习题华师大版七上25有理数的大小比较含答案
2024年秋新华师大版七年级上册数学教学课件 第1章 有理数 1.5 有理数的大小比较 习题1.5
习题1.5
华师大版 七年级 上册
A组 1.比较下列各对数的大小:
(1)﹣9.1 与﹣9.0 5 与 7 ;
68
(4)﹣|﹣3.2| 与﹣(+3.2).
解:(1)﹣9.1<﹣9.099; (2)﹣8<|﹣8|;
(3) 5> 7 ; 68
(4)﹣|﹣3.2|=﹣(+3.2).
2.将下列各数按从小到大的顺序排列,并用“<”号 连接起来:
0,﹣3.14, 22 ,2.7,﹣4,0.14.
7
解:﹣4 < 22 <﹣3.14 < 0 < 0.14 < 2.7 7
3.下列说法是否正确?为什么? 在数轴上 , 将 表示一个数的点向左移
动,终点所表示的数总比原来的数小.
解:正确.因为在数轴上表示的两个 数,右边的数总比左边的数大.
B组
4.写出绝对值小于 5 的所有整数,并在数轴上表示出来. 解:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4.
﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4
﹣7 ﹣6 ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 6 7
5.回答下列问题: (1)有没有最小的正数?有没有最大的负数?为什么? (2)有没有绝对值最小的有理数?若有,请把它写出来.
解:(1)没有,没有,均可以借助数轴说明; (2)有,是 0.
1.从课后习题中选取; 2.完成练习册本课时的习题.
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
2024年秋季新华师大版7年级上册数学课件第1章第1章 有理数复习与小结
针对训练
4. 计算:
(1)
2
1 12
1 12
;
(2)
24
2
2 3
2
5
1 2
1 6
0.52
.
解:(1) 原式 = 21212 = 288.
(2) 原式 16 9 11 1 1 41. 64 2 6 4 12
6 运用运算律简化运算
例6 计算:25 3 25 1 25 1 .
A.1.94×1010
B.0.194×1010
C.19.4×109
D.1.94×109
解析:194 亿 = 19 400 000 000,根据科学记数法表示数 的规律,当原数大于 10 时,10 的幂指数 n =原数整数 位数-1,则 194 亿=1.94×1010.
【归纳总结】
用科学记数法表示一个大于 10 的数,就是把这个数 表示为 a×10n (其中 a 是整数位数只有一位的数,n 是正整数) 的形式.因此,准确地理解科学记数法的 概念,紧紧抓住 a,n 的条件是解决此类题的关键.
针对训练
6. 某年末某市常住人口总数为 2415.27 万人,用 科学记数法表示为 2.41527×107 人. 7. 将数 13 445 000 000 000 km 用科学记数法表示 为__1_.3_4_4_5_×__1_0_1_6_m.
注意单位的变化
8 近似数
例8 用四舍五入法对 0.030 47 取近似值,精确到
4
2
4
解:原式 = 25 3 25 1 25 1
4
2
4
=25 【归纳总结】
3 4
1 2
1 4
= 25
3 2
第2章 有理数数学七年级上册-单元测试卷-华师大版(含答案)
第2章有理数数学七年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、﹣7的相反数为()A.﹣7B.C.7D.﹣0.72、下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣13、如图所示,根据有理数a、b在数轴上的位置,下列关系正确的是()A.|a|>|b|B.a>﹣bC.b<﹣aD.a+b>04、下例各式中,运算结果错误的是()A.(﹣3)﹣(﹣5)=2B.0﹣7=﹣7C.7.2﹣(﹣4.8)=12D.(﹣)﹣=05、马虎同学做了以下4道计算题:①0﹣(﹣1)=1;②÷(﹣)=﹣1;③﹣+ =﹣;④(﹣1)2005=﹣2005,请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题6、下列算式中,计算结果是负数的是()A. B. C. D.7、下列说法正确的有()①两个有理数的和为负数,则这两个数中至少有一个是负数;②若,则;③为任何有理数,则必为负数;④若,则为非正数;A.1个B.2个C.3个D.4个8、关于x的多项式ax+bx合并同类项后的结果为0,则下列说法正确的是()A.a、b都必为0B.a、b、x都必为0C.a、b必相等D.a、b 必互为相反数9、李阳同学在“百度”搜索引擎中输入“魅力襄阳”,能搜索到与之相关的结果个数约为236 000,这个数用科学记数法表示为( )A.2.36×10 3B.236×10 3C.2.36×10 5D.2.36×10 610、算式(-2)×(-2)×(-2)×(-2)×(-2)可表示为()A.(-2)×5B.C.D.以上都不符合题意11、若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是()A.+B.-C.×D.÷12、若ac<0,,则有()A. B.b>0 C. D.b<013、计算1÷(-10)×的结果是()A.1B.-1C.D.-14、-2的相反数是()A.2B.-2C.D.15、下列计算中,错误的是()A. B. C.D.二、填空题(共10题,共计30分)16、有理数在数轴上对应点的位置如图所示,若有理数互为相反数,则这四个数有理数中,绝对值最大的是________.17、写出一个比﹣2小的数是________ .18、已知(x+1)x+4=1,则x=________.19、从“+、-、×、÷”中选择一个运算符号,填写在横线上,使得等式0________成立.20、把下列各数填在相应的横线上:﹣1,0.2,﹣,3,﹣2.1,0,;负分数是________ ;整数是________ .21、实数a,b,c,d在数轴上的对应点的位置如图,则这四个数中,绝对值最小的是________.22、近似数 1. 370×105精确到________位.23、用四舍五入法把0.079精确到百分位为________24、实数a、b在数轴上的位置如图所示,则化简|a+2b|-|a-b|的结果为________.25、比较大小:0.001________-10,________ ;三、解答题(共5题,共计25分)26、已知∣a-4∣+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]+4a2b的值.27、若a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a+b+cd)m﹣cd的值.28、有一个棱长4分米的正方体铁块熔铸成宽2.5分米,高1.6分米的长方体铁块,长方体铁块的长是多少分米?29、已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.30、已知关于x、y的方程组满足,且它的解是一对正数.(1)试用m表示方程组的解;(2)求m的取值范围;(3)化简.参考答案一、单选题(共15题,共计45分)1、C2、A3、C5、C6、C7、B8、D9、C10、C11、C12、C13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
华师大版-数学-七年级上册-2.5有理数的大小比较
谢谢!
2.比较下列各对数的大小: (1)-|-2|与0 (2)-(-5)与0
3.回答下列问题: (1)大于-4的负整数有几个? (2)小于4的正整数有几个? (3)大于-4且小4的整数有几个?
4.将有理数:0,-3.14 ,- 22,-4,0.14 按从小到
7
大的顺序,用“<”号连接起来.
5.写出绝对值小于5的所有整数,并在数轴 上表示出来.
①求绝对值; ②比较绝对值的大小; ③比较负数的大小.
例:比较下列各对数的大小。
(1)-(-1)和-(+2);
(2)- 8 和- 3 ;
21
7
(3)-(-0.3)和|-1 |.
3
如果比较的两数不是最简形式怎么办?
两个异分母的负分数能直接利用绝对值比较大小的吗?
如何比较两个有理数的大小
1.利用数轴比较. 2.正数大于0, 0大于负数,正数大于负数. 3.两个负数比较大小时的一般步骤:①求绝对值;
(1)3.5 > 0
(2)-2.8 < 0
(3) 0 < 0.1 (4)0 > -4
(5)-1.95 <1.59 (6)3 > -7
正数大于0,负数小于0,正数大于负数. 适用于一个数和0的大小比较,以及异号 两数的大小比较.
讨论:同号两数怎样比较大小呢?
同
同
正
负
我们知道两个正数绝对值大的,那个正数大。 那么两个负数呢?
6. 回答下列问题; (1)有没有最小的正数?有没有最大的负数? 为什么? (2)有没有绝对值最小的有理数?若有,请把 它写出来.
