵OA OE =∴OAE 是等边三角形 2AE = ∴2OA OE == 60AOE ∠=︒ ∴60EOD ∠=︒∴DE 的长为:6022=1803ππ⨯10.(1)解:连接BC .OD ∥AC 90ACB ∠=︒ OD BC ∴⊥∴弧BD =弧CD 的长.(2)90ACB ∠=︒2222(25)68BC AB AC ∴=-=⨯-=.由(1)可知 OD BC ⊥ 118422CE BE BC ∴===⨯=.又OA BO =∴点E 和O 分别是BC 和AB 的中点 116322OE AC ∴==⨯=532DE OD OE ∴=-=-=. 90CED ∠=︒22224225CD CE DE ∴=+=+=.(3)连接OG 、BG 、BP . 设CAP α∠= 则2BAP α∠=. OA OG =2AGO BAP α∴∠=∠=. OD //ACAPO CAP α∴∠=∠=2GOP AGO APO ααα∴∠=∠-∠=-= 1110522GP GO AB ∴===⨯=.OP 垂直平分BC61BP CP ∴==.90BGP ∠=︒222612536BG BP GP ∴=-=-=22100368AG AB BG ∴=-=-=.11.解、(1)连接OC∵CP 与O 相切∴OC PC ⊥∴90PCB OCB ∠+∠=︒ ∵AB DC ⊥∴90∠+∠=︒PAD ADF ∵OB OC =∴OBC OCB ∠=∠由圆周角定理得:ADF OBC ∠=∠ ∴PCB PAD ∠=∠;(2)连接OD DB ,∵,,OB CD OF BF ⊥=∴,DO DB =∵OB OD =∴,OB OD DB ==∴ODB △是等边三角形 ∴60DOB ∠=︒∵AB DC ⊥∴DF FC =∵BF OF AB DC =⊥, ∴CFB DFO S S =△△∴260223603BOD S S ππ⨯===阴影部分扇形.12.(1)解:过点O 作OF AB ⊥∵BC 与O 相切∴OC BC ⊥∴90OCB OFB ∠=∠=︒ ∵AB CD∴CAB ACD ∠=∠ CDB ABD ∠=∠ ∵OC OD =∴OCD ODC ∠=∠∴CAB ABD ∠=∠∵CAB CBD ∠=∠∴CBD ABD ∠=∠∵OB OB =∴OCB OFB ≌∴OF OC =为O 的半径AB是O 的切线;)由(1)知:ABD +∠+∠30=︒OCB S S -解、(1)解:四边形是O 的内接四边形ACB +∠又ADB ∠+∠ADE ∴∠=∠DA 平分∠ADC ∴∠=∠ADC ∠=∠ADE ∴∠=即ABC ∠ABC ∴是等腰三角形;(2)解:连接6cm OB OC ∴==45BDC ∠=︒90BOC ∴∠=︒在Rt BOC 中 由勾股定理得: 22226662cm BC BO CO =+=+= 设点O 到BC 的距离为h 1122BOC S BO CO BC h =⨯⨯=⨯⨯ 即11666222h ⨯⨯=⨯⨯解得:32h =∴点O 到BC 的距离为32cm . 14.(1)证明:连接OA ∵=45ABC ∠︒∴290AOC ABC ∠=∠=︒ ∵AD OC ∥∴180AOC OAD ∠+∠=︒ ∴90OAD ∠=︒ 即OA AD ⊥ ∴AD 与O 相切;(2)解:①设O 的半径为r 则OA OC r == ∵2CE =∴2OE r =-∵=90AOC ︒∠∴222OE OA AE +=即()()222225r r -+= 解得:4r =或2r =-(舍去) ∴O 的半径4;②过点O 作OF AB ⊥于点F∵=90AOC ︒∠ OF AB ⊥ ∴1122AOE S OE OA AE OF =⋅=⋅ 则2425OF ⨯=解得:455OF = 根据勾股定理可得:22855=-=AF OA OF ∵OF AB ⊥∴16525AB AF ==. 15.(1)证明:连接OC 则:OB OC =∴OBC OCB∠=∠∵AB是直径∴90∠=︒ACB∴90∠+∠=︒A ABC∠=∠∵BCD A∴90DCB OCB∠+∠=︒即:90∠=︒OCD∴OC CD⊥∵OC是O的半径∴直线CD是O的切线;(2)∵120∠=︒90ACD∠=︒OCD∴30∠=︒OCA∵OA OC=∴30∠=∠=︒A OCA∴60∠=︒DOC∴30D∠=︒∴22==OD OC OA∵9=+=AD OA OD∴3OA=∵60∠=︒DOC∴120COA ∠=︒∴扇形OAC 的面积为212033360ππ⨯=.16.(1)证明:连结OD 如图BD 平分ABC ∠OBD EBD ∴∠=∠OB OD =ODB OBD ∴∠=∠ODB EBD ∴∠=∠OD BE ∴∥DE BE ⊥DE OD ∴⊥DE ∴是O 的切线;(2)解:8AB =4OA OB OD ∴===OD EF ⊥90ODF ∴∠=︒在Rt ODF △中30F ∠=︒28OF OD ∴==8412BF OF OB ∴=+=+= BE EF ⊥90E ∴∠=︒在Rt EFB △中 30F ∠=︒ 162BE BF ∴==. 故答案为:6.。

