连续信号的采样与重构实验报告

合集下载

实验三 信号采样与重建(实验报告)

实验三 信号采样与重建(实验报告)

《信号与系统》实验报告学院 专业 班级姓名 学号 时间实验三 信号采样与重建一、实验目的1、进一步学习MATLAB 的函数及其表示。

2、掌握及验证信号的SHANNON 采样定理。

3、由采样序列重构恢复原信号。

二、实验内容1、对连续时间信号y(t)=sin(24πt)+ sin(40πt),它有12Hz 和20Hz 两个等幅度分量。

用MATLAB 作图求出Nyquist 频率2fmax 。

t in 1/4sec.y (t )Analog Signalt in 1/12sec.s i n (24*p i *t )t in 1/20sec.s i n (40*p i *t )作图法判断频谱法判断2、设连续信号x(t)=exp(-1000|t|)时A、求傅利叶变换X(jw)。

(先书面求出变换公式,可判断出在2000Hz以上,其频谱幅度已经很小,因此,该处频率就可近似当成信号的最高频率)。

B、现在取采样频率fs=5000Hz,可得到信号序列x1[n],求离散DFT频谱X1(e jw)C、减小采样频率至fs=1000Hz,则可得到序列x2[n],求频谱X2(e jw)D、分别针对x1[n]与x2[n],试重建恢复(用三次样条函数或sinc函数)出对应的连续信号x1(t)与x2(t),并与原信号x(t)作对比。

最后根据抽样定理的知识,简单说明采样频率的大小对信号重建质量的影响。

5000Hz采样序列的重构情况 1000Hz采样序列的重构情况三、思考题:①连续时间信号的傅利叶变换matlab求法,这里采用的近似公式是什么?②从序列重构连续信号所采用的matlab函数是什么?采用三次样条内插函数,即利用Xa=spline(nTs,X,t)来实现。

其中X和nTs分包含在nTs 时刻和样本X(n)的数组,但存在一些误差。

③shannon采样定理中的信号Nyquist频率是指什么?与采样频率有什么不同?Nyquist频率是指是指最低允许的抽样率,是带限信号频率宽度的2倍,并且Nyquist 频率信号带宽是采样频率的一半。

《信号与分析》连续信号的采样与重构实验报告

《信号与分析》连续信号的采样与重构实验报告
ylabel('振幅');
axis([-2.5,1.5,-0.1,1.1]);
t=0:0.01:2*pi;
Y=2*t.*sin(t.^2);
subplot(2,1,1);
plot(t,Y);
title('原信号');
xlabel('时间/s');
ylabel('振幅');
axis([0,2*pi,-12,12]);
grid;
ylabel(‘Cn’);
xlabel(‘角频率/rad*s^(-1)’);
title(‘幅度频谱序列‘);
实验心得:
通过本次实验我学会了利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的认识,学会该软件的操作和使用方法。并且我还熟练掌握了利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
%幅度频谱Cn=2[sin(pi*n*t/T)/(pi*n)
N=10;
n=1:N;
C0=0.1; %计算n=0傅里叶级数C0及直流幅度
%计算n=1到10的傅里叶级数系数
Cn=sin(pi*n/5)/pi./n.*2; %T/t=5
CN=[C0 Cn];
nN=0:N;
subplot(1,2,2);
stem(nN,CN);
《信号与分析》连续信号的采样与重构实验报告
实验目的:1)掌握利用MATLAB分析系统频率响应的方法,增加对仿真软件MATLAB的感性认识,学会该软件的操作和使用方法。
(2)掌握利用MATLAB实现连续信号采样与重构的方法,加深理解采样与重构的概念。
(3)学习MATLAB中信号表示的基本方法及绘图函数的调用,实现对常用连续时间信号的可视化表示,加深对各种电信号的理解。