课堂小结
有理数的大小比较: (1)一组数在比较大小时,先把正数 分一类,负数分一类; (2)按所有的正数大于0,大于所有 的负数;两个负数比较大小,绝对值 大的反而小进行比较。
2.2.2 在数轴上比较数的大小-七年级数学上册同步教学辅导讲义(华师大版)
2.2.1数轴同步讲义基础知识1、在数轴上表示的两个数,右边的数总比左边的数大;2、正数都大于零,负数都小于零,正数都大于负数。
例题例、在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.2-,1,0,54-,3,2.5【答案】见解析,5201 2.534-<-<<<<【分析】首先在数轴上表示出各数,然后根据在数轴上,右边的数总比左边的数大即可得到答案.【详解】解:如图所示:由数轴可知,这些数从小到大的顺序为:5201 2.534-<-<<<<.【点睛】本题考查有理数的比较大小、数轴,解题的关键是掌握在数轴上,右边的数总比左边的数大.练习1.在5-、1-、0、3这四个有理数中,最小的有理数是()A.5-B.1-C.0 D.32.如图,a与b的大小关系是()A.a<b B.a>b C.a=b D.a=2b3.大于-4.2且小于3.8的整数有()A.5个B.6个C.7个D.8个4.在数轴上表示数1-和2020的两点分别为点A和点B,则A、B两点之间的距离为()A.2018 B.2019 C.2020 D.20215.实数,a b在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0a >B .2b >C .a b <D .a b =6.有理数a ,b ,c 在数轴上对应的点的位置如图所示,则下列关系正确的是( )A .a >b >cB .b >a >cC .c >b >aD .b >c >a7.实数a 在数轴上对应点的位置如图所示,若实数b 满足﹣a <b <a ,则b 的值可以是___(任填一个即可).8.四个数在数轴上的对应点分别为A ,B ,C ,D ,这四个数中最小的数的对应点是______.9.有理数a 、b 在数轴上的位置如图所示,则a 、b 大小是:a ______b .10.大于2-而小于3的负整数是_______.11.利用数轴比较132-,2,0,1-,12,4-的大小,并用“<”把它们连结起来.12.在数轴上表示下列各数:0,2,﹣1.5,13-,并按从小到大的顺序用“<”号把这些数连接起来.13.将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.练习参考答案1.A【分析】由5-<1-<0<3,从而可得答案.【详解】-解:由5-<1-<0<3,可得:最小的有理数是 5.故选:.A【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较的方法是解题的关键.2.B【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:由数轴可知,b<0<a,即a>b,故选:B.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.3.D【分析】在数轴上表示出-4.2与3.8的点,进而可得出结论.【详解】解:如图所示,,由图可知,大于-4.2且小于3.8的整数有-4,-3,-2,-1,0,1,2,3共8个.故选:D.【点睛】本题考查的是数轴,根据题意画出数轴,利用数形结合求解是解答此题的关键.4.D【分析】由数轴上两点间距离可得AB=|-1-2020|=2021.【详解】解:AB=|-1-2020|=2021,故选:D.【点睛】本题考查数轴上两点间距离;会求数轴上两点间的距离是解题的关键.5.C【分析】根据点在数轴上的位置分别判断即可.【详解】解:由图可得:-1<a<0,1<b<2,,∴a<0,b<2,a b故选项A、B、D错误,故选C.【点睛】本题考查了实数与数轴,利用数轴比较数的大小是解决问题的关键.6.A【分析】根据数轴左边的点所表示的数小于右边的点所表示的数解答即可.【详解】由数轴得:a>b>c,故选:A.【点睛】本题考查了数轴和有理数的大小比较,熟练掌握数轴上的点所表示的数的大小关系是解答的关键.7.0(答案不唯一)【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【详解】解:由数轴可知,1<a<2,﹣2<﹣a<﹣1,∵﹣a<b<a,∴b可以在﹣1和1之间任意取值,如﹣1,0,1等,故答案为:0(答案不唯一).【点睛】此题主要考查数轴的性质,解题的关键是熟知有理数的大小关系.8.A【分析】根据数轴的定义即可得.【详解】由数轴的定义得:数轴上的点表示的数,左边的总小于右边的,则这四个数中最小的数的对应点是A,故答案为:A.【点睛】本题考查了数轴,掌握理解数轴的定义是解题关键.9.<【分析】数轴上原点右边的数都大于0,原点左边的数都小于0,数轴右边的数始终大于数轴左边的数.【详解】a b、都在数轴原点的左边∴<<a b0,0观察数轴得,a在b左边,a b∴<<故答案为:<.【点睛】本题考查数轴、利用数轴比较有理数的大小等知识,是重要考点,难度较易,掌握相关知识是解题关键.10.-1【分析】在数轴上找出-2与3之间的数,进而可得出结论.【详解】由图可知,大于-2而小于3的负整数是-1,故答案为:-1.【点睛】本题考查的是有理数分类与大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.11.数轴见解析,114310222-<-<-<<<【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.【详解】解:如图所示:114310222-<-<-<<<.【点睛】本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.数轴见解析,11.5023-<-<<【分析】先将各数表示在数轴上,再依据数轴上右边的数大于左边的数进行判断即可.【详解】解:在数轴上表示下列各数如下:故11.5023-<-<<.【点睛】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.13.见解析,11 54200.424-<-<-<<【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:故1154200.424-<-<-<<.【点睛】本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.。
华东师大版七年级上册《第1章有理数》测试(含答案)
华东师大版七年级上册《第1章有理数》测试卷一、选择题1.相反数是它本身的数是()A.1 B.﹣1 C.0 D.不存在2.下列结论正确的是()A.﹣a一定是负数B.﹣|a|一定是非正数C.|a|一定是正数D.|a|一定是负数3.若a、b互为倒数,x、y互为相反数,则2(x+y)﹣ab的值为()A.0 B.1 C.﹣1 D.不能确定4.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数5.如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子条数是()A.3 B.4 C.5 D.66.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=()A.﹣1 B.0 C.1 D.27.如果有理数a,b满足a+b>0,ab<0,则下列式子正确的是()A.当a>0,b<0时,|a|>|b|B.当a<0,b>0时,|a|>|b|C.a>0,b>0 D.a<0,b<08.2008年我国的国民生产总值约为130 800亿元,那么130 800用科学记数法表示正确的是()A.1308×102B.13.08×104C.1.308×104D.1.308×1059.计算(﹣3)×÷(﹣)×3的结果是()A.9 B.﹣9 C.1 D.﹣110.如图,数轴上A,B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数二、填空题(每小题3分,共30分).11.数轴上表示数﹣5和表示﹣14的两点之间的距离是.12.﹣的相反数是,倒数是,绝对值是.13.绝对值大于1而小于4的整数有,其和为.14.太阳半径大约是696 000千米,用科学记数法表示为米.15.平方等于的数是.16.﹣|﹣| ﹣(+)(填“>”或“<”).17.已知abcd=9,且a、b、c、d互为不相等的整数,则a+b+c+d=.18.在数轴上的点A表示的数是﹣3,则与点A相距4个单位长度的点表示的数是.19.已知|m|=3,n=2,且|m﹣n|=n﹣m,则n﹣m=.20.若a、b互为相反数,c、d互为倒数,m的绝对值是2,则+m﹣cd的值为.三、解答题.21.计算(1)2+(﹣3)﹣(+5)+(﹣3)(2)99×9(3)(﹣+﹣)÷(4)10+(﹣2)×(﹣5)2.22.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+…+2012+2013﹣2014﹣2015.23.若“*”是一种新的运算符号,并且规定a*b=,求[2*(﹣2)]*(﹣2)24.已知x的相反数是﹣2,且2x+3a=5,求a的值.25.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时总计该储蓄所增加或减少多少元?26.已知|a|=3,|b|=2,且a、b异号,求a+b的值.27.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣5、+9、﹣3、﹣6、﹣4、+12、﹣7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?28.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是﹣6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100m气温大约降低0.6℃,这座山峰的高度大约是多少米?29.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)30.