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)

人教版九年级上册数学圆专题卷(有答案)一、单选题(共12题;共24分)1.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是().A. πr2B. πr2C. πr2D. πr22.若⊙O的半径为6,点P在⊙O内,则OP的长可能是()A. 5B. 6C. 7D. 83.如图,A、B、C三点在⊙O上,∠AOB=80º,则∠ACB的大小()`A. 40ºB. 60ºC. 80ºD. 100º4.已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A. =B. >C. <D. 不能确定5.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166.已知⊙O1与⊙O2的半径分别为3和4,若圆心距O1O2=1,则两圆的位置关系是():A. 相交B. 相离C. 内切D. 外切7.两圆的半径分别是5cm和4cm,圆心距为7cm,则两圆的位置关系是( )A. 相交B. 内切C. 外切D. 外离8.如图,某公园的一座石拱桥是圆弧形(劣弧),拱的半径为13米,拱高CD为8米,则拱桥的跨度AB 的长为())A. 20米B. 24米C. 28米D. 24米9.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为()A. 10B. 12C. 16D. 2010.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为()A. B. 2 C. 2 D. 311.(2017•葫芦岛)如图,点A,B,C是⊙O上的点,∠AOB=70°,则∠ACB的度数是())A. 30°B. 35°C. 45°D. 70°12.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的各顶点称为格点,直角△ABC的顶点均在格点上,则满足条件的点C有()A. 6个B. 8个C. 10个D. 12个二、填空题(共6题;共20分)13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB =________°.14.(2011•南通)比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①________;②________.不同点:①________;②________.!15.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有 ________条弦,它们分别是 ________16.如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为________.17.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是________.18.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为________cm.三、综合题(共5题;共56分)19.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.》(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.20.如图,在半径为2的⊙O中,弦AB长为2.、(1)求点O到AB的距离.(2)若点C为⊙O上一点(不与点A,B重合),求∠BCA的度数.21.(2015•北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD 的延长线交于点P,使∠PED=∠C.^(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.;22.(2017•安顺)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.`答案一、单选题1.B2. A3. A4.D5. B6. C7. A8. B9. C 10.C 11.B 12. C二、填空题13.4414.都是轴对称图形;都有外接圆和内切圆;内角和不同;对角线的条数不同15.三;AE,DC,AD.16.17.618.三、综合题19. (1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)解:∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.20.(1)解:过点O作OD⊥AB于点D,连接AO,BO.如图1所示:∵OD⊥AB且过圆心,AB=2,∴AD= AB=1,∠ADO=90°,在Rt△ADO中,∠ADO=90°,AO=2,AD=1,∴OD= = .即点O到AB的距离为.(2)解:如图2所示:∵AO=BO=2,AB=2,∴△ABO是等边三角形,∴∠AOB=60°.若点C在优弧上,则∠BCA=30°;若点C在劣弧上,则∠BCA= (360°﹣∠AOB)=150°;综上所述:∠BCA的度数为30°或150°.21.(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF=﹣2=.22.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂中平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切(2)解:设⊙O的半径为r,则OD=r﹣1,在Rt△OBD中,BD=CD= BC= ,∴(r﹣1)2+()2=r2,解得r=2,∵tan∠BOD= = ,∴∠BOD=60°,∴∠BOC=2∠BOD=120°,在Rt△OBE中,BE= OB=2 ,∴阴影部分的面积=S四边形OBEC﹣S扇形BOC=2S△OBE﹣S扇形BOC=2× ×2×2 ﹣=4 ﹣π23.(1)90;直径所对的圆周角是直角(2)解:△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴= = =∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=。