重构实验报告

重构实验报告

一、实验目的1. 学习和掌握信号重构的基本原理和方法。

2. 熟悉信号处理中常用的滤波技术。

3. 通过实验验证信号重构理论。

二、实验原理信号重构是信号处理中的一个重要问题,主要应用于信号去噪、信号分离等领域。

本实验主要研究连续信号经过采样后的信号重构方法。

根据采样定理,如果一个信号f(t)在区间[-T/2, T/2]内是带限的,那么只要采样频率f_s大于2倍信号的最高频率f_m,即f_s > 2f_m,那么通过采样后的信号可以完全重构原信号。

本实验采用理想低通滤波器对采样信号进行重构。

理想低通滤波器的特性是:通带内的信号通过,阻带内的信号被抑制。

三、实验内容1. 产生一个连续信号:f(t) = cos(2π×50t) + cos(2π×100t)。

2. 对连续信号进行采样,采样频率f_s = 400Hz。

3. 采样后的信号经过理想低通滤波器进行重构。

4. 对重构后的信号进行分析。

四、实验步骤1. 编写程序生成连续信号f(t) = cos(2π×50t) + cos(2π×100t)。

2. 对生成的连续信号进行采样,采样频率f_s = 400Hz。

3. 采样后的信号经过理想低通滤波器进行重构。

4. 将重构后的信号与原始连续信号进行对比,分析重构效果。

五、实验结果与分析1. 生成连续信号f(t) = cos(2π×50t) + cos(2π×100t)。

2. 采样后的信号如图1所示。

图1 采样信号3. 重构后的信号如图2所示。

图2 重构信号4. 对比重构信号与原始连续信号,可以看出重构信号与原始信号非常接近,说明信号重构效果较好。

六、实验结论通过本次实验,我们掌握了信号重构的基本原理和方法,验证了采样定理,熟悉了理想低通滤波器在信号重构中的应用。

实验结果表明,采样后的信号经过理想低通滤波器重构效果较好,为信号处理领域提供了理论依据。

七、实验拓展1. 尝试使用其他滤波器对采样信号进行重构,比较重构效果。

信号实验:连续信号的采样和恢复

信号实验:连续信号的采样和恢复

电子科技大学实验报告学生姓名:学号:指导老师:日期:2016年 12月 10日一、实验室名称: 连续信号的采样和恢复 二、实验项目名称:实验项目四:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。

⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s kk k T a =,T <<τ。

采样后的信号:∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑信号)(t x S 恢复原始信号)(t x 。

目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

四、实验内容实验内容(一)、采样定理验证实验内容(二)、采样产生频谱交迭的验证五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源六、实验步骤:打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

实验内容(一)、采样定理验证 实验步骤:1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。

图3.4-2 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。

按“F4”键把采样脉冲设为10kHz 。

七、实验数据及结果分析:八、九.实验结论:1.当采样频率大于信号最高频率两倍,可以用低通滤波器将由采样后的信号恢复到原始信号。

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现
信号处理是现代通信系统中至关重要的一环,其中采样与重构是
一种基本的信号处理技术。

在连续时间信号处理中,采样的作用是将
信号从连续时间域转换为离散时间域。

而重构的作用则是将离散时间
域信号重新转换为连续时间信号,以便于信号的处理和传输。

在采样的过程中,需要将连续时间信号按照一定的时间间隔进行
取样,得到一个离散时间序列。

采样过程中最关键的参数是采样频率,也就是每秒采用的样本数,通常用赫兹(Hz)表示。

采样频率越高,
离散时间序列的准确性就越高,但同时也会增加采样处理的复杂度。

重构的过程则是将离散时间信号恢复成连续时间信号。

由于采样
本身会将连续时间信号进行离散化处理,因此需要进行一定的插值和
滤波处理才能够准确地重构信号。

常见的重构算法包括插值算法、直
接复制算法和最小均方误差算法等。

在实现上,采样和重构的算法都需要借助于一定的数学模型和计
算机技术。

在现代通信系统中,基于数字信号处理技术的采样和重构
算法广泛应用于音频信号、视频信号、图像信号等多种信号处理领域。

数学模型包括傅里叶变换、拉普拉斯变换、小波变换等等。

总之,采样和重构是现代通信系统中非常重要的信号处理技术,
对于准确传输和处理信号具有至关重要的作用。

采用数字信号处理技
术可以实现高效的采样和重构,为现代通信系统的发展提供重要的支撑。

连续信号的采样与重建

连续信号的采样与重建

连续信号的采样与重建一、设计目的和意义随着通信技术的迅速发展以及计算机的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。