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?31.计算:+++++…++.华东师大版七年级上册《第1章有理数》测试参考答案一、选择题1.C;2.B;3.C;4.D;5.B;6.C;7.A;8.D;9.A;10.D;二、填空题11.9;12.;﹣;;13.±2,±3;0;14.6.96×108;15.±;16.>;17.0;18.1或﹣7;19.5;20.1或﹣3;三、解答题.21.计算(1)2+(﹣3)﹣(+5)+(﹣3)(2)99×9(3)(﹣+﹣)÷(4)10+(﹣2)×(﹣5)2.解:(1)原式=2﹣3﹣5﹣3=﹣1﹣9=﹣10;(2)原式=100×9﹣×9=900﹣=899;(3)原式=(﹣+﹣)×16=﹣×16+×16﹣×16=﹣8+4﹣2=﹣6;(4)原式=10+(﹣2)×25=10﹣50=﹣40.22.计算:1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+…+2012+2013﹣2014﹣2015.解:原式=(1﹣2﹣3+4)+(5﹣6﹣7+8)+…+(2009﹣2010﹣2011+2012)+2013﹣2014﹣2015=﹣2016.23.若“*”是一种新的运算符号,并且规定a*b=,求[2*(﹣2)]*(﹣2)解:[2*(﹣2)]*(﹣2)=*(﹣2)=0*(﹣2)==1.24.已知x的相反数是﹣2,且2x+3a=5,求a的值.解:x的相反数是﹣2,得x=2,当x=2时,2×2+3a=5,解得a=.25.某储蓄所办理的5件业务是:取出865元,取出500元,存入1230元,取出300元,取出265元,这时总计该储蓄所增加或减少多少元?解:取出865元,取出500元,存入1230元,取出300元,取出265元,分别记为﹣865元,﹣500元,1230元,﹣300元,﹣265元,﹣865+(﹣500)+1230+(﹣300)+(﹣265)=﹣700(元).答:该储蓄所减少700元.26.已知|a|=3,|b|=2,且a、b异号,求a+b的值.解:∵|a|=3,|b|=2,且a、b异号,∴a=3,b=﹣2;a=﹣3,b=2,则a+b=±1.27.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣5、+9、﹣3、﹣6、﹣4、+12、﹣7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣5)+(+9)+(﹣3)+(﹣6)+(﹣4)+(+12)+(﹣7)=1(km),答:出租车离鼓楼出发点1km远,在鼓楼的东面;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣5|+|+9|+|﹣3|+|﹣6|+|﹣4|+|+12|+|﹣7|=67(km),∵每千米的价格为2.4元,∴司机一个下午的营业额是2.4×67=160.8(元),答:若每千米的价格为2.4元,司机一个下午的营业额是160.8元.28.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是﹣6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100m气温大约降低0.6℃,这座山峰的高度大约是多少米?解:由题意得:[3﹣(﹣6)]÷0.6×100=9÷0.6×100=1500米.答:这座山峰的高度大约是1500米.29.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐多重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).30.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?解:(1)星期二收盘价为25+2﹣0.5=26.5(元/股).(2)收盘最高价为25+2﹣0.5+1.5=28(元/股),收盘最低价为25+2﹣0.5+1.5﹣1.8=26.2(元/股).(3)小王的收益为:27×1000(1﹣5‰)﹣25×1000(1+5‰)=27000﹣135﹣25000﹣125=1740(元).∴小王的本次收益为1740元.31.计算:+++++…++.解:原式=+++…+=+(1﹣+﹣+﹣+…+﹣)=+1﹣=.。
华师大版2024-2025常年七年级数学上册2.5有理数的大小比较同步练习【提升卷】(附答案)
华师大版2024-2025常年七年级数学上册2.5有理数的大小比较同步练习【提升卷】班级:姓名:亲爱的同学们:练习开始了,希望你认真审题,细致做题,不断探索数学知识,领略数学的美妙风景。
运用所学知识解决本练习,祝你学习进步!一、填空题1.比较大小:−18−19(填“>”“<”或“=”).2.比较大小:−225- 2.2 .(填“>”或“<”或“=”)3.在检测排球质量过程中,规定超过标准的克数为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是号排球.4.在数轴上表示的两个数,右边的数总比左边的数.正数都大于,负数都小于,正数大于.两个正数比较大小,绝对值的数大;两个负数比较大小,绝对值的数反而小.5.比较大小:−227−103(填“<”或“>”或“=”).二、综合题(共5题,共50分)6.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c−b0;a+b0;a−c0.(2)化简:|c−b|+|a+b|−2|a−c|.7.已知一组数:12, 0 ,-3.5, 3,−213 .(1)把这些数在下面的数轴上表示出来:(2)请将这些数按从小到大的顺序排列(用“<”连接)..8.根据下面给出的数轴,解答下列问题:(1)请你根据图中A,B(在−2,−3的正中间)两点的位置,分别写出它们所表示的有理数;(2)在数轴上画出−23,−4,5,74并将它们按照从小到大的顺序排列;(3)A,B两点之间的距离为;(4)若C点与A点相距a个单位长度(a>0),则C点所表示的数为.9.有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:−b_ 0,a−b_ 0,b−c_ 0,c−a_ 0.(2)化简:|a−b|−|b−c|+|c−a|.10.已知有理数a,b,其中数a在如图所示的数轴上对应点M,b是负数,且b在数轴上对应的点与原点的距离为3(1)a=,b=.(2)写出大于-52的所有负整数;(3)在数轴上标出表示-52,0,-|-1|,-b的点,并用“<“连接起来.三、选择题11.在数2,-2,-12,0四个数中最小的数是()A.2.B.-2 C.-12D.012.实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是()A.−a<a<1B.a<−a<1C.1<−a<a D.a<1<−a13.实数a、b在数轴上的对应点的位置如图所示,下列结论正确的是().A.a<−2B.b<2C.a>b D.−a<b14.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c15.如果m>0,n<0,且m < |n|,那么m,n,−m,−n的大小关系是()A.−n>m>−m>n B.m>n>−m>−nC.−n>m>n>−m D.n>m>−n>−m16.下列四个数中,最小的一个数是()A.-6 B.10 C.0 D.-117.已知a,b两数在数轴上的位置如图所示,则化简代数式|b−a|−|1−a|−|b−2|的结果是()A.1 B.2a﹣3 C.-1 D.2b﹣118.下列各数中,最大的是()A.-3 B.0 C.1 D.219.实数a,b,c在数轴上的对应点的位置如图所示,若a与c互为相反数,则a,b,c中绝对值最大的数是()A.a B.b C.c D.无法确定20.有理数a,b,c在数轴上的对应点的位置如图所示,则a,b,c的大小顺序是()A.a<b<c B.a<c<b C.b<a<c D.c<b<a答案解析部分1.【答案】<2.【答案】<3.【答案】五4.【答案】大;0;0;负数;大;大5.【答案】>6.【答案】(1)>;<;<(2)解:∵c-b>0,a+b<0,a-c<0∴|c-b|+|a+b|-2|a-c|=c-b-(a+b)-2[-(a-c)]=c-b-a-b+2a-2c=-a+2a-b-b+c-2c=a-2b-c7.【答案】(1)解:如图所示,;(2)-3.5<−213 < 0 <12<38.【答案】(1)解:由数轴可知,点A表示1,点B表示-2.5;(2)解:−23,-4,5,74在数轴上的位置如图所示:按从小到大的顺序排列为:−4<−23<74<5;(3)3.5(4)1+a或1-a9.【答案】(1)<;<;<;>(2)解:结合(1)可得:|a−b|−|b−c|+|c−a|=−(a−b)−[−(b−c)]+(c−a)=b−a+b−c+c−a=2b−2a10.【答案】(1)2;-3(2)解:大于-52的所有负整数是-2,-1;(3)解:-|-1|=-1,-b=3,-52<-|-1|<0<-b.11.【答案】B12.【答案】D13.【答案】D14.【答案】C15.【答案】A16.【答案】A17.【答案】C18.【答案】D19.【答案】B 20.【答案】D。
最新华东师大版七年级数学上册全册课时练习(一课一练,附详细解析过程)