2019年初中九年级上册数学:几何圆难题巧解专题训练(含答案)

2019年初中九年级上册数学:几何圆难题巧解专题训练(含答案)

:(1),﹦﹒又﹦,.,是等边三角形既是的外心又是重心,在中,,., 的半径为.ACB=∠解:解:如右图,连接OC,是的直径,CD是的切线,,,,.故答案为4.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )答案:A5.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为3/2,AC =2,则sinB 的值是( )如图所示,连接。

因为是直径,点在上,所以,因为的半径为,所以,,根据同弧所对的圆周角相等得:,所以。

故本题正确答案为A。

6.如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )解:延长交于,作OE⊥于E;因为,所以;所以△ADB为等边三角形;所以;所以,又因为所以O;所以,所以,故答案为20.7.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是( )A .弦AB 的长等于圆内接正六边形的边长B .弦AC 的长等于圆内接正十二边形的边长C. AC =BCD .∠BAC =30°解:,,,是等边三角形,,A、根据圆周角定理得:,故本选项正确;B、,OC为半径,弧AC=弧BC,故本选项错误;C、,,,为等边三角形,,以AB为一边可构成正六边形,故本选项错误;D、因为,根据垂径定理可知,弧AC=弧BC,再根据A中结论,弦AC的长等于圆内接正十二边形的边长,故本选项错误;所以A选项是正确的.8.如图,在5×5的正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在圆的圆心是( ) A .点P B .点Q C .点R D .点M解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故答案为:Q.9.用一把带有刻度的直角尺,(1)可以画出两条平行的直线a 与b ,如图①;(2)可以画出∠AOB 的平分线OP ,如图②;(3)可以检验工作的凹面是否为半圆,如图③;(4)可以量出一个圆的半径,如图④.上述四种说法中,正确的个数是( )A .1个B .2个C .3个D .4个①项,根据同位角相等两直线平行,可以作出两条平行线。

