蒽酮比色法测定可溶性糖

合集下载

植物生理学实验:实验四 植物可溶性糖含量的测定(蒽酮比色法)

植物生理学实验:实验四 植物可溶性糖含量的测定(蒽酮比色法)

管号
0
1
2
345
100mg/L葡萄糖标准液(mL) 0 0.2 0.4 0.6 0.8 1.0
水(mL)
2 1.8 1.6 1.4 1.2 1.0
蔗糖含量(μg)
0 20 40 60 80 100
(2)在每支试管中立即加入蒽酮乙酸乙酯试剂0.5mL和
5mL浓硫酸,用玻棒混匀,沸水浴中准确保温1min取
目的:掌握蒽酮法测定可溶性糖含量的原理和方法。 仪器 分光光度计、水浴锅; 天平、试管架、容量瓶、试管、滤纸、漏斗。 试剂 100mg/L葡萄糖标准液;浓硫酸;蒽酮乙酸乙酯试剂 材料:白兰叶片
实验步骤
1. 葡萄糖标准曲线的制作(1组同学做,数据共享)
(1)取6支试管,按下表数据配制一系列不同浓度的葡萄 糖溶液:
出,自然冷却至室温,在630nm波长下比色。以标准蔗
糖含量作横坐标,以吸光值作纵坐标作标准曲线。
实验步骤
2. 植物样品中可溶性糖的提取(其他组做,数据共享) 将植物叶片剪碎混匀,准确称取0.3g3份,加入研钵中,
再加入2-3mL水和少量石英砂,研磨后转入试管中,用 水再洗涤2次,均转入试管中。将试管置于沸水浴中提取 30min,提取液过滤至25mL容量瓶,反复冲洗试管及 残渣,定容至刻度。 3. 显色测定(同上): 吸取0.5mL提取液于试管中,加水1.5mL,蒽酮乙酸乙酯 试剂0.5mL和5mL浓硫酸,混匀,沸水浴中准确保温 1min取出,自然冷却至室温,在630nm波长下比色。
注意一切与浓硫酸操作有关的安全 !!!不要吝啬用水和卫生纸!! !
作业
得出实验结果后,根据标准曲线算出的含糖量 ,写于实验报告上。(之前问题)
0204060810水ml1816141210蔗糖含量g20406080100实验步骤植物样品中可溶性糖的提取其他组做数据共享将植物叶片剪碎混匀准确称取03g3份加入研钵中再加入23ml水和少量石英砂研磨后转入试管中用水再洗涤2次均转入试管中

(整理)可溶性糖测定.

(整理)可溶性糖测定.

引言可溶性糖包括葡萄糖、果糖、蔗糖等单糖和双糖,是植物品质的重要构成性状之一,尤其是以果实为目的产品的植物,可溶性糖与酸的含量及其配比是影响果实风味品质的重要因素。

对于鲜食品种,一般来讲,高糖中酸,风味浓,品质优;低糖中酸,风味淡,品质差。

因此,可溶性糖的定量研究对植物的品质育种、储藏、加工特性等具有重要意义。

而且可溶性糖广泛存在于植物的根、茎块和种子中,是人体热量的最最主要来源,具有较高的营养价值。

本文重点介绍蒽酮比色法、铜还原碘量法、费林试剂法、原子吸收法、气相色谱法、液相色谱-蒸发光散射法,及连续流动法这几种实验如何定量测定可溶性糖含量。

1 蒽酮比色法1.1 原理糖在硫酸作用下生成糠醛,糠醛再与蒽酮作用形成绿色络合物,颜色的深浅与糖含量有关。

在625 nm波长下的OD值与糖含量成正比。

由于蒽酮试剂与糖反应的呈色强度随时间变化,故必须在反应后立即在同一时间内比色。

1.2 仪器与材料1.2.1实验仪器分光光度计,电炉,铝锅,电子天平,20ml刻度试管,刻度吸管5ml 1支、1ml 2支,漏斗。

1.2.2实验试剂(1)蒽酮乙酸乙酯试剂:取分析纯蒽酮1g,溶于50ml乙酸乙酯中,贮于棕色瓶中,在黑暗中可保存数星期,如有结晶析出,可微热溶解。

(2)浓硫酸(比重1.84)。

1.2.3实验材料植物叶片。

1.3 实验方法1.3.1标准曲线的制作取20ml刻度试管11支,从0~10分别编号,按表24-1加入溶液和水。

然后按顺序向试管内加入1ml 9%苯酚溶液,摇匀,再从管液正面快速加入5ml浓硫酸,摇匀。

比色液总体积为8ml,在恒温下放置30min,显色。

然后以空白为参比,在485nm 波长下比色测定,以糖含量为横坐标,光密为纵坐标,绘制标准曲线,求出标准直线方程。

按表1加入标准的蔗糖溶液,然后按顺序向试管中加入0.5ml蒽酮乙酸乙酯试剂和5ml浓硫酸,充分振荡,立即将试管放入沸水浴中,逐管均准确保温1min,取出后自然冷却至室温,以空白作参比,在630nm波长下测其光密度,以光密度为纵坐标,以糖含量为横坐标,绘制标准曲线,并求出标准线性方程。

