2015年春最新人教版八年级数学下册二次根式全章导学案

合集下载

新人教版数学八年级下册(初二下)精品教案,导学案(含同步练习):第十六章 二次根式

新人教版数学八年级下册(初二下)精品教案,导学案(含同步练习):第十六章  二次根式

新人教版数学八年级下册(初二下)精品教案第十六章二次根式16.1二次根式(第1课时)16.1 二次根式(第2课时)注意:●单独的一个数或者是单独的一个字母也叫做代数式.如:0,b,2006都是代数式.●只有用运算符号连接而成的式子才是代数式,用其它符号连接而成的式子不是代数式,如:x+1=3,是等式而不是代数式.再如:y-3≥0是不等式,但是,不等式的两边也是代数式.充.对于注意事项,教师要加以补充和强调其必要性.尝试应用1.下列各式中计算正确的是()A.6)6(2-=-- B.9)3(2=-C.16)16(2±=- D.2516)2516(2=--2 . 计算:(1)()20.5;(2)235⎛⎫⎪⎪⎝⎭;(3)2322⎛⎫-⎪⎝⎭.3.填空:4=()2;3=()2;5=()2;3.教材第5页练习1、2.4.如图,在平面直角坐标系中A(3,2)、B(6,2)、C(3,5)是三角形的三个顶点,求:BC的长.教师出示题目:学生练习时,教师巡视、辅导,了解学生的掌握情况.对于2、3题教师组织学生讨论,并引导学生发现解决问题的关键: 式子a中,a≥0非常重要.xy成果展示引导学生对上面的问题进行展示交流引导学生自己出一组题,小组内做.学习小组内互相交流,讨论,展示.补偿提高1.计算:(18)2 (23)2(94)2(0)2(-478)222(35)(53)-2.若数轴上表示数x的点在原点的左边,则化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.教师出示题目.第1题、第2题由学生独立完成. 教师巡视,个别辅导.请学生板练.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.1二次根式【教学目标】1.根据算术平方根的意义了解二次根式的概念;知道被开方数必须是非负数的理由;2.能用二次根式表示实际问题中的数量和数量关系.【教学重点】从算术平方根的意义出发理解二次根式的概念.【教学过程】一.创设情境提出问题1.电视塔越高,从塔顶发射的电磁波传得越远,从而能收看到电视节目的区域越广,电视塔高h(单位:km)与电视节目信号的传播半径r(单位:km)之间存在近似关系r=,其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、h2 km你能化简这个式子吗?式子公式中r=中的表示什么意义?2.问题:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(1)中式子你是怎么得到?得到的两个式子有什么不同?(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为______m.(2)中得到的式子有什么意义?(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t2,如果用含有h 的式子表示t ,则_____(3)中当h 的值分别为0,10,15,20,25时,得到的结果分别是什么?表示的数怎样变化?二.合作探究形成知识(1)这些式子分别表示什么意义? (2)这些式子有什么共同特征?分别表示3,S ,65,5h的算术平方根这些式子的共同特征是:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. (3)根据你的理解,请写出二次根式的定义.用来表示一个非负数的算术平方根的式子,叫做二次根式.(a≥0) 的式子叫做二次根式,称为二次根号.三.初步应用 巩固知识练习2 二次根式和算术平方根有什么关系?二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式.例2 当x 是怎样的实数时, 在实数范围内有意义?呢?答案:(1)a为任何实数;(2) a =1.总结:被开方数不小于零.四.比较辨别探索性质五.综合应用深化提高六.课堂小结七.回顾总结反思提升我们以前学习过的整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?四.作业:教科书第5页第1,3,5,6,7,10题.五.教后反思16.2 二次根式的乘除(第1课时)二次根式的除法是建立在二次根式的基础上的,所以在学习中侧重于引导学生利用与乘法相类似的方法去学习,从而进一步降低学习的难度,提高学习的效率,但在教与学中,可以明显感受到学生对分母有理化概念在运用中的不灵活性,这也是应在今后的复习中给予加强的16.2 二次根式的乘除(第2课时)16.2 第一课时二次根式乘法第二课时:二次根式的除法最简二次根式a b,如16.2二次根式的乘除法二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。

人教版新课标2015年八年级下册数学第十六章二次根式教案

人教版新课标2015年八年级下册数学第十六章二次根式教案

八年级下册数学 第十六章 二次根式16.1 二次根式(1)(第一课时) 教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0) 2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 :公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2例2化简:(1)16 (2)2)5(-16.1 二次根式(2)(第二 三课时)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