2019—2020年最新人教版九年级数学上册《圆》达标检测题及答案解析(试卷).docx

2019—2020年最新人教版九年级数学上册《圆》达标检测题及答案解析(试卷).docx

第二十四章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下列命题为真命题的是( )A.两点确定一个圆B.度数相等的弧相等C.垂直于弦的直径平分弦D.相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是( ) A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.无法确定3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是( )A.70°B.60°C.50°D.30°(第3题)(第4题)(第6题)(第7题)4.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )A .8B .4C .10D .55.直线l 与半径为r 的⊙O 相交,且圆心到直线l 的距离为5,则半径r 的取值范围是( ) A .r >5 B .r =5 C .0<r <5 D .0<r ≤56.如图,⊙O 与矩形ABCD 的边相切于点E ,F ,G ,点P 是EFG ︵上一点,则∠P 的度数是( )A .45°B .60°C .30°D .无法确定7.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( )A.π3B.3π3C.2π3D .π 8.如图,如果从半径为9 cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .6 cmB .35 cm C .8 cm D .53 cm(第8题)(第9题)(第10题)9.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a)(a >3),半径为3,函数y =x的图象被⊙P 截得的弦AB 的长为42,则a 的值是( )A .4B .3+2 C .32 D .3+310.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A.23429B.81329C.8129D.81328 二、填空题(每题3分,共30分)11.如图,点A ,B ,C 在⊙O 上,∠AOC =60°,则∠ABC 的度数是________. 12.如图,已知⊙O 的半径为3,点O 到l 的距离为OA =5,将直线l 沿射线AO 方向平移m 个单位长度时,⊙O 与直线l 相切,则m =________.13.如图,AD 为⊙O 的直径,AD =6 cm ,∠DAC =∠ABC ,则AC =________.(第11题)(第12题)(第13题)(第14题)(第16题)14.如图,A ,B 是⊙O 上的两点,AC 是过点A 的一条直线,若∠AOB =120°,则当∠CAB 等于________时,AC 才能成为⊙O 的切线.15.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________. 16.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°. 17.如图,水平放置的圆柱形油槽的截面直径是52 cm ,装入油后,油深CD 为16 cm ,那么油面宽度AB =________cm.(第17题)(第18题)(第19题)(第20题)18.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC 的长为半径作CD ︵交OB 于点D.若OA =2,则阴影部分的面积为________.19.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径是7,则GE +FH 的最大值是________.20.如图所示,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________.(填序号) 三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分) 21.如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,点E 在⊙O 上. (1)若∠AOD =52°,求∠DEB 的度数; (2)若OC =3,OA =5,求AB 的长.(第21题)22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,在△ABC中,∠ACB=90°,D是AB边上的一点,且∠A=2∠DCB.E是BC 边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.(第23题)24.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°,①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)(第24题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第25题)26.如图①,AB是⊙O的直径,且AB=10,C是⊙O上的动点,AC是弦,直线EF 和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若AD和⊙O相切于点A,求AD的长;(3)若把直线EF向上平行移动,如图②,EF交⊙O于G,C两点,题中的其他条件不变,试问这时与∠DAC相等的角是否存在,并证明.(第26题)答案一、1.C 2.A 3.B 4.D 5.A6.A 点拨:连接OE ,OG ,易得OE ⊥AB ,OG ⊥AD.∵四边形ABCD 是矩形,∴∠A =90°,∴∠EOG =90°,∴∠P =12∠EOG =45°.7.B 点拨:∵∠ACB =90°,∠ABC =30°,AB =2,∴AC =12AB =1.∴BC =AB 2-AC 2=22-12=3.∴点B 转过的路径长为60π·3180=3π3.∴点B 转过的路径长为33π.8.B 点拨:∵留下的扇形的弧长为23×2π×9=12π(cm).∴围成圆锥的底面圆半径r =12π2π=6(cm).