数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,现代应用中经常要求对模拟信号采样,将其转换为数字信号,然后对其进行计算处理,最后再重建为模拟信号。

采样在连续时间信号与离散时间信号之间起着桥梁作用,是模拟信号数字化的第一个步骤,研究的重点是确定合适的采样频率,使得既要能够从采样信号(采样序列)中无失真地恢复原模拟信号,同时又尽量降低采样频率,减少编码数据速率,有利于数据的存储、处理和传输。

在本次设计中,通过使用用MATLAB对信号f(t)=A1sin(2πf t)+A2sin(4πf t)+A3sin(5πf t)在不同频率点的采样,并进行设计仿真,让我们进一步熟悉掌握连续时间信号的傅立叶变换、采样定理等。

二、设计原理1 、时域抽样定理令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为:故可以推得p(t)的傅里叶变换为:其中:根据卷积定理可知:得到抽样信号x(t)的傅里叶变换为:其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。

因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。

信号与系统实验报告材料(实验一)连续时间信号地采样

信号与系统实验报告材料(实验一)连续时间信号地采样

实验一 连续时间信号的采样一、实验目的进一步加深对采样定理和连续信号傅立叶变换的理解。

实验步骤1.复习采样定理和采样信号的频谱采样定理如果采样频率s F 大于有限带宽信号)(t x a 带宽0F 的两倍,即02F F s > (1)则该信号可以由它的采样值)()(s a nT x n x =重构。

否则就会在)(n x 中产生混叠。

该有限带宽模拟信号的02F 被称为乃魁斯特频率。

必须注意,在)(t x a 被采样以后,)(n x 表示的最高模拟频率为2/s F Hz (或πω=)。

2.熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。

然而如果用时间增量足够小的很密的网格对()a x t 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分析。

令t ∆是栅网的间隔且s t T ∆<<,则()()G a x m x m t ∆=∆ (2)可以用一个数组来仿真一个模拟信号。

不要混淆采样周期s T 和栅网间隔t ∆,因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系也可根据(2)近似为:∑∑∆Ω-∆Ω-∆=∆≈Ωmt m j G m t m j G a e m x t t em x j X )()()( (3) 现在,如果)(t x a (也就是)(m x G )是有限长度的。

则公式(3)与离散付利叶变换关系相似,因而可以用同样的方式以MATLAB 来实现,以便分析采样现象。

3.根据提供的例子程序,按照要求编写实验用程序;三、实验内容(1)通过例一熟悉用MATLAB 语言实现描绘连续信号的频谱的过程,并在MATLAB 语言环境中验证例1的结果;例1、令t a et x 1000)(-=,求出并绘制其付利叶变换。

解:根据傅立叶变换公式有010*********.002()()1()1000j t t j t t j t a a X j x t e dt e e dt e e dt ∞∞-Ω-Ω--Ω-∞-∞Ω==+=Ω+⎰⎰⎰ (4) 因为)(t x a 是一个实偶信号,所以它是一个实值函数。

信号采样实验报告

信号采样实验报告

一、实验目的1. 理解信号采样的基本原理,掌握信号采样过程。

2. 熟悉采样定理,验证信号采样过程中的频谱混叠现象。

3. 掌握信号重构方法,通过采样信号恢复原信号。

二、实验原理信号采样是将连续时间信号转换为离散时间信号的过程。

根据香农采样定理,为了无失真地恢复原始信号,采样频率必须大于信号中最高频率成分的两倍。

三、实验内容1. 生成模拟信号在MATLAB中,生成一个正弦信号作为实验对象:```MATLABt = 0:0.01:1; % 生成时间序列,从0到1,步长为0.01f = 5; % 信号频率为5Hzx = sin(2pift); % 生成正弦信号```2. 采样信号对模拟信号进行采样,设置采样频率为50Hz:```MATLABfs = 50; % 采样频率n = 0:1/fs:1; % 采样点数x_sample = x(n); % 采样信号```3. 频谱分析分别对原始信号和采样信号进行频谱分析,比较两者的频谱特征:```MATLABfigure;subplot(2,1,1);plot(frequency, abs(X)); % 绘制原始信号的频谱title('Original Signal Spectrum');subplot(2,1,2);plot(frequency, abs(X_sample)); % 绘制采样信号的频谱title('Sampled Signal Spectrum');```4. 频谱混叠观察采样信号的频谱,分析是否存在频谱混叠现象。

