二元汽液平衡数据测定实验数据处理
二元气液相平衡数据的测定
二元气液相平衡数据的测定摘要:气液相平衡关系是精馏、吸收等单元操作的基础数据,随着化工生产的不断发展,现有气液相平衡数据远不能满足需求,许多物质的平衡数据,很难由理论直接计算得到,必须由实验测定。
平衡数据实验测定方法以循环法应用最为广泛。
本实验采用ellis 平衡釜,釜外具有真空夹套保温,可观察釜内的实验现象,在少量样品的情况下,能够迅速地测得平衡数据。
关键词:二元气液相平衡,循环法,苯,乙醇abstract: gas liquid equilibrium relationship is distillation, absorption unit operation of basic data, with the continuous development of chemical production, the existing gas liquid equilibrium data far cannot satisfy the demand, many material balance data, it is difficult to directly obtained by theory, must by experimental determination. balance data experimental determination method to cycle method used the most widely. this experiment using ellis balance kettle, still outside with vacuum jacketed insulation, can be observed in the kettle experimental phenomenon, in a small amount of sample cases, can quickly measure balance data.keywords: two sap liquid balance, circulation method, stupid, ethanol中图分类号: n941.8文献标识码:a 文章编号:1前言循环法测定气液相平衡的原理:如图1,图中a为盛有二元溶液的蒸馏器,b为逸出蒸汽经完全冷凝后的收集器。
二元气液相平衡数据测定处理结果
实验数据处理(1) 乙醇浓度的计算利用实验参考书提供的乙醇标准曲线数据,由折光率和乙醇摩尔百分率关系用内插法得到乙醇摩尔分率如表1. 计算示例:以第一组气相为例第一组的气相折光率为1.3595落在折光率1.3594-1.3599之间,对应的乙醇摩尔分率为0.9379-0.8810.插值法计算如下:1.3599−1.35950.8810−x =1.3599−1.35940.8810−0.9379解出x=0.9265,水的气相摩尔分率=1-x-=0.0735.(2) 温度计暴露温度校正n=t 观-(50-1.6*6.7),t 室=25℃,t 实际=t 观+0.00016n(t 观-t 室);tp=t 实际+0.000125(t 室+273)(P-760),因为本小组实验的P 大于标准大气压,所以用P-760。
计算示例:以第一组为例;n=t 观-39.28=77.81-39.28=38.53,t 实际=77.81+0.00016*38.53*(77.81-25)=78.14℃ 平衡温度计算:tp=t 实际+0.000125(t 室+273)(P-760)=78.18+0.000125(25+273)(761.313-760)=78.19℃(3) 实验测得的温度和压强以及摩尔分率如表1、表二。
(4) 由所得的二元气液平衡数据表记录如表二。
活度计算示例:以第一组气相为例根据安托尼(Antoine)公式,lg(Ps)=A-B/(C + t/℃),求出不同平衡温度下乙醇和水的饱和气压,乙醇的安托尼(Antoine)参数:A=8.21330,B=1652.050,C=231.480,水的安托尼(Antoine)参数:A=7.96681,B=1668.21,C=228。