蒽酮比色法测定植物组织中总糖和可溶和性糖的含量

蒽酮比色法测定植物组织中总糖和可溶和性糖的含量

实验九蒽酮比色法测定植物组织中总糖和可溶和性糖的含量一、实验目的掌握蒽酮法测定总糖和可溶性糖含量的原理和方法二、实验原理蒽酮比色法是一个快速而简便的定糖方法。

酸可使糖类(如已糖基,戊醛糖及已糖醛酸)脱水生成糠醛,生成的糠醛或烃甲基糖醛与蒽酮脱水缩合,形成糠醛的衍生物,呈蓝绿色,该物质在620nm处有最大光吸收值。

在10~100ug范围内其他颜色的深浅与可溶性糖含量成正比。

蒽酮也可以和其他一些糖类发生反应,但显现的颜色不同。

当存在含有较多色氨酸蛋白质时,反应不稳定,呈现红色。

而对于上述特定的糖类物质,反映较稳定。

多糖和寡糖可用酸水解成单塘和蒽酮试剂反应,因此利用蒽酮法可测组织中总糖和可溶性糖。

这一种方法具有很高的灵敏度,糖含量在30ug左右时就能侧进行测定,所以可作为微量测糖之用。

一般样品少的情况下,采用这一方法比较合适。

三、仪器,试剂和材料1、仪器(1)分光光度计; (6)漏斗,漏斗架个6个(2)电子天平;(7)容量瓶:50ml2个;(3)三角瓶:50ml2个(8)移液管;(4)刻度具塞试管;10ml13支;(9)水浴锅。

(5)试管架,试管夹各2个;2、试剂(1)葡萄糖标准液:100ug/ml;(2)浓硫酸;(2)蒽酮试剂:0.2g蒽酮,溶于100ml浓流酸中,现当日配制使用。

3、材料小麦幼苗分蕖节或其植物的幼嫩组织(红薯)。

四、操作步骤1、葡萄糖标准曲线的制作取7支试管,按下表配制一系列不同浓度的葡萄糖溶液;管号 1 2 3 4 5 6 7葡萄糖标准液/mL 0 0.1 0.2 0.3 0.4 0.5 0.6 蒸馏水/mL 1.0 0.9 0.8 0.7 0.6 0.7 0.8 葡萄糖含量/ug 0 10 20 30 40 50 60 在每支试管中,加入蒽酮试剂4.0ml,迅速浸入冰水浴中冷却。

各加完后一起浸入沸水浴中,管口加盖玻璃球,以防蒸发。

自水浴重新煮沸起,准确煮沸10min取出,用流水冷却,室温放置10min,在620nm波长下比色。

蒽酮比色法测糖.doc

蒽酮比色法测糖.doc

蒽酮比色法‎测糖一目的掌握蒽酮比‎色法测糖的‎原理和方法‎二原理蒽酮比色法‎是一个快速‎而简便的定‎糖方法。

蒽酮可以与‎游离的已糖‎或多糖中的‎已糖基、戊糖基及已糖醛‎酸起反应,反应后溶液‎呈蓝绿色,在620n‎m处有最大‎吸收。

本法多用于‎测定糖原的‎含量,也可用于测‎定葡萄糖的‎含量。

三实验器材及‎试剂马铃薯干粉‎、可调试移液‎器或移液管‎、可见分光光‎度计(723型)、电子分析天‎平、水浴锅、电炉子蒽酮试剂:取2g蒽酮‎溶解到80‎%H2SO4‎中,以80%H2SO4‎定容到10‎00ml,当日配制使‎用。

标准葡萄糖‎溶液(0.1mg/ml):100mg‎葡萄糖溶解‎到蒸馏水中‎,定容到10‎00ml备‎用。

葡萄糖标准‎溶液:称取已在8‎0℃烘箱中烘至‎恒重的葡萄‎糖100m‎g,配制成50‎0ml溶液‎,即得每ml‎含糖为20‎0μg的标‎准溶液。

蒽酮试剂:称取1g经‎过纯化的蒽‎酮,溶解于10‎00ml稀‎硫酸中即得‎。

硫酸溶液由‎760m l‎浓硫酸(比重1.84)稀释成10‎00ml而‎成。

2g/L蒽酮试剂‎:溶解2g蒽‎酮于1L浓‎硫酸(98%的浓硫酸)中,当日配制使‎用。

四、操作1.可溶性糖的‎提取称取重约5‎g的新鲜植‎物叶子,于研钵中乙‎醚少许,仔细研磨成‎均匀的浆状‎物,倒入烧杯中‎,用70℃热水洗涤研‎钵,洗液并入烧‎杯中,再加蒸镏水‎30─40ml。

将烧杯放在‎水浴锅中加‎热,保持温度7‎0─80℃约半小时,冷却后1滴‎1滴地加入‎饱和中性醋‎酸铅,以除去蛋白‎质,直至加入醋‎酸铅时不再‎形成白色沉‎淀为止。

然后将此混‎合物连同残‎渣一并洗入‎100ml‎容量瓶中,加水至刻度‎,充分振荡。

以干燥漏斗‎将滤液过滤‎于一干燥的‎三角烧瓶中‎,瓶中事先放‎有少量(约0.2─0.4g)草酸钠粉末‎,以除去滤液‎中过量的醋‎酸铅,使生成草酸‎铅沉淀,再行过滤,所得的透明‎滤液即为可‎溶性糖提取‎液。

蒽酮-硫酸比色法测定多糖含量

蒽酮-硫酸比色法测定多糖含量

蒽酮-硫酸比色法测定多糖含量之南宫帮珍创作一. 实验原理糖类在较高温度下可被浓硫酸作用而脱水生成糠醛或羟甲基糖醛后,与蒽酮(C14H10O)脱水缩合,形成糠醛的衍生物呈蓝绿色。

该物质在620 nm处有最大吸收,在150 µg/mL范围内,其颜色的深浅与可溶性糖含量成正比。

该法有很高的灵敏度,糖含量在30 µg左右就能进行测定。

二. 试剂器材蒽酮试剂:精密称取蒽酮,加80%浓H2SO4100 mL使溶解,摇匀。

当日配制使用;葡萄糖尺度液:将无水葡萄糖置于五氧化二磷干燥器中,12hr后精密称取100mg,用蒸馏水定容至100ml;其他器材:分析天平、分光光度计、容量瓶(100ml、50ml、10ml)、烧杯、具塞试管、移液器、移液器吸头、涡旋振荡器和废液缸等。