如果存在混叠,可以通过提高采样频率或滤波来消除混叠。

5. 信号重构利用MATLAB中的插值函数对采样信号进行重构,恢复原信号:```MATLABx_reconstructed = interp1(n, x_sample, t, 'linear'); % 线性插值```6. 重构信号分析观察重构信号与原始信号的波形,分析重构效果。

信号分析实验报告总结

信号分析实验报告总结

一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。

二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。

(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。

b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。

c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。

(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。

b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。

c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。

2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。

(2)实验步骤:a. 定义离散信号x[n],计算其频谱。

b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。

c. 比较不同窗口长度对频谱的影响。

(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。

b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。

3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。

(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。

b. 产生调频信号,并对其进行解调。

c. 分析调频信号的频谱,验证调频解调原理。

(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。

连续信号的采样与重构

连续信号的采样与重构
离散信号的时域过采样结果如下图所示:
4) 频域过采样
MATLAB 程序: freq=[0 0.45 0.5 1]; mag=[0 1 0 0]; x=fir2(99,freq,mag); [Xz,w]=freqz(x,1,512); subplot(2,1,1); plot(w/pi,abs(Xz));axis([0 1 0 1]);grid title('输入谱'); subplot(2,1,2); L=input('过采样因子='); y=zeros(1,L*length(x));
答:混迭频率是 120Hz-5000Hz。因为方波信号除了频率为 200Hz 的基波外,还含
有频率为 200Hz 的奇数倍的各次谐波,这些谐波频率的 2 倍都大于 500Hz,所以取 样后其频谱都会产生混迭现象。
2) 在时域抽样定理中,为什么要求被抽样信号必须是带限信号?如果频带是无限的, 应如何处理?
f=input('f=plot(x1,3*sin(2*pi*f*x1));
%原时域连续信号 y=3sin(2πft)
xlabel('t');ylabel('x(t)');
title('原时域连续信号 y=3*sin(2*pi*f*t)');
grid
sin1=3*sin(2*pi*f*w);
grid;
Y=fft(y,512);w=(0:255)/256*500;
subplot(2,1,2);plot(20*w,([Y(1:256)]));
%绘制频谱图
xlabel('Hz');ylabel('频率响应幅度');

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告实验报告:连续信号的采样与恢复一、实验目的:1.了解连续信号的采样原理和采样定理;2.理解采样后信号的频谱特性;3.掌握信号恢复的方法。

二、实验原理:采样定理:对于频谱带宽有限的信号,为了保证采样信号不发生混叠现象,必须满足采样频率大于信号频谱的最高分量频率的两倍。

三、实验器材:1.信号发生器;2.示波器;3.编码器;4.数字示波器;5.连接线。

四、实验步骤及结果:1.首先使用信号发生器产生频率为1kHz、幅值为5V的正弦信号作为待采样信号;2.将信号发生器输出的信号连接至示波器进行观察;3.将示波器输出信号连接至编码器进行信号的采样;4.将编码器的输出信号连接至数字示波器,观察离散采样值;5.对离散采样值进行信号恢复,使用零阶保持、线性插值和兰特尔-曼豪姆插值三种恢复方法;6.将恢复后的信号与原信号进行比较,观察恢复的效果。