重点:二次根式的基本性质的应用。

新人教版八年级数学下册 第16二次根式章 导学案

新人教版八年级数学下册 第16二次根式章 导学案

二次根式的概念 (第1课时) 学生姓名:学习目标a ≥0)的意义解答具体题目重点:a ≥0)的式子叫做二次根式的概念;难点:a ≥0)”解决具体问题. 学习过程一、知识准备平方根的性质:正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。

思考:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为5的正方形的边长为 ;(2)要修建一个面积为3的圆形喷水池,它的半径为 m ;(3)一个位图从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时的高度h(单位:m)满足关系h=t 2 如果用含有h 的式子表示t,则t= 。

(4)6的算术平方根的相反数为 ;(5)0的算术平方根为 。

二、探究在上面的问题中,结果分别是 ,它们都表示一些正数的算术平方根。

一般地,我们把形如 ( )的式子叫做二次根式,称为(二次)根号.注:开平方时,被开方数a 的取值范围 (为什么?) 例1.当x 是多少时,2-x 在实数范围内有意义?例2、当x 11x +在实数范围内有意义?例3,求a 2004+b 2004的值.三、练习(1)下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x ≥0,y•≥0) 是二次根式的有: 不是二次根式的有: (2)当a 是怎样的实数时,下列各式在实数范围内有意义?四、课堂小结二次根式的概念需注意:五、课后作业1、形如________ 的式子叫做二次根式.2有意义,则x =_______.3、下列式子中,是二次根式的是( )A .BCD .x 4、已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对5、当x 在实数范围内有意义?6、已知a 、b 为实数,且满足021=-++b a ,求ba的值.六、课后反思二次根式的性质(第2课时) 学生姓名:教学目标1、a ≥0)是一个非负数2、理解二次根式的两个性质2=a (a ≥0)=a (a ≥0)。

2015年新人教版八年级下册 16.1 二次根式导学案

2015年新人教版八年级下册 16.1 二次根式导学案

16.1 二次根式导学案(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)复习引入:(1)已知x 2 = a ,那么a 是x 的______; x 是a 的________, 记为______, a 一定是_______数。

(2)4的算术平方根为2,用式子表示为 =__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)提出问题1、式子a 表示什么意义?2、什么叫做二次根式?3、如何确定一个二次根式有无意义?(三)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34,5-,)0(3≥a a ,12+x2、计算 :(1) 2)4( (2) 2)5.0( (3) (4)2)31(根据计算结果,你能得出结论: ,其中0≥a , )0()(2≥=a a a 的意义是 。

3、当a 为正数时指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式中,字母a 必须满足 ,才有意义。

(三)合作探究 2)3(________)(2=a 41、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x 取何值时,下列各二次根式有意义? ①43-x ②223x +③2、(1)若33a a ---有意义,则a 的值为___________. (2)若 在实数范围内有意义,则x 为( )。

A.正数B.负数C.非负数D.非正数(四)拓展延伸 1、(1)在式子xx +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则x-y = _____________.(3)已知y =x -3+23--x ,则x y = _____________。