计算乙醇的饱和蒸汽压:lgP=8.2133-1652.05/(231.48+78.19),得P=755.879mmHg; 计算水的饱和蒸汽压:lgP=7.96681-1668.21/(228+78.19),得P=330.029mmHg; 计算活度系数: 由简化后的公式:0i p x py i ii =γ 乙醇的活度系数:γA=(P*yA)/(xA*P0)=(761.313*0.9265)/(0.8718*755.879)=1.0704水的活度系数:γB=(P*yB)/(xB*P0)=(761.313*0.0735)/(0.1282*330.029)=1.3225(5) 由二元气液平衡数据绘制的相图如图2。
二元系统汽液平衡数据测定实验讲义
二元系统汽液平衡数据的测定在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的汽液平衡数据,此数据对提供最佳化的操作条件,减少能源消耗和降低成本等,都具有重要的意义。
尽管有许多体系的平衡数据可以从资料中找到,但这往往是在特定温度和压力下的数据。
随着科学的迅速发展,以及新产品,新工艺的开发,许多物系的平衡数据还未经前人测定过,这都需要通过实验测定以满足工程计算的需要。
此外,在溶液理论研究中提出了各种各样描述溶液内部分子间相互作用的模型,准确的平衡数据还是对这些模型的可靠性进行检验的重要依据。
1 实验目的(1)了解和掌握用双循环汽液平衡器测定二元汽液平衡数据的方法;(2)了解缔合系统汽–液平衡数据的关联方法,从实验测得的T–P–X–Y数据计算各组分的活度系数;Array(3)学会二元汽液平衡相图的绘制。
2 实验原理汽液平衡数据实验测定是在一定温度压力下,在已建立汽液相平衡的体系中,分别取出汽相和液相样品,测定其浓度。
本实验采用的是广泛使用的循环法,平衡装置利用改进的Rose 釜。
所测定的体系为乙酸(1)—水(2),样品分析采用气相色谱分析法。
以循环法测定汽液平衡数据的平衡器类型很多,但基本原理一致,如图2–1所示,当体系达到平衡时,a、b容器中的组成不随时间而变化,这时从a和b两容器中取样分析,可得到一组汽液平衡实验数据。
3 实验装置与试剂实验装置见图3-1,其主体为改进的Rose 平衡釜-一汽液双循环式平衡釜。
改进的Rose 平衡釜汽液分离部分配有热电偶(配数显仪)测量平衡温度,沸腾器的蛇型玻璃管内插有300W电热丝,加热混合液,其加热量由可调变压器控制。
分析仪器:气相色谱实验试剂: 乙酸(分析纯), 去离子水图3-1 改进的Rose 釜结构图1-排液口2-沸腾器3-内加热器4-液相取样口5-汽室6-汽液提升管7-汽液分离器8-温度计套管9-汽相冷凝管 10-汽相取样口 11-混合器4 预习与思考(1)为什么即使在常低压下,醋酸蒸汽也不能当作理想气体看待?(2)本实验中气液两相达到平衡的判据是什么?(3)如何计算醋酸-水二元系的活度系数?5 实验步骤及方法:(1) 加料:从加料口加入配制好的醋酸–水二元溶液,接通平衡釜内冷凝水。
二元液系气液平衡相图数据处理
建立新表
Page 12
增加列
Page 13
增加列 / 填写数据并设置列值
Page 14
Page 15
填写数据并设置列值
Page 16
拷贝程序算的的数据到book1/Find x from y
Page 17
回到book1
Page 18
粘贴数据让程序算出质量分数
Page 19
拷贝质量分数值
Page 20
Page 21
粘贴质量分数到book2相应列
Page 22
Page 23
设置摩尔分数列值
Page 24
设置摩尔分数列值
Page 25
和气相数据处理方法一样设置液相
Page 26
建立新表增加列并把book2相应数据拷贝过来
Page 27
对表数据进行排列
Page 28
设置第二列为X
Page 29
作点线图
Page 30
增加液相点线图
Page 31
设置不同图样加以区分
Page 32
对曲线进行平滑(B-Spine)
Page 33
设置图样说明
Page 34
设置图样说明
Page 35
找出最低恒沸点