三. 操纵步调葡萄糖尺度曲线的制作取7支具塞试管,按下表数据精密配制一系列分歧浓度的葡萄糖溶液,每个浓度做2-3个重复:管号0 1 2 3 4 5 6 尺度葡萄糖溶液/mL 0 0.4 0.6 0.8蒸馏水/mL在每支试管中立即加入蒽酮试剂6mL,振荡混匀,各管加完后一起置于沸水浴中加热15min。

取出,迅速浸于冰水浴中冷却15min。

在625nm波长下以第1管为空白,迅速测定其余各管吸光值。

以尺度葡萄糖含量(g)为横坐标,以吸光值为纵坐标,绘制尺度曲线。

样品的测定将样品溶液糖浓度调整到测定范围,精确吸取2mL置于干燥洁净试管中,在每支试管中立即加入蒽酮试剂6mL,振荡混匀,各管加完后一起置于沸水浴中加热15min。

取出,迅速浸于冰水浴中冷却15min,每个浓度做2-3个重复。

在625nm波长下迅速测定各管吸光值。

根据葡萄糖含量的尺度曲线,由样品溶液吸光值计算各样品溶液中糖的浓度,并计算其糖含量。

四. 注意事项该法的特点是几乎可测定所有的碳水化合物,不单可测定戊糖与已糖,且可测所有寡糖类和多糖类,包含淀粉、纤维素等(因为反应液中的浓硫酸可把多糖水解成单糖而发生反应),所以用蒽酮法测出的碳水化合物含量,实际上是溶液中全部可溶性碳水化合物总量。

植物可溶性糖测定

植物可溶性糖测定

植物可溶性糖(soluble sugar)测定:蒽酮比色法糖在硫酸的作用下生成糠醛,糠醛再与蒽酮作用,形成一种绿色的络合物。

在低浓度时,625nm的OD值与糖含量成正相关。

该实验方法简便,但没有专一性,对于绝大部分的碳水化合物都能与蒽酮反应,产生颜色。

实验用品721型分光光度计,分析天平,研钵,恒温水浴锅,烧杯,刻度试管,大试管,移液管,漏斗,玻璃棒,试管架,吸耳球,滤纸试剂:活性炭,酒精(80%)葡萄糖标准溶液:称取已在80℃烘箱中烘至恒重葡萄糖100mg,配制成500mL溶液,即得每mL含糖为200μg的标准溶液。

蒽酮试剂:称取1g经过纯化的蒽酮,溶解于1000mL稀硫酸中即得。

稀硫酸溶液由760mL 浓硫酸(比重1.84)稀释成1000mL而成。

实验步骤1.可溶性糖的提取:称取0.5g的新鲜植物叶片,于研钵中加80%酒精4ml,仔细研磨成匀浆,倒入离心管内,置于80℃水浴中不断搅拌30min,离心10分钟(5000转/min),收集上清液于10ml的刻度试管中,其残渣加2ml80%酒精重复提1次,合并上清液。

在上清液中加0.5g活性炭,80℃水浴脱色30min,定容至10ml,过滤后取滤液(稀释10倍或20倍后)测定。

2.显色及比色:吸取上述糖提取液1mL,放入一干洁的试管中,加蒽酮试剂5mL混合之,于沸水浴中煮沸10分钟,取出冷却,然后于分光光度计上进行测定,波长为625nm,测得吸光度。

从标准曲线上查得滤液中得糖含量(或经直线回归公式计算),然后再行计算样品中含糖百分数。

3.绘制标准曲线:取标准葡萄糖溶液将其稀释成一系列不同浓度的溶液,浓度分别为每mL含糖0、30、60、90、120、150、180μg。

按上述方法分别测得其吸光度,然后绘制A625-糖浓度曲线,或进行直线回归求得直线方程。

试剂(ml) 管号1 2 3 4 5 6 7葡萄糖标准液 0 0.15 0.3 0.45 0.6 0.75 0.980%酒精 1.0 0.85 0.7 0.55 0.4 0.25 0.1蒽酮-硫酸试剂 5 5 5 5 5 5 5葡萄糖浓度(ul/ml) 0 30 60 90 120 150 180 样品中含糖量%:设V为植物样品稀释后的体积(m L);C为提取液的含糖量(μg/ m L);W为植物组织鲜重(g)可溶性糖含量%=( C×V)/(W×106) ×100%可溶性糖(SS) 含量的测定: 根据赵世杰[20 ] 的方法。