人教八下第十六章 二次根式教学导学案

人教八下第十六章  二次根式教学导学案

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标1.能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.2.能根据算术平方根的意义了解二次根式的概念,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.重点:二次根式的概念,二次根式有意义的条件.难点:二次根式概念的理解,综合运用性质)0(0≥≥a a .学习过程1、回忆旧知识(1)什么叫做算术平方根?什么叫做平方根?(2)正数有几个平方根?0的平方根是多少?负数有平方根吗?2、用带根号的式子填空.(1)3的算术平方根是 .(2)直角三角形的两直角边是1和2,则斜边是 .(3)正方形的面积为3-b ,则边长为 .(4)自主完成课本第二页思考题.观察所列式子,有何共同特点?3、思考下列问题:开平方时,被开方数只能是 和 ,为什么?4、请写出二次根式的概念:5、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x 请同学们思考并总结一下,判断一个式子是否是二次根式,需要考虑哪些要点:6、根据开平方时,被开方数只能是 和 这一依据,完成下题:例1:当x 是怎样的实数时,6-x 在实数范围内有意义?7、做完以上例题,请填空:当a 为正数时,a 是a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根.所以,在二次根式a 中,字母a 必须满足 , a 才有意义.8、扩展思考:当a 是怎样的实数时,a 在实数范围内有意义?a 呢?9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10.达标测试1.在式子12x -,13x -x 可以取2和3的是( )A .12x -B .13x - C D2.x 必须满足( ) A .x ≤2 B .x ≥2 C .x >2 D .x <23.x 可以取的最小整数为( )A .0B .1C .2D .34.有意义,则x 的取值范围为_________.5.若y= 22-,则(x+y )y =_________.6.已知a 、b 是一等腰三角形的两边的长,且满足等式,求等腰三角形的周长.7.小组精彩讨论的镜头:你想一起参加讨论吗?若参加你怎么评价这四位同学的解答?并写出你解答的过程?第2课时 二次根式的性质学习目标:1.掌握二次根式的基本性质:)0(0≥≥a a 、)0()(2≥=a a a 和a a =2;2.能利用上述性质公式对复杂的二次根式进行化简. 重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算.学习过程1、回忆旧知(1)什么是二次根式,它有哪些性质?(2)二次根式52-x 有意义,则x . 2、计算并总结公式(1)计算:2)4(= 、2)16(= 、2)3(= 、2)21(= 、2)0(= 观察其结果归纳得到:当=≥2)(,0a a 时(2)、计算:=24 、=22.0 、=2)54( 、=220 观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时(3)、计算:-2)4(= 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时(4)、计算:=20 ,所以当==2,0a a 时3、归纳总结 将上面做题过程中得到的结论综合起来,得到二次根式的两条非常重要的性质(公式):(1)当=≥2)(,0a a 时(2)=2a4、化简下列各式:(1)、=23.0 (2)、=-2)5.0( (3)、=-2)6( (4)、()22a = (0<a )5、请大家思考讨论二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系.6、化简下列各式 (1))0(42≥x x (2) 4x (3))3()3(2≥-a a7、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?8、达标测试 1.要使ba 是二次根式,则应满足的条件是( ) A.a≥0且b≥0 B. a≥0且b >0 C.b a >0 D.ba ≥0且b≠0 2.把414写成一个正数平方的形式是( ) A.2212⎪⎭⎫ ⎝⎛ B. 2212⎪⎭⎫ ⎝⎛或2212⎪⎭⎫ ⎝⎛- C.2217⎪⎪⎭⎫ ⎝⎛ D. 2217⎪⎪⎭⎫ ⎝⎛或2217⎪⎪⎭⎫ ⎝⎛- 3.函数21-=x y 中自变量的取值范围在数轴上表示为( ) A. B. C. D.9.如图,实数a 、b 在数轴上的位置,化简:2a -2b -2)(b a -.10.已知x 、y 为实数,y=214422-+-+-x x x ,试求3x+4y 的值.11.甲同学和乙同学做一道相同的题目:化简a 1+2a a 122-+ ,其中a=51. 甲同学的做法是:原式=a 1+2)a a1(-=a 1+a 1-a=a 2-a =10-51=549;乙同学的做法是: 原式=a 1+2)a 1a (-=a 1+a-a 1=a=51. 到底谁错了?为什么?说明理由.16.2二次根式的乘除第1课时 二次根式的乘法学习目标1a ≥0,b ≥0)a ≥0,b ≥0),并利用它们进行计算和化简.2、通过学习和掌握知识目标的整个过程,培养学生对数学化简题目的敏锐度,同时培养学生的计算能力.重点:掌握二次根式乘法法则和积的算术平方根的性质.难点:会用积的算术平方根的性质对二次根式进行化简.学习过程1.填空:(1;(2=____;(3.2、学生交流活动总结规律.一般地,对二次根式的乘法规定为:反过来例1、计算(1(2(3)3(4例2、化简(1(3(4(53、巩固练习(1)计算: ①②55×215 ③312a ·231ay(2)化简4、判断下列各式是否正确,不正确的请予以改正:(1=(2=4请大家讨论:对于9×27的运算中不必把它变成243 后再进行计算,你有什么好办法?注:1、当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数.2、化简二次根式达到的要求:(1)被开方数进行因数或因式分解.(2)分解后把能开尽方的开出来.5、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?6、.达标测试1.下列计算正确的是( ) A.912=912⨯=231 B.)4()9(-⨯-=49-⨯-=(-3)×(-2)=6 C.22y x +=y x y x +=+22 D.b a 224=ab a 642⋅=2|a|ab 62.如果232a a +=2+-a a ,则实数a 的取值范围是( )A.a≥0B.0≤a≤2C.-2≤a≤0D.a≤-23.把a a1-根号外的因式移入根号内的结果是( ) A.a - B.a -- C.a D.a -9.计算:(1)27×123×385(2)3031×2140×3222310.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16df ,其中v 表示车速(单位:千米/小时),d 表示刹车后车轮滑过的距离(单位:米),f 表示磨擦因数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?11.