Page 36
标识最低恒沸点相应数据
Page 37
设置数据范围x(0 ~ 1)
五邑大学化工系
二元液系气液平衡相图数据处理
工作曲线 / 标准曲线
Page 2
线性拟合处理
Page 3
Page 4
工作曲线 / 标准曲线:设置Find x/y
Page 5PagFra bibliotek 6双击线条设置边框
化工专业实验全解
实验一二元气液平衡数据测定实验一. 实验目的1了解和掌握用双循环汽液平衡器测定二元系统汽液平衡数据的方法。
2.通过实验了解平衡釜的构造,掌握汽液平衡数据的测定方法和技能。
3.掌握二元系统平衡相图的绘制。
二. 设备的主要技术数据(一)平衡釜(如图一所示)(二)物系 (乙醇─正丙醇)1.纯度:分析纯. 乙醇沸点: 78.3℃; 正丙醇沸点:97.2℃.2.折光指数与溶液浓度的关系见表1。
对30℃下质量分率与阿贝折光仪读数之间关系也可按下列回归式计算:W=58.844116-42.61325 ×nD其中W为乙醇的质量分率; nD为折光仪读数 (折光指数).由质量分率求摩尔分率(XA):乙醇分子量MA=46; 正丙醇分子量MB=60BAAAAAAMWMWMWX)](1[)()(-+=三. 实验设备的基本情况实验设备流程示意图: 见图一所示.四. 实验方法及步骤1.将与阿贝折光仪配套的超级恒温水浴(用户自备)调整运行到所需的温度,并记下这个温度(例如30℃).2.测温管内倒入甘油,将标准温度计插入套管中。
3.配制一定浓度(体积浓度10%左右)的乙醇─正丙醇混合液(总容量50毫升),然后倒入平衡釜中。
4.打开冷凝器冷却水,接通电源缓慢加热,冷凝回流液控制在每秒2-3滴。
稳定回流20分钟,以建立平衡状态。
5.达到平衡时停止加热,用微量注射器分别取两相样品用阿贝折光仪分析其组成。
6.从釜中取出6毫升液体后,在补充6毫升的乙醇溶液,重新建立平衡。
7. 所加溶液视上一次的平衡温度定,以免实验数据点分布不均。
8. 检查数据合理后, 停止加料并将将加热电压调为零。
停止加热后10分钟,关闭冷却水,一切复原。
五. 使用本实验设备应注意事项1. 本实验过程中要特别注意安全,实验所用物系是易燃物品,操作过程中避免洒落以免发生危险。
2. 本实验设备加热功率由电位器来调解,固在加热时应注意加热千万别过快,以免发生爆沸(过冷沸腾),使液体从平衡釜冲出,若遇此现象应立即断电。
二元系统气液平衡数据测定
化工专业实验报告实验名称:二元系统气液平衡数据测定学院:化学工程学院专业:化学工程与工艺班级:化工班姓名:学号同组者姓名:指导教师:日期:一、实验目的1、了解和掌握用双循环气液平衡器测定二元系统气液平衡数据的方法。
2、了解缔合系统气—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。
3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。
4、掌握二元系统气液平衡相图的绘制。
二、实验原理以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同。
如图1等,即逸度相等,其热力学基本关系为:Vi L i f f ˆˆ=is i i i V i x f py γφ=ˆ(1)常压下,气相可视为理想气体,1ˆ=v i φ;再忽略压力对液体逸度的影响,0i i p f =从而得出低压下气液平衡关系式为:py i =γi s i p ix (2)式中,p ——体系压力(总压);s i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算;x i 、y i ——分别为组分i 在液相和气相中的摩尔分率;γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用si i i i p x py =γ(3)计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson 方程关联。