可溶性糖含量测定实验的改进

可溶性糖含量测定实验的改进

可溶性糖含量测定实验的改进可溶性糖含量测定在许多领域都具有重要意义,如植物生理学、食品科学、医学等。

通过对可溶性糖含量的测定,可以了解植物的生理状态、食品的品质和加工工艺,以及人体血液中血糖的水平等。

因此,对可溶性糖含量测定实验的改进就显得尤为重要。

可溶性糖含量测定主要基于糖类的水解和还原性质。

在碱性环境中,糖类可以被碘化钾氧化,同时生成可滴定的碘。

通过测定消耗的硫代硫酸钠标准溶液的体积,可以计算出可溶性糖的含量。

实验所需材料和设备包括:新鲜植物叶片、氢氧化钠、盐酸、无水乙醇、丙酮、酚酞指示剂、1 mol/L硫代硫酸钠标准溶液、容量瓶、滴定管等。

样品制备:将新鲜植物叶片剪成小段,称取一定质量,加入50 mL 80%乙醇,在80℃下加热10 min,然后过滤得到提取液。

蒸馏:将提取液倒入蒸馏瓶中,加入5 mL浓盐酸,蒸馏至100 mL。

萃取:向蒸馏液中加入10 mL丙酮,用力摇动后静置分层,弃去水层。

滴定:向丙酮层中加入3滴酚酞指示剂,用1 mol/L硫代硫酸钠标准溶液滴定至粉红色。

计算:根据硫代硫酸钠标准溶液的用量和实验条件,计算可溶性糖的含量。

称取样品时要保证叶片的质量和大小基本一致,以保证实验结果的准确性。

在加入盐酸进行蒸馏时要注意安全,避免烫伤。

在萃取步骤中要保证丙酮完全覆盖水层,以确保糖类物质被完全萃取。

在滴定过程中要保证滴定管洁净,避免残留物对实验结果的影响。

每个样品需做至少3个平行实验,以保证实验结果的可靠性。

通过实验,我们得到了不同样品中可溶性糖的含量(表1)。

从表中可以看出,不同样品中可溶性糖的含量存在较大的差异。

通过对不同样品中可溶性糖含量的测定,我们可以发现不同样品之间的糖含量存在差异。

这种差异可能是由于植物生长环境、品种等因素造成的。

实验过程中也需要注意操作细节,如称样量的控制、萃取时丙酮的使用量等,这些因素都会对实验结果产生影响。

因此,需要对实验操作进行精确控制,以提高实验结果的准确性。

优化蒽酮比色法测定甜玉米中可溶性糖的含量

优化蒽酮比色法测定甜玉米中可溶性糖的含量
摘 要: 以甜 玉米 为试 材 , 通 过对 蒽酮浓度 、 蒽酮一 糠 醛 显 色反 应 温度 和 时 间的探 讨 , 研 究优 化 蒽酮 比
色法测 定甜 玉米 中可溶性 糖含 量 的反 应条件 。 结果表 明 , 蒽酮比 色法适 宜 的测定 条件 为 : 蒽酮 的最佳 浓度 1 5 me d mL . 显 色反应 温度 8 0℃, 加 热 时间 1 5 m i n 。在 此 条件 下葡 萄糖 标 准品浓度 与吸 光度之 间具 有 良好 的 线性 关 系( : 1 5 . 9 5 4 + 0 . 0 9 7 6 , R2 = 0 . 9 9 9 2 ) 。采 用此优 化条 件 测定甜 玉米籽 粒 中可溶性 糖含 量. 其 测定 结果具 有 良好 的 重复性 ( R S D为 0 . 4 7 %) 和 准确度 ( 平均 回收 率 为 1 0 1 . 9 2 %) 。
保 鲜 与 加 工
保 鲜 研Leabharlann 究 St or ag e a nd Pr o c e s s
2 0 1 3, 1 3 ( 4 ) : 2 4 — 2 7
优化蒽酮 比色法测定 甜玉米 中可溶性糖 的含量
李 晓 旭 . 李 家政 。 ,
( 1 . 天津科技大学包装与印刷学院, 天津 3 0 0 2 2 2 ;2 . 国家农产品保鲜工程技术研究 中心( 天津 ) , 天津市农产品采后生理与贮藏保鲜重点实验室 , 天津 3 0 0 3 8 4 )
L I Xi a o — X U . L I J i a — z h e n g ( 1 . C o l l e g e o f P a c k a g i n g a n d P r i n t i n g E n g i n e e i r n g , T i a n j i n U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y , T i a n j i n 3 0 0 2 2 2 , C h i n a : 2 . N a t i o n a l E n g i n e e r i n g a n d T e c h n o l o g y R e s e a r c h C e n t e r f o r P r e s e r v a t i o n o f A g r i c u l t u r a l P r o d u c t s ( T i a n j i n ) ,

可溶性糖的测定

可溶性糖的测定

实验1 可溶性糖的测定一、实验目的1.学习蒽酮比色定糖法的原理和方法。

2.学习721型分光光度计的原理和操作方法。

二、实验原理总糖是指样品中的还原单糖及在本法测定条件下能水解成还原单糖的蔗糖、麦芽糖和可部分水解为葡萄糖的淀粉。

蒽酮比色法是测定样品中总糖量的一个灵敏、快速、简便的方法。

其原理是糖类在较高温度下被硫酸作用脱水生成糠醛或糖醛衍生物后与蒽酮(C14H10O)缩合成蓝色化合物。

溶液含糖量在150μg /ml以内,与蒽酮反应生成的颜色深浅与糖量成正比。

蒽酮不仅能与单糖也能与双糖、糊精、淀粉等直接作用,样品不必经过水解。

三、实验器材1.试管(或具塞试管)2. 吸量管及试管架(1 ml、10 ml)3.沸水浴 4. 冰浴5.721型分光光度计6.蒽酮试剂称取100 mg蒽酮溶于100 ml 98%硫酸溶液(A.R)中,用时配制。

7.葡萄糖标准溶液(100 μg/ml)200 ml精确称取100 mg干燥葡萄糖,用蒸馏水定容至1000 ml。

8.样品溶液200 ml 可自选待测物制成样品溶液。

举例:称取500 g市售白薯(或淀粉),洗净切碎后用多功能食品加工机磨成浆,4层纱布压滤、弃滤液溜渣,将渣放于烘箱内80~85℃烘干后,再用植物粉碎机(微型)研细,过筛,取100目筛下物为待测样品。