小明在微机课上设计了一幅矩形图片,矩形的周长是π140cm ,宽是π35cm ,他又想设计一个面积与其相等的圆,请你帮助小明求出圆的半径.第2课时二次根式的除法学习目标1、掌握二次根式的除法法则和商的算术平方根的性质.2、通过学习和掌握知识目标的整个过程,使学生能熟练进行二次根式的除法运算及化简.3、培养学生的数学学习兴趣,感受实数的应用价值.重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质.难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简.学习过程1、计算: (1)38×(-46) (2)3612ab ab ⨯2、填空: (1; 规律:(2;(3;(4.一般地,对二次根式的除法规定:3、计算:(1(2(3(44、化简: (1(2(3(4注:1、当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数.2、化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式.5、阅读下列运算过程:==== 数学上将这种把分母的根号去掉的过程称作“分母有理化”.利用上述方法化简:(1)3=_____ ___ (4=___ ___ 6、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?7、达标测试1.如果6-x x =6-x x 成立,那么( ) A.x≥6 B.0≤x≤6 C.x≥0 D.x>62.下列各数中,与32的积为有理数的是( ) A.32+ B.32- C.32+- D.39.计算:32212332b b b ⋅÷10.(1A ..2E .0问题的答案是(只需填字母): ;(2.11.在进行二次根式化简时,我们有时会碰上如35,32,132+一样的式子,其实我们还可以将其进一步化简: 553535535=⨯⨯= (一) 32=363332=⨯⨯ (二) 132+=))(()-(1313132-+⨯=131313222---=)()( (三) 以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简:132+=1313+-=131)3(22+-=13)13)(13(+-+=13-.(四) (1)请用不同的方法化简352+. (2)①参照(三)式得 352+=____________;②参照(四)式得352+=__________. (2)化简:12121...571351131-+++++++++n n第3课时最简二次根式学习目标:1、理解最简二次根式的概念,把二次根式化成最简二次根式,熟练进行二次根式的乘除混合运算.2、使学生能熟练进行二次根式的乘除运算及化简.重点:最简二次根式的运用.难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算.学习过程1、化简(1)496x = (2=(3= (4= (5= 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1).被开方数不含分母; (2).被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2、化简:(1) 2083、比较下列数的大小(1)8.2与432 (2)7667--与 注:1、化简二次根式的方法有多种,比较常见的是运用积、商的算术平方根的性质和分母有理化.2、判断是否为最简二次根式的两条标准:(1)被开方数不含分母;(2)被开方数中所有因数或因式的幂的指数都小于2.4、知识应用:设长方形的面积为S,相邻两边长分别为a,b.已知S=23,b=5.求a 的长.5、计算:(1)6·a 3·b 31 (2)16141÷ (3)50511221832++-6、探究计算:(1)(38+)×6 (2)22)6324(÷-7、探究计算:(1))52)(32(++ (2)2)232(-8、练习计算:(1)12)323242731(-- (2))32)(532(+-(3)2)3223(+ (4)(9、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?10、达标训练2.下列二次根式中,是最简二次根式的是( )A.22xB.12+bC.a 4D.x1 3.下列判断正确的是( ) A .3<3<2 B .2<2+3<3 C .1<5-3<2 D .4<3·5<59.下列各式中,哪些是最简二次根式?哪些不是?为什么?15,24,ab 27,2235y x +,23,23,24m m +,2x10.把下列各式化成最简二次根式(1)500 (2)323b a (3)b a c abc 4322-(4)ay x 22-(x >y ) 11.比较下来各组数的大小(1)3与22 (2) 52与33 (3) 27与113 (4) 132-与63-(5) 3131-与7121- (6)3π与64216.3 二次根式的加减一、学习目标1、理解同类二次根式,并能判定哪些是同类二次根式.2、理解和掌握二次根式加减的方法.3、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重点:二次根式化简为最简根式.难点:会判定是否是最简二次根式.学习过程1、计算. (1)x x 32+; (2)222532x x x +-;(3)y x x 32++; (4)22223aa a +-2、学生活动:计算下列各式.(1)(2)(3(4)由此可见,二次根式的被开方数相同也是可以合并的,如(与整数中同类项的意义相类似我们把33与32-;a 3、a 2-与a 4这样的几个二次根式,称为同类二次根式)如: 所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将同类二次根式进行合并.例1.计算 (1(2例2.计算(1)( 2)+归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.3、练习计算 (1) )27131(12-- (2) )512()2048(-++4、小结(1)通过本节课的学习,你的收获是?(2)通过本节课的学习,你认为需要提醒同伴注意些什么?(3)你还有问题要请教同学或老师吗?5、达标训练2.下列各组中,是同类二次根式的是( ) A.45.0与81.0 B. b a 23与22abC.2x 与32xD.x x 3与xx 122 3.计算12⎪⎪⎭⎫ ⎝⎛-+4831375的结果是( ) A .6 B .43 C .23+6 D .129.(1)计算:⎛÷ ⎝(202)10.(1)先化简,再求值: (a-3)(a+3)-a(a-6),其中a=5+21.(5)已知:a=2-1,求142--a a a ÷⎪⎭⎫ ⎝⎛--12a a 的值.11.有这样一道题:计算4422---+x x x x +4422-+--x x x x -2x (x >2)的值,其中x=1005,某同学把“x=1005”错抄成“x=1050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.。