Wilson 方程为:ln γ1=-ln(x 1+Λ12x 2)+x 2(212112x x Λ+Λ-121221x x Λ+Λ)(4)ln γ1=-ln(x 2+Λ21x 1)+x 1(121221x x Λ+Λ-212112x x Λ+Λ)(5)Wilson 方程二元配偶函数Λ12=0和Λ21=1采用高斯—牛顿法,由二元气液平衡数据回归得到。
目标函数选为气相组成误差的平方和,即F =2221211((jmj j y y y y ))计实计实-+-∑=(6)三、实验装置与流程示意图1、平衡釜一台(平衡釜的选择原则:易于建立平衡、样品用量少、平衡温度测定准确、气相中不夹带液滴、液相不返混及不易爆沸等。
二元系统气液平衡数据测定
序号:40化工原理实验报告实验名称:二元系统气液平衡数据测定学院:化学工程学院专业:化学工程与工艺班级:化工095班姓名:何小龙学号 0940201051 同组者姓名:杨飞黄云张阳指导教师:周国权日期: 2012年3月29日一、实验目的1.了解和掌握用双循环汽液平衡器测定二元系统汽液平衡数据的方法。
2.了解缔合系统汽液平衡数据的关联方法,从实验测得的T-p-x-y数据计算个组分的活度系数。
3.通过实验了解平衡釜的构造,掌握汽液平衡数据的测定方法和技能。
4.掌握二元系统平衡相图的绘制。
二、实验原理平衡法测定汽液平衡原理图当系统达到平衡时,两个容器的组成不随时间的变化,这时候从A和B中取样分析,即可得到一组平衡数据。
达到平衡时,两相除了温度压力相等外,每一组分的化学位也相等,即逸度相等,其基本热力学关系为:f i L=fiVΦi pyi=γifi0xi常温下,气体可视为理想气体,再忽略压力对液体逸度的影响,f i=p i0从而得出低压下汽液平衡关系为:pyi =γipi0xip---体系压力(总压);p i0---纯组分i在平衡温度下的饱和蒸汽压;x i,y i---分别为组分i在液相和气相中的摩尔分率;γi---组分i的活度系数由实验测得等压下的平衡数据,可用:γi = pyi/p i0x i由此计算不同组成下的活度系数本实验中活度系数和组成关系采用Wilson方程关联,Wilson方程为lnγ1=-ln(x1+λ12x2)+ x2[(λ12/x1+λ12x2) –(λ21/x2+λ21x1)]lnγ2=-ln(x2+λ21x1)+ x1[(λ21/x2+λ21x1) –(λ12/x1+λ12x2)]Wilson方程二元配偶参数λ12和λ21采用非线形最小二乘法,由二元汽液平衡数据回归而得。
目标函数选为气相组成误差的平方和,即:F=Σj=1m(y1实-y1计)2j+( y2实-y2计)2j三、实验装置与试剂1.平衡釜一台(平衡釜选择原则,易建立平衡,样品用量少,平衡温度测定准确气相中不夹带液滴,液相不返混及不爆沸等,本实验采用汽液双循环小平衡釜)2.阿贝折射仪一台3.温度计4.1ml及5ml的注射器若干四、实验步骤及注意事项1.开启阿贝折射仪,分别配置无水甲醇:异丙醇比例为0:1,1:4,2:3,1:1,3:2,1:4,1:0的标准试剂,分别测其折射率,将所测得的数据经处理后绘制无水甲醇与异丙醇的标准曲线。
二元系统气液平衡数据测定实验报告
二元系统气液平衡数据测定实验报告实验目的:1. 了解气相和液相的特性和平衡状态;2. 熟悉使用实验仪器进行二元系统气液平衡数据测定;3. 掌握气液平衡实验的数据处理方法。
实验原理:在液体表面,由于分子间吸引力,分子会向周围运动,导致分子数密度有所下降,也就是说,在表面上形成一个薄膜,这就是液体的表面张力的来源。
当液体表面上的分子与气体中的分子碰撞时,会发生反弹导致向外沿着表面方向推力,这就是液体表面的气液界面张力,它是描述气液界面特性的物理量。
气液界面上的分子密度不均匀,会导致气相和液相之间的交换。
在一种给定的温度下,当气相和液相之间的交换达到一定的平衡状态时,称为气液平衡。
在这种状态下,气相和液相的分子数密度不再发生明显的变化。
通过气液平衡实验,可以测定气液界面张力和液体和气体之间的平衡常数,从而获得二元系统气液平衡的数据。
实验仪器:1. 二元系统气液平衡实验仪器;2. 水、乙醇等液体样品;3. 高钼酸钠、酚酞等试剂。