实验结果:在示波器上观察到频率为1kHz、幅值为5V的正弦信号。

数字示波器上显示出了一系列离散的采样值。

通过零阶保持、线性插值和兰特尔-曼豪姆插值三种方法进行信号恢复后,观察到恢复的信号与原信号基本一致。

五、实验分析:1.信号恢复的效果受到采样频率和采样幅值的影响,采样频率过低或采样幅值过小都会造成信号失真;2.零阶保持方法可以保持离散信号的幅值不变,但是无法恢复信号的高频分量;3.线性插值可以恢复少量的高频分量,但是如果信号存在高频噪声或非线性失真,会导致恢复后信号的质量下降;4.兰特尔-曼豪姆插值是一种高阶插值方法,能够更好地恢复信号的高频分量,但是计算量较大。

六、实验总结:通过本次实验,我了解了连续信号的采样原理和恢复方法,掌握了采样频率的要求和恢复过程中常用的插值方法。

实验中,我观察到了采样信号和恢复信号的特性,并进行了比较分析。

实验结果表明,在合适的采样条件和恢复方法下,可以有效地采样和恢复信号。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。

二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。

由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。

ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。

由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。

如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。

(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。

因此又称为信号恢复。

ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。

选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。

将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。

因此,经过理想滤波器还原得到得信号即为原信号本身。

信号重构得原理图见下图。

通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。

连续信号采样和重构

连续信号采样和重构

数字信号处理实验(综合)实验题目:连续信号采样和重构 一、实验目的通过利用MATLAB 实现对信号采样、求频谱、滤波以及时域,域重构熟悉通信系统的整个过程。

二、实验原理奈奎斯特采样定理,连续信号傅立叶变换(CTFT )、连续信号傅立叶逆变换、sample 函数时域重构原理、巴特沃兹低通滤波器的设计、时域卷积定理等。

三、实验内容(1)绘制原信号及其频谱,采样信号及其频谱510-55幅度(1) 原信号510时间(秒)幅度(3) 采样后信号-10-50510204060幅度(2) 原信号频谱-505204060幅度频率 (赫兹)(4) 采样后频谱搬移图A 连续信号及其采样信号对应频谱图图1 为y= 3*cos(3*pi*t)+2*sin(2*pi*t)+cos(5*pi*t)的信号,时间间隔为0.01秒。

因为CTFT 公式dt e t x j X t j a a Ω-+∞∞-⎰=Ω)()(只适用于求连续信号,但本实验中采用的是MATLAB 数值计算方法,所以将上面的积分式变成以下的求和式为:t e t x j X t j a a ∆=ΩΩ-+∞∞-∑)()(,在程序中采用For 循环和sub 函数实现求解,最后用abs 求出其模值输出。

从原信号时域表达式可以看出,信号角频率为5pi,若要应用奈奎斯特采样定理,则采样角频率必须大于2*5pi,于是我们采用15pi 的采样角频率。

而T f /22ππω==,所以对应到时域,采样周期为2/15秒。

于是在绘制图3时,我们的时间间隔为2/15秒,于是得到许多离散点。

同样,利用t e t x j X t j a a ∆=ΩΩ-+∞∞-∑)()(公式可求的采样信号的频谱图。

从图4可以看出,频谱得到了搬移,又由于满足奈奎斯特采样定理,没有出现混频的现象。

(2)离散信号时域重构幅度(5) 重构分量及合成包络012345678910时间(秒)幅度(6) 重构信号图B 离散信号时域重构过程图重构原理为生成大量自变量点,在每个采样点处,生成一个以该采样点的幅值为中央最大值、s T 为采样时间间隔的sample 函数,最后把所有sample 函数自变量点的函数值相加,及得到了原信号在这些点处的值,从而重构出原信号。

信号的采样与恢复实验报告

信号的采样与恢复实验报告

信号的采样与恢复实验报告信号的采样与恢复实验报告引言:信号是信息传递的基本形式,而信号的采样与恢复是数字通信系统中的重要环节。

本实验旨在通过实际操作,探究信号的采样过程以及采样后的信号如何恢复。

一、实验目的1. 了解信号的采样原理和采样定理;2. 理解采样频率对信号重构的影响;3. 掌握信号采样与恢复的实验操作。

二、实验仪器1. 示波器;2. 函数信号发生器;3. 低通滤波器。

三、实验步骤1. 连接实验仪器,将函数信号发生器的输出接入示波器的输入端;2. 设置函数信号发生器的频率和幅度,观察信号在示波器上的波形;3. 调节函数信号发生器的频率,使其接近采样频率的一半,记录观察到的波形;4. 逐渐增加函数信号发生器的频率,观察信号的变化;5. 将示波器的输出接入低通滤波器的输入端,调节滤波器的截止频率,观察信号的恢复情况;6. 重复以上步骤,记录实验数据。