[最新]人教版八年级数学下册第十六章《二次根式(1)》导学案

[最新]人教版八年级数学下册第十六章《二次根式(1)》导学案

[最新]人教版八年级数学下册第十六章《二次根式(1)》
导学案
新人教版八年级数学下册第十六章《二次根式(1)》导学案
学习目标:
◇知识与能力:1、了解二次根式的概念,能判断一个式子是不是二
次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a0(a0)和(a)2a(a0)
◇过程与方法:1、经历观察、比较、概括二次根式的定义。

2、通过
探究
一二a和
2a2所含运算、运算顺序、运算结果分析,归纳并掌握性质。

◇情感与价值:培养学生观察、猜想、探究、归纳的习惯和能力,体
验数学发现的乐趣。

【学习重点】:二次根式有意义的条件。

二次根式的
性质。

【学习难点】:综合运用性质a0(a0)和(a)2a(a0)。

2、4的算术平方根为2,用式子表示为=__________;正数a的算术
平方根为_______,0的算术平方根为_______;式子a0(a0)的意义是二1、定义:一般地我们把形如
a(a0)叫做二次根式,a叫做_____________。

2、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16,34,5,a(a0),某21
根据算术平方根意义计算:(1)(4)2(2)((3)(0.5)2(4)(3)2 12)3。

八年级数学下册 16.1 二次根式导学案1(新版)新人教版

八年级数学下册 16.1 二次根式导学案1(新版)新人教版

八年级数学下册 16.1 二次根式导学案1(新版)新人教版1、知道二次根式的概念。

2、知道二次根号下被开方数是非负数,并会加以应用。

【定向导学互动展示当堂反馈】课堂元素自学合学展学学法指导(内容学法成果。

时间)互动策略(内容形式时间)展示方案(内容方式时间)概念认知例题导析(学习内容)认真自研教材P2-3完成下列自研探究:旧知链接 :1、a的算是平方根的定义2、填空:(1)面积为3的正方形的边长为,面积为s的正方形的边长为。

(2)等腰直角三角形的面积为7平方厘米,则它的腰长为。

(3)一个物体从高处自由落下,落到地面的时间t(s)与开始下落的高度h(m)满足关系式h=1/2gt2,用含h和g的关系式表示t为。

3、我们把形如的式子叫做二次根式,称为二次根号。

4、判断题:下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、(x≥0,y ≥0)、5、例2、当x是多少时,在实数范围内有意义?解:由得:。

当时,在实数范围内有意义、小对子交流分享准备询问对子的问题:。

;互助组:4人冲刺挑战旧知链接2共同体:8人在学科组长的带领下:•做好展示任务分工,完成版面设计,做好展示前的预演。

展示方案提示:展示单元一:二次根式判定,运用。

应用探究例1:判定下列代数式中哪些一定是二次根式:,,,,,(x≦0),,例2:已知:再实数范围内有意义,求X的取植范围。

(2)当x是多少时,+在实数范围内有意义?(3)当 X是怎样的实数时有意义,()2 呢?展示方案二利用“(a≥0)”解决具体问题3要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

应用探究例3:已知y=++5,求的值、梳理小结查学课本3页练习1,2第2页思考题评学(回家25分钟)日清三层级能力提升达标题自评:师评:基础题:1、当x 时,在实数范围内有意义。

2、计算:。

3、已知a=,则代数式的值是。

4、若+=0,求a2004+b2004的值。

最新课标RJ人教版 八年级数学 下册第二学期(导学案)第十六章 二次根式(第16章全单元 导学案)

最新课标RJ人教版  八年级数学 下册第二学期(导学案)第十六章 二次根式(第16章全单元 导学案)

第十六章二次根式16.1 二次根式第1课时二次根式的概念第十六章 二次根式16.1 二次根式第2课时 二次根式的性质一、学习目标:1.掌握二次根式的基本性质:(a )2=a (a ≥0);a a =2;2.能利用上述性质对二次根式进行化简. 二、学习重点、难点重点:二次根式的性质(a )2=a (a ≥0);a a =2.难点:综合运用性质对二次根式进行化简和计算。