实验步骤:1. 清洗实验仪器:将实验仪器中的气路及液路中的管道和阀门进行清洗,保证实验测量时的通气畅通和样品无杂质。
2. 调整实验仪器:将待测液体注入样品瓶中,打开气路和液路中的阀门,进行预热和抽气,直至达到平衡状态。
3. 测量实验数据:通过测定不同温度下的液体和气体的平衡常数,获得二元系统气液平衡的数据。
4. 处理数据:将实验数据进行整理分析,得出二元系统气液平衡的相关参数。
实验结果:通过实验测量,得出了二元系统气液平衡的相关数据,具体如下:1. 温度:25℃液体样品:水气体样品:空气气液界面张力:72.2 mN/m液体与气体间的平衡常数:0.872. 温度:30℃液体样品:乙醇气体样品:空气气液界面张力:28.6 mN/m液体与气体间的平衡常数:0.65实验结论:通过本次实验的测量和分析,得出了二元系统气液平衡的相关参数。
在不同的温度下,不同的液体和气体之间会发生不同程度的平衡,液体之间和气体之间的分子密度也不同。
研究报告实验二二元气液平衡数据的测定
实验二二元气液平衡数据的测定一、实验目的1(测定苯—正庚烷二元体系在常压下的气液平衡数据。
2(通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能。
3(应用Wilson方程关联实验数据。
二、实验原理气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。
化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。
这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。
随着化工生产的不断发展,现有气液平衡数据远不能满足需要。
许多物系的平衡数据,很难由理论直接计算得到,必须由实验测定。
平衡数据实验测定方法有两类,即间接法和直接法。
直接法中又有静态法、流动法和循环法等。
其中循环法应用最为广泛。
若要测得准确的气液平衡数据,平衡釜是关键。
现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。
用常规的平衡釜测定平衡数据,需样品量多,测定时间长。
本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。
以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。
当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:常压下,气相可视为理想气体,ф=1;再忽略压力对液体逸度的影响,i 0f=p从而得出低压下气液平衡关系式为: ii由实验测得等压下气液平衡数据,则可用:计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson方程关联。
Wilson方程为:Wilson方程二元配偶参数Λ和Λ采用非线性最小二乘法,由二元1221气液平衡数据回归而得。
二元系统汽液平衡数据测定专业实验
思考与讨论
4,如何计算醋酸-水二元系的活度系数? 参见数据处理部分
5,为什么要对平衡温度进行压力校正? 答:为了将平衡数据校正到标准大气压下,方便进行比较。
6,本实验装置如何防止汽液平衡釜闪蒸、精馏现象发生?如 何防止暴沸现象发生?
答:本实验装置加蛇管防止闪蒸,加上下保温防止精馏,加 磁力搅拌防止暴沸现象发生。
解一元二次方程可得η10
四、数据处理的思路与技巧
醋酸-水二元系统汽液平衡数据的关联
由平衡时组分逸度相等的原理,可得:
HAc
p1
/
p
0 HAc
0 1
x
HAc
H 2O
p
H 2O
/
p
0 H
x 2 O H 2 O
其中
lg
p
0 HAc
7 .181
1416 .7 t 211
lg
p
0 H
2O
7 .9187
思考与讨论
1,为什么在常低压下,醋酸蒸汽也不能当作理想气体看待?
答:由于醋酸蒸汽在汽相中存在二分子,三分子的缔合体, 因此即使在常低压下也不能当作理想气体。
2,本实验中气液两相达到平衡的判据是什么?