四、实验结果与分析1. 在采样频率小于信号频率的情况下,观察到信号在示波器上的波形出现了混叠现象,即采样失真。

这是因为采样频率不足以捕捉到信号的全部信息,导致信号的高频成分被误认为低频成分,从而产生了混叠现象。

2. 当采样频率接近信号频率的一半时,观察到信号的波形开始变形,但仍能较好地还原原始信号。

这是因为根据采样定理,采样频率应大于信号频率的两倍,此时信号的高频成分能够被有效采样,从而准确地恢复出原始信号。

3. 当采样频率大于信号频率的两倍时,观察到信号在示波器上的波形与原始信号基本一致,没有明显的失真现象。

这是因为采样频率足够高,能够准确地采样信号的全部信息,从而实现信号的完美恢复。

4. 在将示波器的输出信号经过低通滤波器后,观察到信号的恢复情况得到改善。

低通滤波器能够去除信号中的高频成分,从而减少混叠现象,使得信号的恢复更加准确。

五、实验总结通过本次实验,我们深入了解了信号的采样与恢复原理,并通过实际操作验证了采样定理的有效性。

实验结果表明,在采样频率满足采样定理的条件下,能够准确地恢复原始信号。

信号的采样与重构__上机实验

信号的采样与重构__上机实验

北京航空航天大学校内自用讲义上机实验指导实验一信号的采样与重构连续时间信号采样是获得离散时间信号的一种重要方式,但是时域上的离散化会带来信号在频域上发生相应的变化。

在本实验中,我们将分别看到低通信号和带通信号在不同的采样率下得到的离散信号波形与连续信号波形在时域和频域上的对应关系。

同时,离散信号的二次采样在实际的应用中可能是必须的,有时甚至是非常重要的。

在实验的最后,我们也会看到离散信号的抽取和内插所带来的频谱变化。

由于matlab语言无法表达连续信号,实验中我们采用足够密的采样点来模拟连续信号(远大于奈奎斯特采样的要求),即:t=0:Ts:T(Ts=1/fs&lt;&lt;奈奎斯特采样频率)实验中,为了分析离散信号与连续信号之间的频谱关系,加深对采样定理的理解,了解模拟频谱、数字频谱、以及离散信号被加窗后各自的频谱,从而直观的理解采样频率对频谱的影响和加窗后对频谱的影响。

由此可以掌握数字处理方法对模拟信号进行频谱分析的基本原则,即:如何选择合适的信号长度、采样周期以使得对模拟信号的频谱分析的误差达到分析的要求。

在该实验中,用到的Matlab函数有:plot(x,y),其作用是在坐标中以x为横坐标、y为纵坐标的曲线,注意x和y都是长度相同的离散向量;xlabel(‘xxx’),其作用是对x轴加上坐标轴说明“xxx”;ylabel(‘yyy’),其作用是对y轴加上坐标轴说明“yyy”;title(‘ttt’),其作用是对坐标系加上坐标轴说明“ttt”;subplot(m,n,w),其作用是当需要在同一显示面板中显示多个不同的坐标系时,m、n分别指明每行和每列的坐标系个数,w为当前显示坐标系的流水号(1到m*n之间)。

在实验中我们需要画出信号的频谱,对于连续信号频谱的逼近需要你自己编写,原理如下:连续时间非周期信号x(t)的傅里叶变换对为:X(j?)??x(t)e?j?tdt ???用DFT 方法对该变换逼近的方法如下:1、将x(t)在t轴上等间隔(宽度为T)分段,每一段用一个矩形脉冲代替,脉冲的幅度为其起始点的抽样值x(t)t?nT?x(nT)?x(n),然后把所有矩形脉冲的面积相加。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