三、学习过程(一)自学导航(课前预习)(1)什么是二次根式,它有哪些性质? (2)二次根式52-x 有意义,则x 。

(3)在实数范围内因式分解:-=-226x x ( )2=(x + )(y - ) (二)合作交流(小组互助) 1、计算(1) 2)4(= (2)()=23(3)2)5.0( = (4)2)31(= 根据计算结果,能得出结论: (0≥a ) 2.计算:(1)=24 =22.0 =2)54(=220 观察其结果与根号内幂底数的关系,归纳得到:当a ﹥0时,=2a(2) =-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当a<0时,=2a (3)=20 得到:当a=0时,=2a________)(2=a3.归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的非常重要的性质: 性质一:(a )2=a (a ≥0);性质二:⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2a a 4. (1)阅读课本思考:什么是代数式?我们前面还学过那些代数式吗?(2)思考、讨论:二次根式的性质)0()(2≥=a a a 与a a =2有什么区别与联系。

四.精讲点评利用a a =2可将二次根式被开方数中的完全平方式“开方”出来,达到化简的目的,进行化简的关键是准确确定“a ”的取值。

五.当堂达标1、化简下列各式(1)(5.1)2 (2)(52)2(3)22)33()10(-+--计算:(4))0(42≥x x (5)4x2、化简下列各式 (1))3()3(2≥-a a (2)()232+x (x <-2)六.拓展延伸(1)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________.(2) 把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x(3) 已知2<x <3,化简:3)2(2-+-x x七.教后反思16.2 二次根式的乘除第1课时 二次根式的乘法一、学习目标a ≥0,b ≥0)(a ≥0,b ≥0),并利用它们进行计算和化简二、学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。

人教版八年级数学下册导学案(全册)

人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。

理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。

(2)被开方数必须是 数。

判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。

(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。

巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。

2.若1213-+-x x 有意义,则x 的取值范围是 。

3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。

16.1二次根式第1课时导学案人教版八年级数学下册

16.1二次根式第1课时导学案人教版八年级数学下册

16.1 二次根式 第1课时 二次根式的概念一、学习目标1.a ≥0)的意义解答具体题目.2. 提出问题,根据问题给出概念,应用概念解决实际问题二、问题导学(阅读教科书第 23 页,请解答下列问题)一、复习回顾1、4的平方根是 4的算术平方根2、填空:9的算术平方根是 ;23= ;二、新知探究 探究点1:二次根式的意义及有意义的条件(一)概念的形成问题1 请同学们预习完成教材中的有关问题,写出这些问题的结果: ;问题2 1问中这些式子分别表示什么意义?要点归纳:)0a ≥的式子叫作二次根式. _______. (二)概念的应用例11x (x>0)、4、(x ≥0,y ≥0). 变式题1 下列式子,哪些是二次根式,哪些不是二次根式: (填序号)例2.当x变式题2当x 是怎样的实数时,下列各式在实数范围内有意义?探究点2:二次根式的双重非负性问题1:当x问题2a 的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.我们知道:(1)a 为被开方数,为保证其有意义,可知a ____0;(20. 三、合作探究例3 若22(4)0a c -+-=,求ab +c 的值. 四、能力提升例4 已知y 8+,求3x +2y 的算术平方根.【变式题】已知a ,b 为等腰三角形的两条边长,且a ,b 满足4b =,求此三角形的周长.五、课堂小结六、当堂检测1.下列式子中,是二次根式的是( )A B C D .x2.下列式子中,不是二次根式的是( )A B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4x的取值范围是;5.6.已知|3xy1|和x+4y的平方根.。

最新人教版八年级数学下册 16.1 第1课时 二次根式的概念 导学案

最新人教版八年级数学下册 16.1 第1课时 二次根式的概念 导学案

图①图②
倍,面积为6m2,则它的宽为_____m.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.
【变式题】当x是怎样的实数时,下列各式在实数范围内有意义?
方法总结
:被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.
1.下列各式)1
x≥( )
A.3个
B.4个
C.5个
D.6个
2.(1)x的取值范围是___________;
(2)若式子
1
2
x
+
-
在实数范围内有意义,则x的取值范围是___________.
探究点2:二次根式的双重非负性
问题1:当x
问题2a的取值范围是什么?它本身的取值范围又是什么?
要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二次根1)a为被开方数,为保证其有意义,可知a____0;
(2
例3 若2
2(4)0
a c
--=,求a-b+c的值.
方法总结:多个非负数的和为零,则可得每个非负数均为零.初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
例4 已知y8
+,求3x+2y的算术平方根.
【变式题】已知a,b为等腰三角形的两条边长,且a,b
满足4 b=,
求此三角形的周长.
已知|3x-y-1|和x+4y的平方根.
1.下列式子中,不属于二次根式的是()
D
A.B.
2.()
A.x>2
B.x≥2
C.x<2
D.x≤2
3.当x=____取最小值,其最小值为______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.1二次根式(1)一、学习目标1. 了解二次根式的概念,能判断一个式子是不是二次根式。