答:本实验中汽液两相达到平衡的判据是平衡温度不随时间 发生变化。
思考与讨论
3,设计用0.1mol/LNaOH标准溶液测定气液两相组成的分析 步骤,并推导平衡组成的计算式。
技巧与难点 加料 从加料口加入配好的醋酸-水二元溶液 醋酸和水的浓度问题? 浓度与平衡温度的关系? 灵敏温度区域? 加料位置? 从汽相冷凝管处加入溶液的优缺点?
技巧与难点 加热
加热前期要做的准备?
(完整版)气液平衡实验报告
化工专业实验报告实验名称:二元气液平衡数据的测定实验人员:同组人实验地点:天大化工技术实验中心606 室实验时间:2015年4月20日下午14:00年级:2014硕;专业:工业催化;组号:10(装置2);学号:指导教师:______赵老师________实验成绩:_____________________一.实验目的(1)测定苯-正庚烷二元体系在常压下的气液平衡数据;(2)通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能;(3)应用Wilson 方程关联实验数据。
二.实验原理气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。
化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。
这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。
平衡数据实验测定方法有两类,即间接法和直接法。
直接法中又有静态法、流动法和循环法等。
其中循环法应用最为广泛。
若要测得准确的气液平衡数据,平衡釜是关键。
现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。
用常规的平衡釜测定平衡数据,需样品量多,测定时间长。
所以,本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。
以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图 1 所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从 A 和 B 两容器中取样分析,即可得到一组平衡数据。
图1 平衡法测定气液平衡原理图当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:常压下,气相可视为理想气体,Φ=1;再忽略压力对液体逸度的影响,f i=p i0,i从而得出低压下气液平衡关系式为:式中,p----------------体系压力(总压);p i0------------纯组分i在平衡温度下饱和蒸气压;x i、y i-------分别为组分i在液相和气相中的摩尔分率;r i-------------组分i的活度系数;由实验测得等压下气液平衡数据,则可用下式计算不同组成下的活度系数:计算出不同组成下的活度系数:本实验中活度系数和组成关系采用 Wilson 方程关联。
二元系统汽液平衡数据的测定说明书
目录一、实验装置图 (2)二、实验设备的特点 (3)三、实验设备的主要部件及简介 (3)四、主要技术指标 (3)五、操作要点及注意事项 (4)六、实验数据处理 (5)七、数据处理软件安装与使用 (6)一、实验装置图1、实验装置照片2、改进的Ellis 气液两相双循环型蒸馏器1234567891011121314图2 改进的Ellis 气液两相双循环型蒸馏器1– 蒸馏釜;2–加热夹套内插电热丝;3–蛇管;4–液体取样口;5–进料口; 6–测定平衡温度的温度计;7–测定气相温度的温度计;8–蒸气导管;9、10–冷凝器;11–气体冷凝液回路;12–凝液贮器;13–气相凝液取样口;14–放料口二、实验设备的特点设备用作常压下汽–液平衡数据的测定。
一定配比的醋酸与水装入平衡釜中,在磁力搅拌下开启电加热系统,使料液沸腾,汽液相经平衡釜蛇管充分混和后于平衡温度测量口喷出,测得汽液平衡温度,汽相经冷凝器冷凝后存于储存器中,多余冷凝液回至平衡釜中。
物料经此过程循环一定时间后达汽–液平衡。
分析平衡汽、液相组成,可获得有关的热力学参数。
通过实验可使学生了解缔合系统汽–液平衡数据的关联方法,从实验测得的T–P–X–Y数据计算组份的活度系数。
本设备采用磁力搅拌装置,改善了传热过程,从而根本上克服了在汽液平衡数据测定过程中的爆沸现象,可用于不同体系的汽液平衡数据的测定,适用性大,测得的平衡数据正确可靠。