取样品在烘箱内105℃烘干,恒重后,精确称取1~5 g,置于锥形瓶中,加入80 ml沸蒸馏水,放入沸水浴。

不时摇动,提取0.5 h。

取出立即过滤,残渣用沸蒸馏水反复洗涤并过滤,合并滤液。

冷却至室温,用蒸馏水定容至100 ml。

9.白薯。

四、实验步骤:每管加入葡萄糖标准液和水后立即混匀,迅速置于冰浴中,待各管都加入蒽酮试剂后,同时置于沸水浴中,准确加热7 min,立即取出置冰浴中迅速冷却。

待各管溶液达室温后,用1 cm厚度的比色皿,以第一管为空白,迅速测其余各管的光吸收值。

然后以第2~7管溶液含糖量μg为横坐标,吸光度(OD620)为纵坐标,画出含糖量与OD620值的相关标准曲1要在冰浴条件下加入蒽酮,以防止发热,影响颜色反应。

可溶性糖测定

可溶性糖测定

引言可溶性糖包括葡萄糖、果糖、蔗糖等单糖和双糖,是植物品质的重要构成性状之一,尤其是以果实为目的产品的植物,可溶性糖与酸的含量及其配比是影响果实风味品质的重要因素。

对于鲜食品种,一般来讲,高糖中酸,风味浓,品质优;低糖中酸,风味淡,品质差。

因此,可溶性糖的定量研究对植物的品质育种、储藏、加工特性等具有重要意义。

而且可溶性糖广泛存在于植物的根、茎块和种子中,是人体热量的最最主要来源,具有较高的营养价值。

本文重点介绍蒽酮比色法、铜还原碘量法、费林试剂法、原子吸收法、气相色谱法、液相色谱-蒸发光散射法,及连续流动法这几种实验如何定量测定可溶性糖含量。

1 蒽酮比色法1.1 原理糖在硫酸作用下生成糠醛,糠醛再与蒽酮作用形成绿色络合物,颜色的深浅与糖含量有关。

在625 nm波长下的OD值与糖含量成正比。

由于蒽酮试剂与糖反应的呈色强度随时间变化,故必须在反应后立即在同一时间内比色。

1.2 仪器与材料1.2.1实验仪器分光光度计,电炉,铝锅,电子天平,20ml刻度试管,刻度吸管5ml 1支、1ml 2支,漏斗。

1.2.2实验试剂(1)蒽酮乙酸乙酯试剂:取分析纯蒽酮1g,溶于50ml乙酸乙酯中,贮于棕色瓶中,在黑暗中可保存数星期,如有结晶析出,可微热溶解。

(2)浓硫酸(比重1.84)。

1.2.3实验材料植物叶片。

1.3 实验方法1.3.1标准曲线的制作取20ml刻度试管11支,从0~10分别编号,按表24-1加入溶液和水。

然后按顺序向试管内加入1ml 9%苯酚溶液,摇匀,再从管液正面快速加入5ml浓硫酸,摇匀。

比色液总体积为8ml,在恒温下放置30min,显色。

然后以空白为参比,在485nm 波长下比色测定,以糖含量为横坐标,光密为纵坐标,绘制标准曲线,求出标准直线方程。

按表1加入标准的蔗糖溶液,然后按顺序向试管中加入0.5ml蒽酮乙酸乙酯试剂和5ml浓硫酸,充分振荡,立即将试管放入沸水浴中,逐管均准确保温1min,取出后自然冷却至室温,以空白作参比,在630nm波长下测其光密度,以光密度为纵坐标,以糖含量为横坐标,绘制标准曲线,并求出标准线性方程。

可溶性糖的测定实验步骤

可溶性糖的测定实验步骤

实验1 可溶性糖的测定一、实验目的1.学习蒽酮比色定糖法的原理和方法。

2.学习721型分光光度计的原理和操作方法。

二、实验原理总糖是指样品中的还原单糖及在本法测定条件下能水解成还原单糖的蔗糖、麦芽糖和可部分水解为葡萄糖的淀粉。

蒽酮比色法是测定样品中总糖量的一个灵敏、快速、简便的方法。

其原理是糖类在较高温度下被硫酸作用脱水生成糠醛或糖醛衍生物后与蒽酮(C14H10O)缩合成蓝色化合物。

溶液含糖量在150μg /ml以内,与蒽酮反应生成的颜色深浅与糖量成正比。

蒽酮不仅能与单糖也能与双糖、糊精、淀粉等直接作用,样品不必经过水解。

三、实验器材1.试管(或具塞试管)2. 吸量管及试管架(1 ml、10 ml)3.沸水浴 4. 冰浴5.721型分光光度计6.蒽酮试剂称取100 mg蒽酮溶于100 ml 98%硫酸溶液(A.R)中,用时配制。

7.葡萄糖标准溶液(100 μg/ml)200 ml精确称取100 mg干燥葡萄糖,用蒸馏水定容至1000 ml。

8.样品溶液200 ml 可自选待测物制成样品溶液。

举例:称取500 g市售白薯(或淀粉),洗净切碎后用多功能食品加工机磨成浆,4层纱布压滤、弃滤液溜渣,将渣放于烘箱内80~85℃烘干后,再用植物粉碎机(微型)研细,过筛,取100目筛下物为待测样品。