华东师大版七年级数学上册全册课时练习数学伴我们成长人类离不开数学 (2)人人都能学会数学 (5)2.1.1正数和负数 (6)2.1.2有理数 (10)2.2 数轴 (14)2.3 相反数 (16)2.4 绝对值 (19)2.5 有理数的大小比较 (21)2.6.1有理数的加法法则 (25)2.6.2有理数加法的运算律 (28)2.7 有理数的减法 (32)2.8 有理数的加减混合运算 (34)2.9.1有理数的乘法法则 (36)2.9.2有理数的乘法运算律 (39)2.10有理数的除法 (43)2.11有理数的乘方 (46)2.12科学记数法 (48)2.13有理数的混合运算 (50)2.14近似数 (55)2.15 用计算器进行运算 (58)3.1列代数式 (60)3.2 代数式的值 (65)3.3 整式 (67)3.4 整式的加减 (69)4.1生活中的立体图形 (73)4.2 立体图形的视图 (77)4.3立体图形的表面展开图 (80)4.4平面图形 (83)4.5.1 点和线 (88)4.5.2 线段的长短比较 (91)4.6 1. 角 (94)4.6 2. 角的比较和运算 (98)4.6 3. 余角和补角 (103)5.1.1对顶角 (109)5.1.2垂线 (113)5.1.3 同位角、内错角、同旁内角 (116)5.2.1 平行线 (119)5.2.2平行线的判定 (122)5.2.3平行线的性质 (126)数学伴我们成长人类离不开数学一、选择题1.李叔叔家客厅长6米,宽4.8米,计划在地面铺上方砖.为了美观,李叔叔想使地面都是整块方砖,请你帮忙选择一种方砖,你的选择是( )A.边长50厘米的B.边长60厘米的C.边长100厘米的D.以上都不选2.如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是( )A.41B.40C.39D.383.已知世运会、亚运会、奥运会分别于2009年、2010年、2012年举办过.若这三项运动会均每四年举办一次,则这三项运动会均不举办的年份是( )A.2070年B.2071年C.2072年D.2073年二、填空题4.某种商品每件的进价为180元,按标价的九折销售时,利润率为20%,这种商品每件标价是________元.5.假设2019年8月3日是星期六,则2019年8月18日是星期________.6.如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽分别为2和1的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片________张才能用它们拼成一个新的正方形.三、解答题7.(8分)为了学生的卫生安全,学校给每个住宿生配一个水杯,每只水杯3元,友谊商城打九折;中百商厦“买8送1”,学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由.8.(8分)2019年5月1日小明和爸爸一起去旅游,在火车站看到如表所示的列车时刻表:2019年5月1日××次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸用手机上网找到了以前同一车次的时刻表如下:2006年12月15日××次列车时刻表始发点发车时间终点站到站时间A站[来源:数理化网]下午14:30 B站第三日8:30比较了两张时刻表后,小明的爸爸提出了如下两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果四舍五入到个位)9.(10分)你玩过火柴吗?如图,用火柴棒搭正方形,所搭正方形个数n与火柴棒根数s之间有一定的关系:将下面表格补充完整并解答后面的问题:正方形个数n 1 2 3 4 5 6 …n火柴棒根数s求搭10个正方形,需要多少根火柴棒?答案1.【解析】选B.6米=600厘米,4.8米=480厘米.选项A:600÷50=12,480÷50=9.6,客厅宽不是方砖边长的整数倍,这种方砖不合适;选项B:600÷60=10,480÷60=8,客厅长和宽都是方砖边长的整数倍,这种方砖可以;选项C:600÷100=6,480÷100=4.8,客厅宽不是方砖边长的整数倍,这种方砖不合适.2.【解析】选C.三个骰子18个面上的数字的总和为:3×(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以看不见的面上的点数总和是63-24=39.3.【解析】选B.由于这三项运动会均每四年举办一次,所以只要每个选项与2009,2010,2012的差有一个是4的倍数,则能在这一年举办此项运动会,否则这三项运动会均不在这一年举办.因为选项B中,2071-2009=62,2071-2010=61,2071-2012=59,均不是4的倍数,所以这三项运动会均不在2071年举办.4.【解析】180×(1+20%)÷90%=240(元).答案:2405.【解析】2019年8月3日至2019年8月18日经过了15天,15÷7=2……1,所以2019年8月18日是星期日.答案:日6.【解析】本题可以动手操作,画也行,用纸片拼也行,应该取丙类纸片4张.答案:47.【解析】到中百商厦买合算.因为到友谊商城需花费:180×3×90%=486(元),到中百商厦只需买160只,就送20只,所以需花费:160×3=480(元).因为486元>480元,所以到中百商厦买合算.8.【解析】(1)原来该次列车所用时间=2×24+8.5-14.5=42(小时).现在该次列车的运行时间=24+12-8=28(小时),42-28=14(小时),所以缩短了14小时.(2)28×200÷42≈133(千米).答:(1)现在该次列车的运行时间比以前缩短了14小时,(2)原来的平均时速约为每小时133千米.9.【解析】前三个空可通过直接数得出n=1时,s=4;n=2时,s=7;n=3时,s=10.比较4,7,10,可看出后一个数比前一个数大3,故n=4时,s=13;n=5时,s=16;n=6时,s=19.观察填入的数据可看出正方形个数×3+1即为火柴棒根数,故当正方形个数为n 时,s=3n+1,所以n=10时,s=3×10+1=31.答:需要31根火柴棒.人人都能学会数学1.一件衣服的标价200元,若以6折销售,仍可获利20%,则这件衣服的进价是( )元。
习题华师大版七上2.5 有理数的大小比较(含答案)-
ac §2.5 有理数的大小比较基础巩固训练一、选择题1.下列式子中,正确的是( ) A .-6<-8 B .-11000>0 C .-15<-17 D .13<0.3 2.下列说法中,正确的是( )A .有理数中既没有最大的数,也没有最小的数;B .正数没有最大的数,有最小的数C .负数没有最小的数,有最大的数;D .整数既有最大的数,也有最小的数3.大于-72而小于72的所有整数有( ) A .8个 B .7个 C .6个 D .5个4.有理数a ,b ,c 在数轴上的位置如图所示,下列各式成立的是( )A .c>b>a ;B .│a │>│b │>│a │;C .│c │>│b │>│a │D .│c │>│a │>│b │5.下列各式中,正确的是( )A .-│-0.1│<-│-0.01│;B .0<-│-100│;C .-12>-|-13|; D .│5│>│-6│ 二、填空题1.数轴上原点右边的数是________,左边的数是______,右边的数______左边的数.2.用“>”、“<”或“=”填空.-0.01_______0,-45_______-34. 3.数轴上的点A ,B ,C ,D 分别表示数a ,b ,c ,d ,已知A 在B 的右侧,C 在B 的左侧,D 在B ,C 之间,则a ,b ,c ,d 的大小关系________.(用“<”连接)4.一个数比它的相反数小,这个数是_______数.5.绝对值不大于3的非负整数有________.三、比较大小1. 和3.142; 2.-0.001和0; 3.0.0001和-10004.-56和-67 5.-59和-13 6.-20042003和-20052004四、解答题在数轴上表示下列各数,并用“<”连接起来,-214,4,-1,1.2,313,-5,0.综合创新训练五、学科内综合题有理数a,b,c在数轴上的位置如图所示,试比较a,-a,b,-b,c,-c,0的大小,并用“<”连接.ba c六、学科间综合题1.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0按由大到小的顺序排列.2.若a>0,b<0,c>0,化简│2a│+│3b│-│a+c│.七、创新题比较下列算式结果的大小,并用“〉”、“〈”或“=”填空.52+72________2×5×7;92+102________2×9×10;132+142_______2×13×14;52+52_______2×5×5;122+122_______2×12×12.通过观察和归纳,你有什么发现?中考题回顾八、中考题求满足│x│+│y│<100的整数解有多少组?(x≠y)答案:一、1.C 2.A 3.B 4.D 5.A二、1.正数负数大于 2.< < 3.c<d<b<a 4.负 5.0,1,2,3三、1. <3.142 2.-0.001<0 3.0.0001>-1000 4. -56>-675.-59<-136.-20042003<-20052004四、图略 -5<-214<-1<0<1,2<313<4五、a<-c<b<0<-b<c<-a六、1.a>c>0>d>b 2.a-3b-c七、52+72>2×5×7,92+102>2×9×10,132+142>2×13×14,52+52=2×5×5,122+122=2×12×12.两个数的平方和大于等于这两个数乘积的2倍.(也可以用式子表示)八、解:0≤│x│≤99,0≤│y│≤99,即x,y分别可取-99到99之间的199个整数且x≠y.当x=0时,y可取的整数有198个(│y│<100).当x=•±1•时,•y•可取的整数有196个(│y│<99).当x=±49时,y可取的整数有100个(│y│<51).当x=±50时,y可取的整数有99个(│y│<50).当x=±98时,y可取的整数有3个(│y│<2).当x=±99时,•y可取的整数有1个(│y│<1).所以共有整数解198+2(1+3+5+…+99)+2(100+102+•…+196)=19702(组).。
华师大版-数学-七年级上册-【推荐】2.5 有理数的大小比较 表格式教案
例:比较下列各对数的大小:
(1) 与 (2) 与
(3) 与 (4) 与
注意:在比较两个负数的大小时,应强调学生注意比较的方法及它们之间的推理关系。
三、巩固训练:
P34 exc1、2、3、4
四、知识小结:
本节课结合前面所学的正数间的大小比较及正数、零、负数的大小比较,结合数轴上两个数的大小比较,结合负数的绝对值与数的位置关系,从而得到两个负数的大小比较方法。关在其中初步培养学生的推理能力及转化能力。
二、新课拆析:
1、知识基础:
其一:小学阶段对两个正数的大小比较知识;
其二:正数与零、负数与零、正数与负数的大小比较;
其三:数轴上的点的位置与数大小的关系;
其四:求绝对值的方法及绝对值的特点。
2、知识形成:
(引例)如何通过数轴比较-2与-6的大小?