又∵圆锥母线长l =9 cm ,∴h =l 2-r 2=92-62=35(cm).9.B10.D 点拨:∵正六边形A 1B 1C 1D 1E 1F 1的边长为2=(3)1-121-2,∴正六边形A 2B 2C 2D 2E 2F 2的外接圆的半径为3,则正六边形A 2B 2C 2D 2E 2F 2的边长为3=(3)2-122-2,同理,正六边形A 3B 3C 3D 3E 3F 3的边长为32=(3)3-123-2,…,正六边形A nB nC nD nE nF n 的边长为(3)n -12n -2,则当n =10时,正六边形A 10B 10C 10D 10E 10F 10的边长为(3)10-1210-2=(3)8·328=34·328=81328,故选D.二、11.150° 12.2或8 13.32 cm 14.60° 15.8或1016.215 点拨:∵A ,B ,C ,D 四点共圆,∴∠B +∠ADC =180°.又∵A ,C ,D ,E 四点共圆,∴∠E +∠ACD =180°.∴∠ACD +∠ADC +∠B +∠E =360°.∵∠ACD +∠ADC =180°-35°=145°,∴∠B +∠E =360°-145°=215°.17.4818.32+π12 点拨:连接OE.∵点C 是OA 的中点,∴OC =12OA =1,∵OE =OA =2,∴OC =12OE =1.∵CE ⊥OA ,∴∠OEC =30°,∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°,∴S 扇形OBE=30π×22360=π3.又S 扇形OCD =90π×12360=π4.因此S 阴影=S 扇形OBE +S △OCE -S 扇形OCD =π3+32-π4=π12+32. 19.10.520.①②④ 点拨:连接OM ,ON ,易证Rt △OMC ≌Rt △OND.可得MC =ND ,故①正确.在Rt △MOC 中,CO =12MO.得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵.故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,易得四边形MCDN 是矩形,故③错误.易得MN =CD =12AB ,故④正确.三、21.解:(1)∵OD ⊥AB ,∴AD ︵=DB ︵.∴∠DEB =12∠AOD =26°. (2)在Rt △AOC 中,OC =3,OA =5,由勾股定理得AC =4.∴AB =2AC =8.22.解:设经过A ,B 两点的直线的解析式为y =kx +b.∵A(2,3),B(-3,-7),∴⎩⎪⎨⎪⎧2k +b =3,-3k +b =-7.解得⎩⎪⎨⎪⎧k =2,b =-1.∴经过A ,B 两点的直线的解析式为y =2x -1.当x =5时,y =2×5-1=9≠11,∴点C(5,11)不在直线AB 上,即A ,B ,C 三点不在同一条直线.∴平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)可以确定一个圆.23.(1)证明:连接OD ,∴∠BOD =2∠DCB.又∵∠A =2∠DCB ,∴∠A =∠DOB.又∵∠A +∠B =90°,∴∠DOB +∠B =90°.∴∠BDO =90°.∴OD ⊥AB.又∵点D 在⊙O 上,∴AB 是⊙O 的切线.(2)解:过点O 作OM ⊥CD 于点M.∵OD =OE =BE =12BO ,∠BDO =90°,∴∠B =30°.∴∠DOB =60°.∴∠DCB =30°.∴OC =2OM =2.∴OD =2,BO =4.∴由勾股定理得BD =2 3.(第24题)24.解:(1)相切.理由如下:如图,连接OD.∵AD 平分∠BAC ,∴∠1=∠2.∵OA =OD ,∴∠1=∠3.∴∠2=∠3.∴OD ∥AC.又∠C =90°,∴OD ⊥BC.又∵点D 在⊙O 上,∴BC 与⊙O 相切.(2)①设⊙O 的半径为r.∵AC =3,∠B =30°,∴AB =6.又OA =OD =r ,∴OB =2r.∴2r +r =6,解得r =2.即⊙O 的半径是2.②由①得OD =2,OB =4,则BD =23,又易知∠DOE =60°,则S 阴影=S △OBD -S 扇形ODE =12×23×2-60π×22360=23-2π3. 25.解:(1)如图,点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交⊙E 于点C ,连接AE ,则CF =20米.由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40米.设圆的半径是r ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF)2,即r 2=402+(r -20)2.解得r =50.∴桥拱的半径为50米.(第25题)(2)这艘轮船能顺利通过.理由如下:宽60米的轮船可通过拱桥的最大高度为图中MN 所示.连接EM ,EC 与MN 的交点为D ,设MD =30米.∵DE ⊥MN ,∴DE =EM 2-DM 2=502-302=40(米).∵EF =EC -CF =50-20=30(米),∴DF =DE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.(1)证明:如图①,连接OC.∵直线EF和⊙O相切于点C,∴OC⊥EF.∵AD⊥EF,∴OC∥AD.∴∠DAC=∠OCA.∵OA=OC,∴∠BAC=∠OCA.∴∠DAC=∠BAC.(2)解:∵AD和⊙O相切于点A,∴OA⊥AD.∵AD⊥EF,OC⊥EF,∴∠OAD=∠ADC=∠OCD=90°.∴四边形OADC是矩形.∵OA=OC,∴矩形OADC是正方形.∴AD=OA.∵AB=2OA=10,∴AD=OA=5.(3)解:存在,∠BAG=∠DAC.证明如下:如图②,连接BC.∵AB是⊙O的直径,∴∠BCA=90°.∴∠ACD+∠BCG=90°.∵∠ADC=90°,∴∠ACD+∠DAC=90°.∴∠DAC=∠BCG.∵∠BCG=∠BAG,∴∠BAG=∠DAC.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专项突破试卷
(与圆有关的计算与证明)
一、选择题
1.已知Rt△ABC的直角边AC=BC=4 cm,若以C为圆心,以3 cm长为半径作圆,则这个圆与斜边AB所在的直线的位置关系是()
A.相交
B.相切
C.相离
D.不能确定
2.如图,已知经过原点的⊙P与x轴,y轴分别交于A,B两点,点C是劣弧OB上一点,则∠ACB等于()
A.80°
B.90°
C.100°
D.无法确定