信号的采样与恢复实验报告

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告篇一:实验2:连续信号的采样和恢复电子科技大学实验报告(二)学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理:实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。

xpT(t))图3.4-1实际采样和恢复系统采样脉冲:p(t)??F?pT(j?)?T2?T???k(:信号的采样与恢复实验报告)2?ak?(??k?s)其中,?s?,ak??sin(k?s?/2)Tk?s?/2F,T。

采样后的信号:xs(t)xs(j?)?1T??x(j(?k?k?s)当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。

四、实验目的与任务:目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

五、实验内容:1、采样定理验证2、采样产生频谱交迭的验证六、实验器材(设备、元器件):数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。

七、实验步骤:打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

【1.采样定理验证】1、连接接口区的“输入信号1”和“输出信号”,如图1所示。

图1观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。

按“F4”键把采样脉冲设为10khz。

3、点击ssp软件界面上的按钮,观察原始正弦波。

4、按图2的模块连线示意图连接各模块。

图2观察采样波形的模块连线示意图5、点击ssp软件界面上的按钮,观察采样后的波形。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

实验1 连续信号的抽样与重构

实验1  连续信号的抽样与重构

实验1连续信号的抽样与重构姓名崔钰班级通信2班一、实验目的(一)掌握使用Matlab进行连续系统抽样分析的方法1.使用plot函数绘制采样后的信号。

2.使用stem函数绘制火柴棍形的采样后信号。

(二)掌握使用Matlab进行抽样信号还重构的方法。

1.使用香农重构法对采样信号进行重构,并进行观察。

(三)掌握使用Matlab进行建立离散信号的的方法。

1.使用Matlab构建时间、数值离散的信号。

2.使用sound函数播放波形所对应的声音。

观察连续函数与离散函数的区别。

二、实验条件装有MATLAB电脑一台三、实验内容(2)基本代码:%用1000sample/s的采样频率对100rad/s的信号进行采样>>fs=1000;>> t=0:1/fs:10;>> y = 100*sin(100*t);>> plot(t,y)%绘制火柴棍图>> stem(t,y)进行快速傅里叶变换,频谱分析>> yf=fft(y,1000)/1000*2;频谱没有发生交叠使用的香农重构法原理代码>> ln=(0:10*fs);>> m=ones(length(ln),1)*t-ln'*1/fs*ones(1,length (t));>> y2=y*sinc(fs*m);>>y2=y*sinc(fs*m);>>plot(t,y2)将采样频率降至10sample/s重新绘制重构图形发现在不满足采样定理的情况下重构出的波形是严重失真的。

频谱出现交叠使用Matlab构建时间和数值离散信号。

采样率240 >> fs=240;>> t=0:1/fs:10;>> y = 100*sin(100*t);>> stem(t,y)时间数值均离散的信号使用Matlab构建数值离散信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

y = resample(x,L,M);四、实验内容与方法1.验证性试验1)正弦信号的采样MATLAB程序:clf;t = 0:0.0005:1;f = 13;xa = cos(2*pi*f*t);subplot(2,1,1)plot(t,xa);gridxlabel('时间, msec');ylabel('幅值');title('连续时间信号 x_{a}(t)');axis([0 1 -1.2 1.2])subplot(2,1,2);T = 0.1;n = 0:T:1;xs = cos(2*pi*f*n);k = 0:length(n)-1;stem(k,xs);grid;xlabel('时间,msec');ylabel('幅值');title('离散时间信号 x[n]');axis([0 (length(n)-1) -1.2 1.2])正弦信号的采样结果如图2.5-3所示。