取样品在烘箱内105℃烘干,恒重后,精确称取1~5 g,置于锥形瓶中,加入80 ml沸蒸馏水,放入沸水浴。

不时摇动,提取0.5 h。

取出立即过滤,残渣用沸蒸馏水反复洗涤并过滤,合并滤液。

冷却至室温,用蒸馏水定容至100 ml。

9.白薯。

四、实验步骤:每管加入葡萄糖标准液和水后立即混匀,迅速置于冰浴中,待各管都加入蒽酮试剂后,同时置于沸水浴中,准确加热7 min,立即取出置冰浴中迅速冷却。

待各管溶液达室温后,用1 cm厚度的比色皿,以第一管为空白,迅速测其余各管的光吸收值。

然后以第2~7管溶液含糖量μg为横坐标,吸光度(OD620)为纵坐标,画出含糖量与OD620值的相关标准曲1要在冰浴条件下加入蒽酮,以防止发热,影响颜色反应。

植物组织中可溶性糖含量的测定

植物组织中可溶性糖含量的测定

实验15 植物组织中可溶性糖含量的测定一、目的学会植物组织中可溶性糖含量的测定方法,了解不同的植物组织可溶性糖含量的高低。

二、材料用具及仪器药品1.材料:水果或蔬菜2.仪器用具:分光光度计、天平、恒温水浴锅、研钵、三角烧瓶、烧杯、容量瓶、试管、移液管、漏斗3.药品:乙醚、草酸钠、饱和醋酸铅标准葡萄糖母液:在电子天平上称取100mg分析纯无水葡萄糖,溶于蒸馏水中,定容至500ml,则得每ml 含糖量为200ug的标准溶液。

蒽酮试剂:称取1g蒽酮结晶粉末,溶解于1000ml稀硫酸溶液中即得。

[稀硫酸溶液由760ml浓硫酸(比重1.84)稀释成1000ml而成]三、原理植物在个体发育的各个时期代谢活动都发生相应的变化,碳水化合物的代谢也不例外,其含量也随之发生变化,本实验介绍的是蒽酮比色法,糖在硫酸存在下生成糠醛,糠醛再和蒽酮作用形成蓝绿色的缩合物,其颜色的深浅代表着糖含量的高低。

H2SO4糖糠醛脱水糠醛+蒽酮蓝绿色的缩合物四、方法步骤1.标准曲线的制作。

取标准糖溶液将其稀释成一系列不同浓度的溶液各10毫升,浓度分别为每毫升含糖0、25、50、75、100、120、150、200微克。

将试管编号,依次将每管中加入1毫升上述葡萄糖标准溶液及5毫升的蒽酮试剂,震荡使之完全混合,在沸水浴中煮沸10分钟,取出冷却,然后在分光光度计波长620纳米下比色,测定各溶液的光密度,以光密度为纵坐标,糖溶液浓度为横坐标,在坐标纸上绘出标准曲线。

2.测定样品的可溶性糖含量称取重量5g的新鲜植物叶子,于研钵中仔细研磨,研磨时加乙醚少许,直至为止,倒入烧杯中,用热水(70o C)洗涤研钵,洗涤液并入烧杯中,再加入蒸馏水约30~40ml。

将烧杯放在水浴锅上加热,保持温度70~80o C半小时,冷却后一滴一滴地加入饱和中性醋酸铅以除去混合液中的蛋白质,直至不再形成白色沉淀为止,然后将此混合物连同残渣一并洗水100ml容量瓶中,加水至刻度,充分摇荡,用漏斗过滤到三角烧瓶中,瓶中事先放有少量(约0.2——0.4g)的草酸钠粉末,以除去滤液中过量的醋酸铅,使生成草酸铅沉淀,再行过滤,所得透明滤液即为可溶性糖提取液。

实验8 植物可溶性糖的测定

实验8 植物可溶性糖的测定
1、应用此法测得的糖具体包括哪几种糖类?
2、用此法测定时,什么样的材料需要用活性碳脱色?
3、请设计一实验,用本实验获得的同一份提取液在测 定可溶性糖含量的同时,一并测定蔗糖、葡萄糖和果 糖?这种测定方法比分别测定有什么优点?
蒽酮比色法
测定可溶性总糖
同 一 份 乙 醇 抽 提 液
预处理
间苯二酚比色法

3 绘制标准曲线:取标准葡萄糖溶液将其 稀释0、20、40、60、80μg/mL系列浓度, 按上述方法分别测其OD值,绘制标准曲线。
计பைடு நூலகம்:





V 为植物样品提取液的体积 C 为提取液糖的浓度 W 为植物样重或为颗粒数 可溶性糖 % = CV/W 同一种子类型之间按每粒种子 计算
实验结果:
表1 不同种子和同一种子萌发前后可溶性糖含量变化
小麦种子 干种子 可溶性 糖含量 萌发种子 萝卜种子 干种子 萌发种 子
注意事项


1 定量实验,且涉及标准曲线绘 制,分光光度计的使用,因此溶 液配制、材料选取等方面必须精 确、仔细,减少误差。 2 实验组、对照组步骤应同步, 使结论准确。
问题:

实验步骤

1 可溶性糖的提取:
分别取2粒干种子和萌发种子于研 钵中,加80%乙醇少许,磨成匀浆,倒 入大试管中, 再用80%乙醇洗涤,水浴 80℃半小时,冷却后转移至10ml量筒, 并用80%乙醇定容至10ml。过滤,所得 的透明液体即为可溶性糖提取液。

2 显色及比色:吸取上述糖提取液1ml, 加入5ml蒽酮试剂,沸水浴10 min,冷却后 于625nm处测OD值,从标线取得提取液中 糖的浓度。
测定蔗糖
不预处理

常用样品分析方法--可溶性糖、淀粉、酚类和叶绿素含量的测定

常用样品分析方法--可溶性糖、淀粉、酚类和叶绿素含量的测定

常用样品分析方法——可溶性糖、淀粉、酚类和叶绿素含量测定一、可溶性糖和淀粉含量的测定方法可溶性糖和淀粉含量的测定方法为硫酸---蒽酮比色法。

测定原理为:淀粉是由葡萄糖残基组成的一类多糖物质,在酸性条件下加热可使其水解成单糖葡萄糖,然后在浓硫酸的作用下,单糖葡萄糖可以脱水生成糠醛或羟甲基糠醛类化合物,然后利用蒽酮试剂与糠醛化合物反应生成蓝绿色糠醛衍生物,在一定范围内,颜色的深浅与糖的含量成正比,即可比色进行定量测定。