释疑:数轴上的数,右边的数比左边的数大
通过对几个例子的分析能让学生认识到:在数轴上因为表示两个负数的两个点中,与原点距离较大的那个点在左边。
教学过程设计
分析备注
第二章有理数
§2.5有理数的大小比较
教学目的:
1、要求学生会利用绝对值比较两个负数的大小;2、掌握有理数大小比较的一般方法。
教学分析:
重点:通过对两个负数比较大小过程的推理,培养学生的推理能力,注重数学上的转化思想的渗透。
难点:比较两个负数的大小。
教学过程:
一、知识导向:
本节课通过对小学阶段学过的两个正的分数或小数的大小比较及前面正数、零、负数的大小比较知识作适当复习,充分利用数轴和绝对值的知识,通过直演示,将数轴上在原点左侧表示数的“点距原点越远”,与这个“数的绝对值越大”相对应起来。让学生在直观上感受到两个负数大小比较法则的合理性。
2024——2025学年华东师大版七上数学期中考试卷
2024-2025学年七年级上学期数学期中试卷注意事项1,本卷答题时间120分钟,满分150分。
2,评测范围:2024版华东师大七上数学第1--2章。
3,本卷共分为两大部分,第I卷选择题,第II卷非选择题。
第I卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)2024的相反数是()A.12024B.-12024C.2024 D.﹣20242.(4分)有理数分为()A.正数和负数B.素数和合数C.整数和分数D.偶数和奇数3.(4分)计算7﹣(﹣5)+(﹣7)﹣(+3)时,去括号正确的是()A.7﹣5+7+3B.7+5﹣7﹣3C.7﹣5+7﹣3D.7﹣5﹣7+3 4.(4分)若3a2b n﹣1与是同类项,则m n的值为()A.3B.2C.1D.05.(4分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.(﹣2)2=﹣4D.2022÷3×=20226.(4分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022 7.(4分)根据等式的性质,下列等式的变形正确的是()A.若a=b,则6+a=b﹣6B.若﹣3x=﹣3y,则x=﹣yC.若,则D.若a=b,则8.(4分)下列说法正确的是()A.多项式x2﹣5xy﹣x+1的次数是5B.单项式的次数是3C.单项式x2y的系数是0D.多项式2x2+xy2+3是二次三项式9.(4分)若|m|=5,|n|=2,且m、n异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或310.(4分)如图是一个运算程序的示意图,若开始输入x的值为27,则第2021次输出的结果为()A.3B.27C.9D.1第II卷二.填空题(共6小题,满分24分,每小题4分)11.(4分)新华网北京2020年6月19日电,今年的京东618是新冠肺炎疫情后第一个电商行业大促的购物节,数据显示,2020年6月1日0时至6月18日24时,京东618全球年中购物节累计下单金额近27000000万元,创下新的纪录,数据27000000用科学记数法可表示为.12.(4分)已知关于x的方程(a+3)x﹣4=x﹣4a的解为x=﹣2,则a=.13.(4分)比较大小:﹣(填“>”或“<”).14.(4分)将13.549精确到十分位得.15.(4分)如图,已知长方形铁板的长为acm,宽为2bcm,在中心挖去一个圆面,用含a,b的式子表示阴影部分的面积为cm2.16.(4分)如图,数轴上有两点表示的数为a,b,则化简|a﹣b|﹣|b﹣1|=.三.解答题(共9小题,满分86分)17.(8分)计算:(1)(+﹣)÷(﹣);(2)﹣22+(﹣3)2×(﹣)﹣42÷|﹣4|.18.(8分)化简:(1)(4x2﹣5x)+(x2+4x﹣1)﹣3x2;(2)(5a2+a﹣6)﹣4(3﹣8a+2a2).19.(6分)先化简,再求值:3a2b﹣[2ab2﹣2(﹣a2b+ab2)],其中a=﹣2,b=.20.(10分)若多项式mx3﹣2x2+4x﹣3﹣3x3+6x2﹣nx+6化简后不含x的三次项和一次项,请你求m、n的值,并求出(m﹣n)2021的值.21.(10分)小马虎做一道数学题“两个多项式A,B,已知B=2x2﹣3x+6,试求A﹣2B的值”.小马虎将A﹣2B 看成A+2B,结果答案(计算正确)为5x2﹣2x+9.(1)求多项式A;(2)求出当x=﹣1时,A﹣B的值.22.(10分)出租车司机老姚某天上午8:00~9:15的营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负.他这天上午行车里程(单位:km)如下:+5,﹣3,+6,﹣7,+6,﹣2,﹣5,﹣4,+6,﹣8.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若出租车的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元,求姚师傅从最后一位乘客里收入多少元?23.(10分)我们知道:﹣=,﹣=,……那么反过来也成立.如:=﹣,=﹣……则计算:①++++……++②++++……++.24.(12分)某校准备购买篮球50个,跳绳x条(x>50).篮球定价80元/个,跳绳定价20元/条.商店甲、乙向学校提供了各自的优惠方案:商店甲:买一个篮球送一条跳绳;商店乙:篮球和跳绳都按定价的90%付款.(1)若该校到商店甲、乙购买,分别需付款多少元;(用含x的代数式表示)(2)若x=300,通过计算说明此时哪间商店购买较为合算?(3)当x=300时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并把付款的钱算出来.25.(12分)如图,已知数轴上点A,C表示的数分别为﹣10,20,我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如:点A与点C之间的距离记作AC.(1)点A与点C之间的距离AC=;(2)已知点B为数轴上一动点,且满足CB+AB=32,直接写出点B表示的数;(3)动点D从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A以每秒2个单位长度向左运动,点C以每秒3个单位长度向右在数轴上运动,运动时间为t秒.代数式2AD+m×DC的值不随时间t的变化而改变,请求出m的值.参考答案一.选择题1.【答案】D 2.【答案】C 3.【答案】B 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】A 10.【答案】D 二.填空题11.【答案】2.7×107.12.【答案】4.13.【答案】见试题解答内容14.【答案】13.5.15.【答案】2ab﹣πb2,16.【答案】a﹣1.三.解答题17.【答案】(1)﹣31;(2)﹣14.18.【答案】(1)2x2﹣x﹣1;(2)﹣3a2+33a﹣18.19.先化简,再求值:3a2b﹣[2ab2﹣2(﹣a2b+ab2)],其中a=﹣2,b=.【答案】见试题解答内容20.【答案】3,4,﹣1.21.【答案】(1)x2+4x﹣3;(2)﹣17.22.【答案】(1)将第七名乘客送到目的地时,老姚刚好回到上午出发点;(2)老姚距上午出发点6km,在出发点的西面;(3)姚师傅从最后一位乘客里收入18元.23.【答案】(1)(2)24.【答案】(1)(20x+3000)元,(3600+18x)元;(2)x=300时,在甲、乙两家商店购买需付款一样;(3)8500元;方案见解答.25.【答案】(1)30;(2)﹣11或21;(3)﹣3.。
七年级上册数学单元测试卷-第2章 有理数-华师大版(含答案)
七年级上册数学单元测试卷-第2章有理数-华师大版(含答案)一、单选题(共15题,共计45分)1、若x的相反数是﹣2,|y|=5,则x+y的值为()A.﹣7B.7C.﹣7或7D.﹣3或72、两数的和与积都是负数,这两个数为()A.两数异号,且负数的绝对值较大B.两数异号,且正数的绝对值较大 C.两数都是负数 D.两数的符号不同3、计算-3-2的结果是()A.-1B.-5C.1D.54、下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④5、下列说法:①a为有理数,则﹣a一定是负数;②设a为有理数,则|a|=a;③设a为有理数,则它的倒数是;④设a为有理数,则a2是一个非负数.其中错误的有()A.①②B.③④C.①②③D.①②④6、已知b<0.则a,a﹣b,a+b中最大的是()A.aB.a+bC.a﹣bD.以上都不对7、据官方统计,年双十一当天,天猫总成交额达元.数用科学记数法可表示为()A. B. C. D.8、下列各组数中相等的是()A. 与B. 与C. 与D. 与9、若一个数与它的相反数在数轴上的对应点的距离是10个单位长度,那么这个数是( )A.+10或-10B.+5或-5C.20或-20D.15或-1510、计算3.8×107﹣3.7×107,结果用科学记数法表示为()A.0.1×10 7B.0.1×10 6C.1×10 7D.1×10 611、在-0.1428中用数字3替换其中的一个非0数字后,使所得的数最大,则被替换的数字是( )A.1B.2C.4D.812、下列有理数﹣(﹣2),(﹣1)6,﹣|﹣5|,﹣3.14,﹣0,其中负数的个数有()A.1个B.2个C.3个D.4个13、下列说法中错误的是()①0既不是正数,也不是负数;②0是自然数,也是整数,也是有理数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小.A.①②B.③④C.②③D.②③④14、如果a,b,c为非零有理数且a + b + c = 0,那么的所有可能的值为()A.0B.1或- 1C.2或- 2D.0或- 215、 =()A. B. C. D.二、填空题(共10题,共计30分)16、计算:________.17、如图所示,、、表示有理数,将、、用“>”连接起来________ .18、如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等,那么,第5个台阶上的数是________;从下到上前31个台阶上数的和是________.19、﹣6的绝对值是________。
华师大版初中七年级(上)数学全套训练题含答案(共43页)