三、实验设备的主要部件简介1、仪表柜(铁制)2、双循环玻璃平衡釜(爱立斯釜)玻璃制,有三组加热,其中1组用于物料的加热,另2组用于气相的保温,均采用可调电加热的形式。
3、电磁搅拌仪:上海司乐仪器厂生产,其与平衡釜接触处有不锈钢皮保护,防止腐蚀,搅拌速度可调。
4、智能仪表:共3个,用于控制加热电压,显示控制电压的比例。
四、主要技术指标双循环玻璃平衡釜加液量:250~300ml;物料加热功率0~150W;上下保温电功率:0~50W;最高使用温度150℃;使用压力:常压。
二元系统气液平衡数据测定
化 工 专 业 实 验实 验 名 称:二元系统气液平衡数据测定 学 院: 化学工程学院专 业: 化学工程与工艺 班 级:化工092班 姓 名:芦亚婷学 号 006指 导 教 师: 王剑锋 日 期: 2012年5月14日一、实验目的1. 了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。
2. 了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。
3. 通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。
4. 掌握二元系统气液平衡相图的绘制。
二、实验原理以循环法测定气液平衡数据的平衡虽多,但基本原理相同,如图1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A 和B 两容器中取样分析,即可得到一组平衡数据。
图1平衡法测定气液平衡原理图当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为:V i L i f f = (1)常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f =从而得出低压下气液平衡关系式为:py i =γi 0i p i x (2)式中,p —体系压力(总压);0i p —纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算;x i 、y i —分别为组分i 在液相和气相中的摩尔分率;γi —组分i 的活度系数由实验测得等压下气液平衡数据,则可用i p x py i ii =γ (3) 计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson 方程关联。
Wilson 方程为:ln γ1=-ln(x 1+Λ12x 2)+x 2(212112x x Λ+Λ-121221x x Λ+Λ) (4) ln γ2=-ln(x 2+Λ21x 1)+x 1(121221x x Λ+Λ-212112x x Λ+Λ) (5)Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。
二元气液平衡数据测定实验报告
二元气液平衡数据测定实验报告实验目的:本实验旨在通过实验测定二元气液平衡数据,并分析其相关性,了解纯组分蒸汽与液相的平衡关系,为进一步研究混合气液平衡提供基础数据。
实验原理:二元气液平衡是指在一定温度下,两种组分的气相和液相之间达到平衡的状态。
根据国际公认的Raoult定律,对于理想混合物,每种组分在混合物中的蒸气压与该纯组分的蒸气压成正比。
即Pi = XiP0i,其中Pi为混合物中第i种组分的蒸气压,Xi为该组分的摩尔分数,P0i为该组分的纯物质蒸气压。
此外,根据Dalton定律,理想气体的总压等于各组分的部分压之和。
通过以上两个定律,可以得到二元气液平衡的相关参考内容。
实验装置:1. 气相分压计:采用测压瓶法,将采样气体与水或密度较小液体共同存在于测空间中,通过测压与摩尔分数可求得蒸汽压。
2. 饱和振荡测量器:通过振荡法测得溶液浓度与气相组成之间的关系。
3. 恒温浴:提供所需的恒定温度环境。
实验步骤:1. 将待测的液体样品加入恒温浴中进行稳定。
2. 将固定体积的气相样品加入气相分压计中,在恒定温度下测得其蒸汽压。
3. 将已测得的蒸汽压与相应的摩尔分数绘制成曲线图。
4. 使用饱和振荡测量器,在不同液相浓度下,测得溶液浓度与气相组成之间的关系。
5. 对数据进行处理,计算出相应的蒸汽压,绘制气液平衡曲线图。
实验结果及讨论:通过实验测得的数据,可以绘制出二元气液平衡曲线图。
从图中可以得到以下参数:1. 平衡液相摩尔分数:液相摩尔分数随气相摩尔分数的增加呈非线性变化,曲线上升趋势逐渐陡峭。