测定步骤如下:1. 标准曲线的制作1.1 100ug/ml葡萄糖标准液的配制将分析纯葡萄糖在80℃下烘干,用0.0001g分析天平精确称取1g葡萄糖,转入50ml烧杯中,然后加入少量蒸馏水搅拌溶解,接着将溶解液转入100ml容量瓶,然后再往烧杯中加入少量蒸馏水润洗,最后将润洗液转入上述100ml容量瓶,重复上述润洗操作三次(注意溶解液和三次润洗液的体积总和控制在80ml 以内,以免超过容量瓶量程),然后定容至容量瓶刻度线,塞上塞子,上下颠倒5次以,得到10mg/ml的葡萄糖溶液。用移液枪吸取1ml葡萄糖标准液转入100ml 容量瓶,定容至刻度线,所得溶液即为100ug/ml的葡萄糖标准溶液。

1.2蒽酮乙酸乙酯试剂的配制用0.0001g分析天平精确称取分析纯蒽酮1g溶于50ml乙酸乙酯试剂中,贮藏于棕色瓶中,置于黑暗中保存。1.3标准曲线制作编号0 1 2 3 4 5 6 7 8 9 10 1112100ug/ml葡萄糖溶液(ml) 00.2 0.4 0.6 0.8 1.0 1.2蒸馏水ml 2 1.8 1.6 1.4 1.2 1.0 0.8稀释液葡萄糖浓度(ug/ml)010 20 30 40 50 60注:1 2为一个重复,以此类推。取13支20ml试管并分别编号为0-12,按照上表加好相应体积的葡萄糖溶液与蒸馏水并混匀后,再依次向每支试管中分别加入0.5ml蒽酮乙酸乙酯试剂和5ml浓硫酸,加入浓硫酸时要缓慢以免反应过快液体飞溅,然后小心震荡,将试管放入沸水浴(100℃)1min,取出后自然冷却至室温,以编号为0的试管为空白对照,于620nm波长处测定吸光值,然后以葡萄糖浓度为横坐标,吸光值(OD 值)为纵坐标,绘制葡萄糖标准曲线,并拟合出方程(R2=0.99)。

蒽酮比色法测可溶性糖

蒽酮比色法测可溶性糖

蒽酮比色法测可溶性糖一、实验目的1.1学习分光光度法的基本原理1.2学习对水果中糖含量进行测定的方法二、实验原理2.1分光光度法基本原理物质对光吸收的定量关系很早就受到了科学家的注意并进行了研究。

皮埃尔·布格(Pierre Bouguer)和约翰·海因里希·朗伯(Johann Heinrich Lambert)分别在1729年和1760年阐明了物质对光的吸收程度和吸收介质厚度之间的关系;1852年奥古斯特·比尔(August Beer)又提出光的吸收程度和吸光物质浓度也具有类似关系,两者结合起来就得到有关光吸收的基本定律——布格-朗伯-比尔定律,简称比尔-朗伯定律。

溶液中的物质在光的照射激发下,产生对光的吸收效应,不同的物质具有各自选择性的吸收光谱,因此,当某单色光通过溶液时,能量会被吸收而减弱,光能量减弱的程度和物质浓度有一定比例关系,即符合于比色原理——比尔定律。

朗伯-比尔定律:A=lg(1/T)=KbcA:为吸光度;T:为透射比,是投射光强度比上入射光强度;K: 摩尔吸收系数。

它与吸收物质的性质及入射光的波长λ有关;c:为吸光物质的浓度;b:为吸收层厚度;物理意义:是当一束平行单色光垂直通过某一均匀非散射的西光物质时,起其吸光度A与吸光物质的浓度c及吸收层厚度b 成正比。

2.2蒽酮比色法原理蒽酮比色法是一个快速而简便的定糖方法。

蒽酮可以和游离的己糖或多糖中的己糖基,戊醛糖及己糖醛酸反应,反应后溶液呈蓝绿色,在620nm处有最大吸收。

蒽酮可与其他一些糖类发生反应,但显现的颜色不同。

当样品中存有含较多色氨酸的蛋白质时,反应不稳定,呈现红色。

对于特定的糖类,反应较稳定。

本法多用于测定糖原含量,亦可用于测定葡萄糖含量。

三、实验试剂3.1蒽酮试剂:取0.2g蒽酮溶于100mL 80%(V/V)硫酸中,硫酸当日配制使用;3.2标准葡萄糖溶液(0.1mg/mL):可滴加几滴甲苯作防腐剂;3.3糖样品溶液四、实验操作步骤4.1制作标准曲线:取干试管5支,依次加入标准糖溶液0mL,0.1mL,0.2mL,0.4mL,0.8mL并依次用蒸馏水补足体积到1mL,各管均加入蒽酮试剂4mL,震摇混匀。

总糖含量的测定

总糖含量的测定

实验二总糖含量的测定一、目的:1.掌握蒽酮法测定可溶性糖含量的原理和方法。

2.学习植物可溶性糖的一种提取方法。

二、原理:糖类在较高温度下可被浓硫酸作用而脱水生成糠醛或羟甲基糖醛后,与蒽酮(C14H10O)脱水缩合,形成糠醛的衍生物,呈蓝绿色。

该物质在620 nm处有最大吸收,在150 µg/ml范围内,其颜色的深浅与可溶性糖含量成正比。

这一方法有很高的灵敏度,糖含量在30 µg左右就能进行测定,所以可做为微量测糖之用。

一般样品少的情况下,采用这一方法比较合适。

三、仪器、试剂和材料1.仪器:电热恒温水浴锅,分光光度计,电子天平,容量瓶,刻度吸管等2.试剂:(1)葡萄糖标准液:l00 µg/ml(2)浓硫酸(3)蒽酮试剂:0.2 g蒽酮溶于100 ml浓 H2SO4中。