华师大版初中七年级(上)数学全套训练题第1单元 走进数学世界课标要求1.能用数学知识解决身边的一些问题.2.学会从数学的角度去思考,用数学支持自己的结论.典型例题例1 按规律填数:2、7、12、17、___、_____.解:分析,题目中给出的四个数后面的数都比前面的数大5,根据这个规律可知后面的空应填数字22和27.例2 甲、乙、丙三人到李老师家里学钢琴,甲每3天去一次,乙每4天去一次,丙每6天去一次,如果8月3日他们三人在李老师家碰面,那么下一次他们在李老师家碰面的时间是_________.解:根据数学知识,取出3、4、6的最小公倍数(12)即可.3+12=15,所以,下一次他们见面的时间是:8月15日.例3 如图,在六边形的顶点出分别标上数1,2,3,4,5,6,使任意三个相邻顶点的三数之和都大于9.解:要使任意三数之和都大于9,那么1相邻的数只能是4和6,其余依此类推可得其顺序为:1,6,3,2,5,4.例4 三阶幻方(九宫图)是流传于我国古代数学中的一种游戏.最简单的九宫图如图,对这样的幻方多做一些钻研和探索,你将获得更多的启示.比如:九宫图中的九个方格是否可以填其他的数?如5,10,15,20,25,30,35,40,45,如果可以又该怎样填写?解:可以从九宫图的填法中得到答案. 相应的数分别是:10、35、30、45、25、5、 20、15、40.例5 五位老朋友a,b,c,d,e 去公园去约会,他们见面后都要和对方握手以示问候,已知a 握了4次,b 握了1次,d 握了3次,e 握了2次,那么到现在为止,c 握了几次?解:a 和 b 、c 、d 、e 都握了共4次,b 只握1次,那他只和a 握过, d 和a,c,e 握了3次,e 和a,d 握2次 ,所以到目前为止,c 握了2次.强化练习1.运用加、减、乘、除四种运算,如何由三个5和一个1得到24(每个数只能用一次).2.观察已有数的规律,在( )内填入恰当的数.11 11 2 11 3 3 11 4 6 4 11 ( ) ( ) ( ) ( ) 13.现栽树12棵,把它栽成三排,要求每排恰好为5棵,如图所示的就是一种符合条件的栽法,请你再给出三种不同的栽法(画出图形即可).[说明]:动手操作题是让学生在实际操作的基础上设计有关的问题,有利于培养学生的创新能力和实践能力,就本题而言,答案不止三种,不在交点处的点可平移,因此可得到多个答案.(请同学们自己做).4. 一种圆筒状包装的保鲜膜,如图,其规格为“20cm ×60m ”,经测量这筒保鲜膜的内径ø1,外径ø2的长分别为3.2cm 、4.0cm,则该种保鲜膜的厚度为多少cm ?5. 李刚同学设计了四种正多边形的瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是① ② ③ ④ ( )A. ①②④B. ②③④C. ①③④D. ①②③单元检测一、填空题1. 如图所示,图中共有____个三角形、______个正方形.2. 按规律填数:1,14,2,15,3,16,( ),( ).3. 若a ⊙b=4a-2b+ ab,则 ⊙ =________. 4.如果12345679×27=333333333,那么12345679×9=______.5. 要从一张长为40cm,宽为20cm 的矩形纸片中剪出长为长为18cm,宽为12cm 的矩形制片,最多能剪出____ 张6.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20另一台亏损20%,则本次买卖中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元7. 18º,75º,90º,120º,150º这些角中,不能用一幅三角板拼出来的是_________.8. 观察下列等式;9-1=8;16-4=12;25-9=16;36-16=20,….这些等式反映了自然数之间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律是________.二、选择题9. 某商品的进价是110元,销售价是132元,则此商品的利润率是( )A .15% B.20% C.25% D.10%10. 找出“3,7,15,( ),63”的规律,括号理应填( )A.46B.27C.30D.3111. 把长方形的长去掉4厘米后,余下的是一个面积为64平方厘米的正方形,则原来长方形的面积为( )A.77平方厘米B.80平方厘米C.96平方厘米D. 100平方厘米12. 火车票上的车次号有两个意义:一是数字越小表示车速越快,1∽98次为特快列车,101∽198为直快列车,301∽398为普快列车,401∽ 498为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A.20B.119C.120D.31913. 将正偶数按下表排成5列:121512第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24第4行 32 30 28 26……根据上面的排列规律,则2000应在( )A.第125行,第1列B. 第125行,第2列C. 第250行,第1列D. 第250行,第2列14. 在一列数1,2,3,4,…,1000中,数字0共出现了( )A.182次B.189次C.192次D.194次15. 将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )A B C D16. 法国的“小九九”从“一一得一” 到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.右面两个图框是用法国“小九九”计算78和89的两个示例.若用法国“小九九”计算79,左右手依次伸出手指的个数是( )A 、2,3B 、3,3C 、2,4D 、3,4三、解答题17. 在( )内填上“+”或“–”或“÷”或“×”,使等式成立.4( )6( )3( )10 = 2418. 过四边形一个顶点的对角线可以把四边形分成两个三角形,过五边形一个顶点的对角线把它分成_____个三角形,n 边形呢?_____________19. 小明早上起床,叠被用3分,刷牙洗脸用4分,烧开水用10分,吃早饭用7分,洗碗用1分,整理书包用2分,冲牛奶用1分,请帮小明安排一下时间.20. 木匠有一矩形木板,但右上角已缺损一块,尺寸如图所示,你能把它拼成一个正方形桌面吗?21. 如果依次用x 1 ,x 2 ,x 3 ,x 4 表示图(1),(2),(3),(4)中三角形的个数,那么x 1 =3,x 2 =8,x 3 =15,x 4 =24.如果按照上述规律继续画图,那么x n 与n 之间的关系如何?22. 如图所示,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设计成四个部11122分.(1)用直线分割;(2)每个部分内各有一个景点;(3)各部分的面积相等(可用铅笔画,只要求画图正确,不写画法)23. 我们与数学交朋友×友=我我我我我我我我我,其中每个汉字代表自然数1∽9中的一个,且互不重复,那么其中的“友”代表的数是什么?.24. 用四块如图(1)所示的瓷砖拼成一个正方形图案,使拼成的图案成一个轴对称图形(如图2),请你分别在图(3)、图(4)中各画一种与图(2)不同的拼法,要求两种拼法各不相同,且其中至少有一个图形既是中心对称图形,又是轴对称(3) (4) 25.某超市推出如下优惠方案:①一次性购物不超过100元,不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款多少元?26.观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律:①211211-=⨯②322322-=⨯ ③433433-=⨯ ④544544-=⨯ ……⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式.第一单元参考答案强化练习:1.解:5×(5 -1÷5 ) = 24 ; 2.解:经观察可得所填的数应为:5 , 10 ,10 ,5 ;3.略 ; 4. 利用圆筒的体积相等列等式。
华东师大版七年级数学上册课后习题答案
第 2 章 有理数 2.1 有理数华东师大版数学七年级上册课后习题答案1、正数和负数练习 1. 略2. 8844 表示海平面以上 8844 米,-155 表示海平面以下 155 米。
海平面的高度用 0(米)表示。
3. 正数:+6,54, 22 ,0.0017负数:-21,-3.14,-9994. 不对,因为一个数不是正数,还可能是 0,而 0 不是负数。
2、有理数练习1. 举例略,这些数都是有理数。
2. 只有一个,是 0。
习题 2.11. 整数:1,-789,325,0,-20;分数:- 0.10 510.10,100.1,- 5% ; ,, 8正数:1 5 ; ,,325,10.10,100.1 8负数:-0.10,-789,-20,-5%。
, 2. 本题是开放性问题,答案不唯一,例如:重叠部分填:1, 2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填 0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3. 按照第 2 题的不同填法本题有不同的答案。
4. (1)1,-1,1;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-1,-1,-1,1。
(2)9,-10,11;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-10,-100,-200,201。
(3) 1,- 1 1 ;第 10 个数,第 100 个数,第 200 个数,8 9 10 11 1 1第 201 个数分别为 , , ,- 。
10 100 200 2012.2 数轴 1. 数轴练习1(1)正确,符合数轴的定义;(2) 不正确,单位长度不一致; (3) 不正确,负数标注错误。
2. -3 位于原点左边,距离原点 3 个单位长度; 4.2 位于原点右边,距离原点 4.2 个单位长度; -1 位于原点左边,距离原点 1 个单位长度;1位于原点右边,距离原点 12 2个单位长度。
华师大版 七年级数学初一上册《第二章有理数》单元试卷及答案