3.如图所示,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()
A.AB⊥CD
B.∠A OB=4∠A CD
C.
D.PO=PD
4.P为⊙O外一点,PA为⊙O的切线,A是切点,若⊙O的半径为3,PA=4,则PO的长为()A.3
B.4
C.5
D.6
5.边长为a的正六边形的面积等于()
A.
B.a²
C.
D.3a²
6.已知两圆的半径分别为3和5,圆心距为4,则这两圆的位置关系是()
A.内切
B.外切
C.相交
D.相离
7.如图所示,边长为1的菱形ABCD绕点A旋转,当B,C两点恰好落在扇形AEF的弧EF 上时,弧BC的长度等于 ( )
A.
B.
C.
D.
8.设⊙O中最长弦的长为m,直线与⊙O相交,点O到的距离为d,则d与 m的关系是()A.d=m
B.d<m
C.d>
D.d<
9.已知一个圆锥的底面半径为3 cm,母线长为5 cm,则圆锥的侧面积是()A.20 cm²
B.15 cm²
C.20π c m²
D.15π cm²
10.如图所示,王大伯家屋后有一块长12 m、宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊,羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()
A.3m
B.5m
C.7m
D.9m
二、填空题
1.若AB=8 cm,则经过A,B两点的最小圆的半径是_________.
2.如图,在⊙O中,∠A OB=100°,,则∠C AB=_________.
3.已知一个直角三角形的面积为12 cm²,周长为12 cm,那么这个直角三角形的外接圆半径是_________.
4.如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是_________.
5.如图所示,矩形ABCD中,AB=8,AD=6,将矩形ABCD在直线上接顺时针方向不滑动地每秒转动90°,转动3秒后停止,则顶点A经过的路线长为_________.
6.如图,在Rt△ABC中,∠A CB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积是_________.
7.如图,∠A CB=60°,半径为1 cm的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离是_________cm.
8.如图所示,在Rt△ABC中,∠BAC=90°,BC=6,点D为BC中点,将△ABD绕点A按逆时针方向旋转120°得到△A B′D′,则点D在旋转过程中所经过的路径长为_____.(结果保留π)
三、解答题
1.如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点C,已知∠AOC=70°,求∠B AD 的度数.
2.如图,在⊙0中,直径AB与弦CD相交于点P,∠C AB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6,求圆心O到BD的距离.
3.如图,AB是⊙O的直径,AC是弦,OE⊥AC于点E,过A作⊙O的切线DA,DA与OE的延长线交于点D,连接DC,BC.
(1)填空:OE与BC的位置关系是_______,OE与BC的数量关系是_______,
(2)求证:DC是⊙O的切线,
4.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上的一点,一只小虫从A点出发,绕侧面爬行一周,再回到点A的最短路线长是多少?
5.如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.
6.如图所示,点P是x轴上一点,以P为圆心的圆分别与x轴、y轴交于A,B,C,D四点,已知A(-3,0),B(1,0),过点C作⊙P的切线,交x轴于点E.
(1)求直线CE的解析式;
(2)若点F是线段CE上一动点,点F的横坐标为m,问:m在什么范围时,直线FB与⊙P相交?
(3)若直线FB与⊙P的另一个交点为N,当点N是的中点时,求点F的坐标,
【专项三】
一、1.A 2.B3.D4.C5.C6.C
7.C8.D9.D 10.A
二、1.4 cm 2.65° 3. 4.(5,4)
5. 12π 6. 7. 8.2π
三、1.解:∵∠AOC=70°,∴∠ABC=35°,
∵AD∥BC,∴∠B AD=180°-35°=145°.
2.解:(1)∵∠APD=∠C+∠C AB,∴∠C=65°-40°=25°,∴∠B=∠C=25°.
(2)作OE⊥BD于E,则DE=BE.
又∵AO=BO,
∴OE=AD=×6=3,圆心O到BD的距离为3.
3.解:(1) OE∥BC OE=BC
(2)证明:如图,连接OC,设OD与⊙O交于点F
∵DA是⊙O的切线,∴OA⊥AD,即∠DA0=90°,
∵OE⊥AC, ∴
∴∠AOD=∠COD.
在△DAO和△DCO中,
∴△DAO≌DCO(SAS).
∴∠DCO=∠DA0=90°.
又∵OC为⊙0的半径,∴DC是⊙O的切线.
4.解:将圆锥沿母线SA作侧面展开图,得扇形SA A′,如图所示.设∠A SA′=n°,由扇形弧长等于底面圆周长,得=2π·1.
∴n=120.
∴∠ASA′=120°.
连接AA′,过S作SM⊥A A′于M.∴∠A SM=60°.
∴在Rt△ASM中,∠SAM=30°,SA=3.
∴SM=,由勾股定理,得AM=,
∴A A′=2AM=3.
5.解:(1)连接BC.
∵AC为⊙0的直径,
∴∠ABC=90°.
又∵AB=4,∠A=30°,∴BC=AC.
由勾股定理,得AC=8,∴OA=AC=4.
又∵∠A=30°,AC⊥BD,
∠B OC=60°.∴∠BOD=120°.
∴.
(2)设圆锥的底面圆的半径为r,则周长为2πr.
∴×2πr×4=π,∴r=.
6.解:(1)连接PC.因为A(-3,0),B(1,O),所以
⊙P的直径是4,所以半径R=2,OP=1.OC=.所以C(0,).所
以∠PCD=30°,又CE是⊙P的切线,所以PC⊥CE.所以∠PEC=30°.所以PE=2PC=4,EO=PE-OP=3.所以E(3,0).
设直线CE的解析式为y=kx+b,将C,E两点坐标代入解析式,得解得
所以直线CE的解析式为y=-.①
(2)当O≤m≤3且m≠1时,直线FB与⊙P相交.
(3)因为点N是的中点,所以N(-1,-2).设直线NB的解析式为y=kx+b,把N、B两点坐标代入解析式,得解得所以直线NB的解析式为y=x-1.②
由①、②式,得,解得
所以F(,)。

相关文档
最新文档