当日配制使用。

3.材料:淀粉四、操作步骤1.葡萄糖标准曲线的制作取7支试管,按下表数据配制一系列不同浓度的葡萄糖溶液:管号 1 2 3 4 5 6 7 葡萄糖标准液(ml)0 0.1 0.2 0.3 0.4 0.6 0.8 蒸馏水(ml) 1 0.9 0.8 0.7 0.6 0.4 0.2 葡萄糖含量(µg)0 10 20 30 40 60 80 在每支试管中立即加入蒽酮试剂4.0m1,迅速浸于冰水浴中冷却,各管加完后一起浸于沸水浴中,管口加盖,以防蒸发。

自水浴重新煮沸起,准确煮沸l0 min取出,用冰浴冷却至室温,在620 nm波长下以第一管为空白,迅速测其余各管吸光值。

以标准葡萄糖含量(µg)为横坐标,以吸光值为纵坐标,作出标准曲线。

2.植物样品中总糖的提取:精确称取0.5g,置于50 ml三角瓶中,加水15 m1,盐酸10ml,沸水浴20min,定容至100ml,得提取液。

取10ml滤液定容至100ml3.测定吸取1 ml已稀释的提取液于试管中,加入4.O ml蒽酮试剂,平行三份;空平均值在标白管以等量蒸馏水取代提取液。

实验8植物组织中可溶性糖含量测定(蒽酮比色法)

实验8植物组织中可溶性糖含量测定(蒽酮比色法)

实验方案一、实验目的通过实验,掌握测定萝卜品质的方法(一)萝卜外部形态的测定1、实验材料取鲜样3个∕小区直尺、蒸馏水、笔、记录本、吸水纸2、实验方法.用自来水将各组萝卜洗净后,再用蒸馏水洗涤,擦干表面水分.每个小区取3个重复,用电子天平称量每株的鲜重,用直尺测量植株的茎长、茎粗、叶长,取平均值作为指标值实验(二) 植物体内可溶性糖含量的测定(蒽酮法)一、实验目的了解蒽酮法测定可溶性糖含量的原理;掌握分光光度计的使用二、实验原理糖类物质是构成植物体的重要组成成分之一,也是新陈代谢的主要原料和贮存物质。

不同载培条件,不同成熟度都可以影响水果、蔬菜中糖类的含量。

因此对水果、蔬菜中可溶性糖的测定,可以了解和鉴定水果、蔬菜品质的高低。

蒽酮比色定糖法是一个快速而方便的定糖方法,在强酸性条件下,蒽酮可以与游离的或多糖中存在的己糖、戊糖及己糖醛酸(还原性和非还原性)作用生成蓝绿色的糖醛衍生物,其颜色的深浅与糖的含量在一定范围内成正比。

蒽酮也可以和其他一些糖类发生反应,但显现的颜色不同。

当存在含有较多色氨酸的蛋白质时,反应不稳定,呈现红色。

上述特定的糖类物质,反应较稳定。

该法特点:灵敏度高,测定量少,快速方便。

三、材料、仪器及试剂1.材料:植物种子、白菜叶、柑桔2.仪器:分光光度计;恒温水箱; 20ml具塞刻度试管(3支)漏斗;100ml容量瓶;刻度试管;试管架;剪刀;研钵3.试剂(1)200μg/ml标准葡萄糖:AR级葡萄糖100mg,蒸馏水溶解,定容至500ml。

(2)蒽酮试剂:1g蒽酮,用乙酸乙酯溶解,定容至50ml,棕色瓶避光处贮藏;(3)浓硫酸四、实验方法1.葡萄糖标准曲线的制作取6支20ml具寒试管,编号,按下表数据配制一系列不同浓度的标准葡萄糖溶液。

在每管中均加入0.5ml蒽酮试剂,再缓慢地加入5ml浓H2SO4,摇匀后,打开试管塞,置沸水浴中煮沸10分钟,取出冷却至室温,在620nm波长下比色,测各管溶液的光密度值(OD),以标准葡2.称取1克白菜叶,剪碎,置于研钵中,加入少量蒸馏水,研磨成匀浆,然后转入20ml刻度试管中,用10ml蒸馏水分次洗涤研钵,洗液一并转入刻度试管中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三蒽酮比色法测定可溶性糖
一、原理:糖在浓硫酸作用下可经脱水反应生成糖醛,并能进一步与蒽酮反应生成蓝绿色的糖醛衍生物,在一定浓度范围内,其颜色深浅与浓度大小成正比。

二、材料与仪器
植物叶片、分光光度计、水浴锅、漏斗、容量瓶、烧杯
三、步骤
1、取植物叶片0.15g,放入刻度试管中,加蒸馏水10ml。

2、将试管置于沸水中加热提取30min。

3、将提取液过滤,定容于25ml容量瓶。

4、取0.5ml提取液,依次加入1.5ml蒸馏水、0.5ml蒽酮乙酸乙酯溶液和5ml硫酸。

5、沸水浴保温1min。

6、630nm波长下,测定溶液吸光度值。

四、结果计算
可溶性糖含量(mg/g)=217.37X−3.0742∗25
w∗1000∗0.5。

相关文档
最新文档