第二章 有理数单元测试题一. 判断题:1.有理数可分为正有理数与负有理数 . ( )2.两个有理数的和是负数,它们的积是正数,则这两个数都是负数. ( )3.两个有理数的差一定小于被减数. ( )4.任何有理数的绝对值总是不小于它本身. ( )5.若0<ab ,则b a b a -=+;若0>ab ,则b a b a +=+ . ( )二.填空题:1.最小的正整数是 ,最大的负整数是 ,绝对值最小的数是 .2.绝对值等于2)4(-的数是 ,平方等于34的数是 ,立方等于28-的数是 .3.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,立方等于本身的数是 .4.已知a 的倒数的相反数是715,则a = ;b 的绝对值的倒数是312,则b = .5.数轴上A 、B 两点离开原点的距离分别为2和3,则AB 两点间的距离为 .6.若222)32(,)32(,32⨯-=⨯-=⨯-=c b a ,用“<”连接a ,b ,c 三数: .7.绝对值不大于10的所有负整数的和等于 ;绝对值小于2002的所有整数的积等于 .三.选择题:1.若a ≤0,则2++a a 等于 ( )A .2a +2B .2C .2―2aD .2a ―22.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为1, p 是数轴到原点距离为1的数,那么122000++++-m abcdb a cd p 的值是 ( ). A .3 B .2 C .1 D .03.若01<<-a ,则2,1,a aa 的大小关系是 ( ). A .21a a a << B .21a a a <<C .a a a <<21D .aa a 12<< 4.下列说法中正确的是 ( ).A. 若,0>+b a 则.0,0>>b aB. 若,0<+b a 则.0,0<<b aC. 若,a b a >+则.b b a >+D. 若b a =,则b a =或.0=+b a5.cc b b a a ++的值是 ( ) A .3± B .1±C .3±或1±D .3或16.设n 是正整数,则n )1(1--的值是 ( )A .0或1B .1或2C .0或2D .0,1或2四.计算题1.[]24)3(2611--⨯--2.23.013.0)211653(1⨯⎥⎦⎤⎢⎣⎡+--÷3.%).25()215(5.2425.0)41()370(-⨯-+⨯+-⨯-4.22320012003)21(24)23(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷-五、2++b a 与4)12(-ab 互为相反数,求代数式++-+b a ab ab b a 33)(21的值.六、 a 是有理数,试比较2a a 与的大小.七.32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.第二章 有理数单元测试题参 考 答 案一.判断题:×√×√√ 二.填空题:(1)1,—1,0;(2)±16,±8,—4;(3)0,±1,非负数,0和±1; (4)367-,73±;(5)1或5;(6)c <a <b . 三.选择题:(1)B (2)B (3)B (4)D (5)C (6)C 四. 1.61;2.1;3.100; 4.原题应改为223200120003)21(24)32(3)5.0(292)1(-⨯÷-÷⎥⎦⎤⎢⎣⎡-⨯--⨯+÷- =—34. 五.1253 六.当a <0或a >1时,a < a 2;0< a <1,a > a 2;当a =0或a =1时,a =a 2.七.n n n 8)12()12(22=--+,8000.。
华师大版数学七年级上册《2.5有理数的大小比较》说课稿2
华师大版数学七年级上册《2.5 有理数的大小比较》说课稿2一. 教材分析华师大版数学七年级上册《2.5 有理数的大小比较》是学生在学习了有理数的概念、加减乘除运算的基础上,进一步探讨有理数的大小比较。
这一节内容的有理数的大小比较是数学中的一个重要概念,在日常生活和各类计算中都有着广泛的应用。
教材从学生已有的知识出发,通过实例引导学生探究有理数的大小比较方法,从而让学生掌握有理数大小比较的规则。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的概念和加减乘除的运算方法,但对于有理数的大小比较,可能还停留在直观感受上,缺乏系统性的认识。
因此,在教学过程中,需要教师引导学生从实例中发现规律,总结有理数大小比较的方法。
三. 说教学目标1.让学生掌握有理数的大小比较方法,能运用有理数的大小比较解决实际问题。
2.培养学生的逻辑思维能力,提高学生运用数学知识解决实际问题的能力。
3.激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:让学生掌握有理数的大小比较方法,能运用有理数的大小比较解决实际问题。
2.教学难点:有理数大小比较的规律的发现和总结。
五. 说教学方法与手段1.采用问题驱动法,引导学生从实例中发现问题,提出问题,并通过小组合作、讨论的方式解决问题。
2.运用多媒体课件,生动形象地展示有理数的大小比较方法,帮助学生直观地理解。
3.采用激励性评价,鼓励学生积极参与课堂活动,培养学生的自主学习能力。
六. 说教学过程1.导入新课:通过复习有理数的概念和加减乘除运算,引出有理数的大小比较。
2.探究有理数大小比较的方法:让学生举例说明有理数的大小比较方法,引导学生发现规律,总结有理数大小比较的规则。
3.运用有理数大小比较的方法解决实际问题:通过实例,让学生运用有理数大小比较的方法解决实际问题,巩固所学知识。
4.课堂小结:让学生总结本节课所学内容,检查学生的学习效果。
七. 说板书设计板书设计要有条理,清晰地展示有理数大小比较的规则,便于学生理解和记忆。
华东师大版七年级数学上册2.5 有理数的大小比较教案
第2章有理数课题 2.5有理数的大小比较授课人教学目标知识技能掌握有理数大小的比较方法,会利用绝对值比较两个负数的大小.数学思考通过数轴来比较两个负数的大小,培养学生利用旧知识建立新知识的化归能力.问题解决培养并提高学生运用所学知识解决问题的能力,学会用数形结合方法解决问题.情感态度通过师生、生生合作学习,促进交流,激发学生对数学学习的兴趣.教学重点运用法则或借助数轴比较两个有理数的大小.教学难点利用绝对值比较两个负分数的大小.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回顾1.复习绝对值的几何意义和代数意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.复习有理数大小比较的方法:在数轴上,右边的数总比左边的数大;正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数.通过回顾,为本节课的学习做好铺垫.活动一:创设情境导入新课【课堂引入】(多媒体展示)某一天哈尔滨和北京的最低气温如下:哈尔滨-20 ℃北京-10 ℃图2-5-2活动一:你知道哪个气温低吗?把你从图中得到的气温表示在数轴上比较一下大小.活动二:分别求出图中气温值的绝对值,然后比较一下这两个绝对值的大小.通过上面的两个活动,两组值的大小关系有什么关系呢?除了用数轴比较两个负数的大小外,你还能得到什么方法吗?从常见的气温入手,激发学生的求知欲望,用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会数学来源于生活并服务于生活,诱发学生对新知识的需求.活动二:实践探究交流新知【探究】利用绝对值比较两个负数的大小1.发现、总结:(1)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(2)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.比较两个负数-34和-23的大小:(1) 先分别求出它们的绝对值:||-34=34=912,||-23=23=812.(2)比较绝对值的大小:∵912>812,∴34>23.(3)得出结论:-34<-23.3.归纳:有理数大小比较的一般法则:(1)_正数都大于零,负数都小于零,正数大于负数.(2)_两个正数,应用已有的方法比较;(3)_两个负数,绝对值大的反而小.找准新旧知识的连接点,形成新知识,使学生顺利掌握新知识.活动三:开放训练体现应用【应用举例】例1比较下列各对数的大小:(1)-1与-0.01;(2)-||-2与0;(3)-0.3与-13;(4)-()-19与-||-110.说明:①严格要求学生规范书写格式,训练学生逻辑推理能力;②注意符号“∵”“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分将分母化为相同后再比较.例2用“>”连接下列各数:2.6,-4.5,110,0,-223.对本节知识进行练习,培养学生分析问题、解决问题的能力.通过用绝对值或数轴对两个负数比较大小,让学生学会尝试从不同的角度思考解决问题的方法,并体会不同方法之间的差异,同时,也要注意思维定势的影响.【拓展提升】例3(1)有没有最大的有理数,有没有最小的有理数,为什么?(2)有没有绝对值最小的有理数?若有,请把它写出来.(3)大于-1.5且小于4.2的整数有________个,它们分别是________.(4)若a>0,b<0,a<|b|,则你能比较a,b,-a,-b这四个数的大小吗?学生自主解答,教师做好指导,并指出解答问题的易错点和方法.拓展提升,提高学生的应考能力.活动三:开放训练体现应用【达标测评】1. 比较下列各对数的大小:(1)-134与145;(2)-58与-0.618.2. 将有理数0,-3.14,-227,2.7,-4,0.14按从小到大的顺序排列,用“<”号连接起来.3.绝对值不小于1且不大于4的非负数为__________.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.利用典型的练习进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.活动四:课堂总结反思1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说.2.布置作业:教材P27练习注重课堂小结,激发学生参与的主动性,为每一个学生的发展与表现创造机会.【知识网络】提纲挈领,重点突出.【教学反思】①[授课流程反思]这节课主要是通过老师的引导让学生自己发现知识、提高能力.我主要引导学生亲自经历知识的产生和归纳总结过程,突出学生的主体地位,如学生四动参与教学活动:动手排列数、动眼观察数的特点、动脑总结归纳比较两个负数的法则、亲自经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标.②[讲授效果反思]__________________________________________________________________________________________________③[师生互动反思]本节课体现了老师与学生的交流,通过讲练结合的形式,让学生主动快乐地学习.在教学过程中始终注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现理论,实现师生互动.④[习题反思]反思,更进一步提升.好题题号________________________________________ 错题题号________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
c §2.5 有理数的大小比较
基础巩固训练
一、选择题
1.下列式子中,正确的是( ) A .-6<-8 B .-11000>0 C .-15<-17 D .13
<0.3 2.下列说法中,正确的是( )
A .有理数中既没有最大的数,也没有最小的数;
B .正数没有最大的数,有最小的数
C .负数没有最小的数,有最大的数;
D .整数既有最大的数,也有最小的数
3.大于-72而小于72的所有整数有( ) A .8个 B .7个 C .6个 D .5个
4.有理数a ,b ,c 在数轴上的位置如图所示,下列各式成立的是( )
A .c>b>a ;
B .│a │>│b │>│a │;
C .│c │>│b │>│a │
D .│c │>│a │>│b │
5.下列各式中,正确的是( )
A .-│-0.1│<-│-0.01│;
B .0<-│-100│;
C .-12>-|-13
|; D .│5│>│-6│ 二、填空题
1.数轴上原点右边的数是________,左边的数是______,右边的数______左边的数.