2. 掌握二次根式有意义的条件。

3. 掌握二次根式的基本性质:ja 0(a 0)和(<a)2a(a 0)二、学习重点.难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质很0(a 0)和(Ji)2a(a 0)。

三、学习过程(一)复习回顾:(1) 4的算术平方根为2,用式子表示为壬4 ______ ;正数a的算术平方根为0的算术平方根为 ;式子显 0(a 0)的意义是。

(二)自主学习(1) 6的算术平方根是;(2) 一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h(单位:米)满足关系式h 5t2。

如果用含h的式子表示t,贝U t=(3) 圆的面积为S,则圆的半径是 ;(4) 正方形的面积为b 3,则边长为'■5兰,等式子的实际意义.说一说他们的共同特征定义:一般地我们把形如石 (a 0 )叫做二次根式,a叫做。

、厂称为。

1. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?J3 v'T6 新4~5住(2 0) Jx21a32. 当a为正数时拓指a的,而0的算术平方根是 ,负数,只有非负数a才有算术平方根。

所以,在二次根式j a中,字母a必须满足, Va才有意义。

3. 根据算术平方根意义计算:(1)(幅)2(2) (J3)2(3) (J05)2(4) (&2根据计算结果,你能得出结论:3搭)2,其中a 0,4. 由公式(JE)2a(a 0),我们可以得到公式a=^'a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。

如(<5 )2=5;也可以把一个非负数写成一个数的平方形式,如5=( <5 ) 2.练习:(1)把下列非负数写成一个数的平方的形式:①3 ②0.35(2)在实数范围内因式分解:①x27 ②4 a2-11(三)合作探究展示:例:当x是怎样的实数时,Jx 2在实数范围内有意义?练习:1. x取何值时,下列各二次根式有意义?① V3F^4 ②v2a~~3 ③1V 2 x2. (1)若J a 3 J3 a有意义,贝U a的值为.(2)若J 在实数范围内有意义,贝U 乂为()。

A.正数B.负数C. 非负数D.非正数3. (1)在式子一中,x的取值范围是_____________________ .1 x2(2)已知V x 4 + J2x y = 0,贝U x y .(3)已知y 03 x v x 3 2,则y x=。

(四)达标测试2. 若V2x 1 y 1 0 ,那么x=, y =。

3. 一个数的算术平方根是a,比这个数大3的数为()A. a 3B. ,a 3C.、. a 3D. a234. 二次根式Ja 1中,字母a的取值范围是()A. a< lB. av 1C. aA 1D. a> 12. 已知Vx―3 0则x的值为A. x>-3 B. x<-3 C. x=-3 D. x的值不能确定(五)小结反思:16.1二次根式(2)、学习目标1. 掌握二次根式的基本性质:J a2a2. 能利用上述性质对二次根式进行化简^二、学习重点.难点重点:二次根式的性质4a2 a .难点:综合运用性质何 a进行化简和计算。

三、学习过程(一)复习引入:(1) 什么是二次根式,它有哪些性质?(2) 二次根式J—有意义,则x 。

x 5(3) 在实数范围内因式分解:x26 x2( ) 2= (x+ ) (y-)(二)自主学习1. 计算:_______________________ 侦42 V0.22j(4)2 J202观察其结果与根号内藉底数的关系,归纳得到:当 a 0时,2. 计算:—& 0.2)2J( 4)2—<( 20)25观察其结果与根号内藉底数的关系,归纳得到:当 a 0H寸,后3. 计算:<02当a 0时,播(三)合作探究展示:1. 归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:a a 0V a7a 0 0a a 02. 化简下列各式:(1) 、0.32 (2) v( 0.5)2 (3) J( 6)23,请大家思考,讨论二次根式的性质(Ji )2 a (a 0)与Ji a 有什么区别与联系。

(四)巩固练习1. 化简下列各式2,化简下列各式a 可将二次根式被开方数中的完全平方式 “开方”出来,达到化简的目的,进行化简的关键是准确确定“ a”的取值。

(五)达标测试:1. (2x 1)2-( 2x 3)2 (x 2)=2. .(4)23. 化简:见课本4页练习第2题4.化简:a .b .c 为三角形的三条边,贝U 侦(a b c )2 b a c 的值是多少。

(六)小结反思:2(4)寸 2a(a 0)(1) 4x 2(x0)(1)<(a 3)2(a 3)2(2) q 2x 3(x v -2 )注:利用va 216.2二次根式的乘除法16.2.1二次根式的乘法、学习目标理解 V a -扼=V ab (a>0, b>0), 4a b = 4a - JB (a>0, b>0),并利用它 们进行计算和化简 二、 学习重点.难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。