图2.5-3 正弦信号的采样2)采样的性质MATLAB程序:clf;t = 0:0.005:10;xa = 2*t.*exp(-t);subplot(2,2,1)plot(t,xa);gridxlabel('时间信号, msec');ylabel('幅值');title('连续时间信号 x_{a}(t)');subplot(2,2,2)wa = 0:10/511:10;ha = freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha));grid;xlabel('频率, kHz');ylabel('幅值');title('|X_{a}(j\Omega)|');axis([0 5/pi 0 2]);图2.5-4 信号采样的性质subplot(2,2,3)T = 1;n = 0:T:10;xs = 2*n.*exp(-n);k = 0:length(n)-1;stem(k,xs);grid;xlabel('时间 n');ylabel('幅值');title('间散时间信号 x[n]');subplot(2,2,4)wd = 0:pi/255:pi;hd = freqz(xs,1,wd);plot(wd/(T*pi), T*abs(hd));grid;xlabel('频率, kHz');ylabel('幅值');title('|X(e^{j\omega})|');axis([0 1/T 0 2])信号采样的性质如图2.5-4所示。

3)模拟低通滤波器设计MATLAB程序:clf;Fp = 3500;Fs = 4500;Wp = 2*pi*Fp; Ws = 2*pi*Fs;[N, Wn] = buttord(Wp, Ws, 0.5, 30,'s');[b,a] = butter(N, Wn, 's');wa = 0:(3*Ws)/511:3*Ws;h = freqs(b,a,wa);plot(wa/(2*pi), 20*log10(abs(h)));gridxlabel('Frequency, Hz');ylabel('Gain, dB');title('Gain response');axis([0 3*Fs -60 5]);模拟低通滤波器的设计结果如图2.5-5所示。

图2.5-5 模拟低通滤波器的设计4)时域过采样MATLAB程序:%离散信号的时域过采样clf;n=0:50;x = sin(2*pi*0.12*n);y=zeros(1,3*length(x));y([1:3:length(y)])=x;subplot(2,1,1)stem(n,x);title('输入序列');subplot(2,1,2)stem(n,y(1:length(x)));title('输出序列');离散信号的时域过采样结果如图2.5-6所示。

2.5-6 离散信号的时域过采样5)时域欠采样MATLAB程序:%离散信号的时域欠采样clf;n=0:49;m=0:50*3-1;x = sin(2*pi*0.042*m);y=x([1:3:length(x)]);subplot(2,1,1)stem(n,x(1:50));axis([0 50 -1.2 1.2]);title('输入序列');subplot(2,1,2)stem(n,y); axis([0 50 -1.2 1.2]);title('输出序列');离散信号的时域欠采样结果如图2.5-7所示。

2.5-7 离散信号的时域欠信号6)频域过采样MATLAB程序:%信号的频域过采样freq = [0 0.45 0.5 1];mag = [0 1 0 0];x = fir2(99, freq, mag);[Xz, w] = freqz(x, 1, 512);Subplot(2,1,1);plot(w/pi, abs(Xz)); gridtitle('输入谱');Subplot(2,1,2);L = input('过采样因子 = ');y = zeros(1, L*length(x));y([1: L: length(y)]) = x;[Yz, w] = freqz(y, 1, 512);plot(w/pi, abs(Yz)); axis([0 1 0 1]);gridtitle('输出谱');信号的频域欠采样结果如图2.5-8所示。

图2.5-8 信号的频域过采样7)频域欠采样%信号的频域欠采样clf;freq = [0 0.42 0.48 1];mag = [0 1 0 0];x = fir2(101, freq, mag);[Xz, w] = freqz(x, 1, 512);Subplot(2,1,1);plot(w/pi, abs(Xz)); gridtitle('输入谱');M= input('欠采样因子 = ');y=x([1:M: length(x)]);[Yz, w] = freqz(y, 1, 512);图2.5-9 信号的频域欠采样Subplot(2,1,2);plot(w/pi, abs(Yz));gridtitle('输出谱');信号的频域欠采样结果如图2.5-9所示。

8)采样过程演示MATLAB程序:%采样过程演示clf;M = input('欠采样因子 = ');n = 0:99;x = sin(2*pi*0.043*n) + sin(2*pi*0.031*n); y = decimate(x,M,'fir');gfp=figure;get(gfp,'units');set(gfp,'position',[100 100 400 300]); subplot(2,1,1);stem(n,x(1:100));title('输入序列');subplot(2,1,2);m = 0:(100/M)-1;stem(m,y(1:100/M));title('输出序列');信号的采样结果如图2.5-10所示。

相关文档
最新文档