2.用“>”、“<”或“=”填空.
-0.01_______0,-45_______-34
. 3.数轴上的点A ,B ,C ,D 分别表示数a ,b ,c ,d ,已知A 在B 的右侧,C 在B 的左侧,D 在B ,C 之间,则a ,b ,c ,d 的大小关系________.(用“<”连接)
4.一个数比它的相反数小,这个数是_______数.
5.绝对值不大于3的非负整数有________.
三、比较大小
1. 和3.142; 2.-0.001和0; 3.0.0001和-1000
4.-56和-67 5.-59和-13 6.-20042003和-20052004
四、解答题
在数轴上表示下列各数,并用“<”连接起来,-2
14,4,-1,1.2,313
,-5,0.
综合创新训练
五、学科内综合题
有理数a,b,c在数轴上的位置如图所示,试比较a,-a,b,-b,c,-c,0的大小,并用“<”连接.
a c
b
六、学科间综合题
1.已知-a<b<-c<0<-d,且│d│<│c│,试将a,b,c,d,0按由大到小的顺序排列.
2.若a>0,b<0,c>0,化简│2a│+│3b│-│a+c│.
七、创新题
比较下列算式结果的大小,并用“〉”、“〈”或“=”填空.
52+72________2×5×7;
92+102________2×9×10;
132+142_______2×13×14;
52+52_______2×5×5;
122+122_______2×12×12.
通过观察和归纳,你有什么发现?
§2.6 有理数的加法
基础巩固训练
一、选择题
1.两个有理数相加,如果和小于每一个加数,那么()
A.这两个加数同为负数; B.这两个加数同为正数
C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零
2.下列说法正确的是()
A.两数之和必大于任何一个加数
B.同号两数相加,符号不变,并把绝对值相加
C.两负数相加和为负数,并把绝对值相减
D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加
3.如果│a+b│=│a│+│b│成立,那么()
A.a,b同号 B.a,b为一切有理数 C.a,b异号 D.a,b同号或a,b中至少有一个为零
4.若│a│=7,│b│=10,则│a+b│的值为()
A.3 B.17 C.3或17 D.-17或-3
5.若x>y>z,x+y+z=0,则一定不能成立的是()
A.x>0,y=0,z<0; B.x>0,y>0,z<0; C.x>0,y<0,z>0; D.x>0,y<0,z<0
二、填空题
1.(-5
6
)+(-
1
6
)=_______,_______+(-
3
2
)=0.
2.-2003与2004的和的倒数是________.
3.A地海拔高度为-210m,B地比A地高680m,B地海拔高度为_________.4.如果a>0,b<0,且│a│<│b│,那么a+b=___________.(用绝对值表示)5.若│x-3│+│y+15│=0,则3x+2y=_________.
三、计算题
1.-3
4
+(-
4
5
); 2.4.23+(-2.76); 3.(-25)+(+56)+(-39)
4.(-1
2
)+(-
2
3
)+(-
5
6
); 5.(-
1
2
)+3
1
4
+2.75+(-6
1
2
)
6.(-2.4)+(-3.7)+(+4.2)+0.7+(-4.2); 7.1
3
+(-
3
4
)+(-
1
3
)+(-
1
4
)
+18 19
8.(-1)+(+2)+(-3)+(+4)+…(-2001)+(+2002)+(-2003)+(+2004)
四、解答题
某城市一天早晨的气温是-25℃,中午上升了11℃,夜间又下降了13℃,那么这天夜间的气温是多少?
综合创新训练
五、学科内综合题
1.已知│a│=4,│b│=8,求a+b的值.
2.当a=-8,b=-10,c=6时,求m,n的值,并观察m,n的关系.
(1)m=a+b+(-c);(2)n=-a+(-b)+c.
3.某人用400元购买了8套儿童服装,准备以一定价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,-3,+2,+1,-1,-2,0,-2,当它卖它这8套儿童服装后是盈利还是亏损?盈利(亏损)多少钱?
六、创新题
分别写出一个含有三个加数的满足下列条件的算式.
(1)所有加数都是负数,和是-13;(2)至少有一个加数是正整数,和是-13.
七、竞赛题
计算 (1)
2
+
1
3
+
2
3
+
1
4
+
2
4
+
3
4
+
1
5
+
2
5
+
3
5
+
4
5
+…+
1
60
+…+
59
60
.
中考题回顾
八、中考题
1.实数a ,b ,c 在数轴上的位置如图所示,下列式子正确的是( ) A .b+c>0 B .a+b<a+c C .ac>bc D .ab>ac
2.(辽宁)已知│x │=3,│y │=2,且xy<0,则x+y 的值等于________.
中考题回顾
八、中考题
求满足│x │+│y │<100的整数解有多少组?(x ≠y )
答案:
一、1.C 2.A 3.B 4.D 5.A
二、1.正数 负数 大于 2.< < 3.c<d<b<a 4.负 5.0,1,2,3
三、1. <3.142 2.-0.001<0 3.0.0001>-1000 4. -5
6>-6
7 5.-59<-1
3
6
.-20042003<-2005
2004
四、图略 -5<-21
4<-1<0<1,2<31
3<4
五、a<-c<b<0<-b<c<-a
六、1.a>c>0>d>b 2.a-3b-c
七、52+72>2×5×7,92+102>2×9×10,132+142>2×13×14,52+52=2×5×5,122+122=2×12×12.
两个数的平方和大于等于这两个数乘积的2倍.(也可以用式子表示)
八、解:0≤│x │≤99,0≤│y │≤99, -1
-2c b
a 2
即x,y分别可取-99到99之间的199个整数且x≠y.
当x=0时,y可取的整数有198个(│y│<100).
当x=•±1•时,•y•可取的整数有196个(│y│<99).
当x=±49时,y可取的整数有100个(│y│<51).
当x=±50时,y可取的整数有99个(│y│<50).
当x=±98时,y可取的整数有3个(│y│<2).
当x=±99时,•y可取的整数有1个(│y│<1).
所以共有整数解198+2(1+3+5+…+99)+2(100+102+•…+196)=19702(组).。