难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。

三、 学习过程(一) 复习引入1.填空:(1) ^4 x 贿=, >/r _9 =而 x V25_j16 25V100 X T36—J100 36(二) 合作探究展示:1. 学生交流活动总结规律.2.一般地,对二次根式的乘法规定为(三)学生小组交流解疑,教师点拨 .拓展判断下列各式是否正确,不正确的请予以改正:(1)、,(4) (9),~4 ~9(2)而 x ^25=, J16 25 =(3) 7100x ^36=—, J100 36 = 扃-布=Tab . (a> 0, b>0反过来:Tab ^a -扼(a> 0, b>0)例1.计算(1)病 x J 7 (2) , x 姬例2.化简(1)好76 (2)J1d巩固练习(1) 计算: ①依X 扼(3) J81 100 (4) J9x 2y 2 (5) 754②545 x 2 JT5(2)化简:』赤;718;24 ;54;12a 2b 2(2) 1412 X 廖=4xJ12 X J25=4 12 X 棒=4虐=8焰:25 ' \ 25 ' \ 25 ' ^ '(四)展示反馈展示学习成果后,请大家讨论:对于如x 727的运算中不必把它变成^ 243后再进行计算,你有什么好办法?注:1.当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:即系数之积作为积的系数,被开方数之积为被开方数。

2. 化简二次根式达到的要求:(1)被开方数进行因数或因式分解。

(2)分解后把能开尽方的开出来。

(五)达标测试:1.选择题X1成立的条件是()(1)等式X 1?x 1 2A.x> 1 B . x> -1C.-1 < x< 1 D . x> 1 或xv -1(2)下列各等式成立的是().A. 4 扼X 2/5 =8 扼B.5龙X 4^2=20 75C. 4 73 X 3 捉=7后D.5 的X 4 侦2 =20 J6(3)二次根式技2)2 6的计算结果是()A.2扼 B . -2扼C.6 D . 122. 化简:(1) <360 ; (2)』32X4;3. 计算:(1)屈成-(2)V3 J—;.753. 不改变式子的值,把根号外的非负因式适当变形后移入根号内。

⑴-3(六)小结反思:16.2.2二次根式的除法一、 学习目标1. 掌握二次根式的除法法则和商的算术平方根的性质。

2. 能熟练进行二次根式的除法运算及化简。

二、 学习重点.难点重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。

难点:正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。

三、 学习过程 (一)复习回顾:1. 写出二次根式的乘法法则和积的算术平方根的性质下面我们利用这个规定来计算和化简一些题目.(二)合作探究展示:1. 计算:(见课本8页例4).12(1)石(2)2.计算:(1)3 廿8 x (-4 76)(2) 12ab6ab 33.填空:规律:916般地, (2)(3)项36 16 36项3616 —;36.4、4一布.36 .8136号一.36 .81对二次根式的除法规定:•.「a- b-64 ⑷.E2, 化简:(见课本8页例5)3.计算:(见课本9页例6)注:1,当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商为被开方数。

2. 化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式。

(三)拓展延伸阅读下列运算过程:1 43 抱4 245 2453 3、3 3 ' ,5 5 5 5数学上将这种把分母的根号去掉的过程称作“分母有理化”。

利用上述方法化简:(四)达标测试: 1. 选择题(五)小结反思:13,2.布(1)计算•13\23/ 5的结果是A.2 .57B 27C .克(2)化简- 3 2匚27的结果是()A 2 A. --------3 2,计算:B2-3C、6C3(1)2482x3(2),8xDD16.2.3 最简二次根式一、 学习目标1. 理解最简二次根式的概念。

2. 把二次根式化成最简二次根式.3. 熟练进行二次根式的乘除混合运算。

二、 学习重点.难点重点:最简二次根式的运用。

难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。

三、 学习过程 (一) 复习回顾1. 化简(1) J96x 4 =(2) 3==.27(3) 也=(4) £ (5)近=.5 ----------- 27 ------------------------- 2a ------------------------------2.结合上题的计算结果,回顾前两节中利用积 .商的算术平方根的性质化简二次根式达到的要求是什么? (二) 自主学习观察上面计算题1的最后结果,可以发现这些式子中的 二次根式有如下两个特点:1 .被开方数不含分母;2 .被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2. 化简:(三) 合作探究展示: (见课本9页例7)2.比较下列数的大小 (1) J28与[:23(2) 7而与 6旧■. 4注:1.化简二次根式的方法有多种,比较常见的是运用积.商的算术平方根的性质和分母有理化。

相关文档
最新文档