2. 气相浓度:随着液相摩尔分数的增加,气相浓度呈指数增加的趋势,达到一定浓度后趋于饱和。
3. 蒸汽压:蒸汽压与液相摩尔分数呈正相关关系,按照Raoult 定律计算得到的蒸汽压与实测值在误差范围内基本吻合。
根据实验数据,可以进一步分析二元气液平衡的相关性。
实验数据表明,气相组成受液相组成控制,随着液相摩尔分数的增加,气相组成趋向于饱和,即液相浓度越高,气相浓度也越高。
二元气液相平衡数据的测定
实验一 二元气液相平衡数据的测定气液相平衡关系是精馏、吸收等单元操作的基础数据。
随着化工生产的不断发展,现有气液平衡数据远不能满足需要。
许多物质的平衡数据很难由理论计算直接得到,必须由实验测定。
平衡数据实验测定方法有两类,即直接法和间接法。
直接法中又有静态法、流动法和循环法等。
其中循环法应用最为广泛。
若要测定准确的气液平衡数据,平衡釜是关键。
现已采用的平衡釜形式有多种,且各有特点,应根据待测物系的特征选择适当的釜型。
用常规的平衡釜测定平衡数据,需样品量多,测定时间长。
本实验用的小型平衡釜主要特点是釜外有真空夹套保温,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。
一.实验目的1.测定正己烷-正庚烷二元体系在101.325kPa 下的气液平衡数据。
2.通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。
3.应用Wilson 方程关联实验数据。
二.实验原理以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1-1所示。
当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。
蒸汽循环线A B液体循环线图1-1平衡法测定气液平衡原理图当达到平衡时,除两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为:V i L i f f ˆˆ= i s i i i V i x f py γφ=ˆ (1)常压下,气相可视为理想气体,1ˆ=v i φ;再忽略压力对流体逸度的影响,isi p f =从而得出低压下气液平衡关系式为:py i =γisi p i x(2)式中,p ——体系压力(总压);s i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; x i 、y i ——分别为组分i 在液相和气相中的摩尔分率; γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用 s ii i i px py =γ (3)计算出不同组成下的活度系数。
二元气液平衡数据测定实验报告
二元气液平衡数据测定实验报告实验报告:二元气液平衡数据测定一、实验目的:通过测定二元气液平衡数据,研究气体在液体中的分配行为,以建立气液平衡模型。
二、实验原理:气体在液体中的分配行为可由亨利定律描述,即气体在液体中的溶解度与气体分压成正比。
亨利定律的数学表达式可表示为:p = Kx其中,p为气体的分压(Pa),K为Henry常数,x为气体在液体中的溶解度(mol/L)。
三、实验仪器:1. 烧瓶:容积500 mL,带有橡胶塞和双口管。
2. 气密管:用于测定气体的分压。
3. 电子天平:用于称量实验用的液体和固体。
4. 温度计:用于测定溶液的温度。
四、实验步骤:1. 准备工作:将烧瓶与橡胶塞清洗干净,并在双口管中放入一根气密管。
2. 密封烧瓶:用一定量的溶剂(如水)填满烧瓶,将橡胶塞插入烧瓶口并封好。
3. 测定气体分压:将气密管插入烧瓶另一口,并用天平称量烧瓶与气密管的总重量。
然后通过称量所管道液体和固体的重量,并减去之前的总重量,即可得到气体的分压。
4. 测定溶解度:将气体分压值代入亨利定律的数学表达式,得到气体在溶液中的溶解度。
五、数据处理:根据实际测量得到的气体分压和溶解度数据,可绘制气体分压与溶解度之间的关系曲线。
在曲线上任取一点,可以计算该点的亨利常数。
六、实验结果与讨论:根据采集到的实验数据,绘制气体分压和溶解度之间的关系曲线,得到实验结果。
比较实验结果与理论值的差异,讨论可能的误差来源和实验条件的改进方法。
七、结论:通过本实验得到了二元气液平衡数据,研究了气体在液体中的分配行为。
实验结果表明,气体的溶解度与其分压成正比,符合亨利定律。
二元气液相平衡数据的测定(数据处理)
五、实验数据记录与处理:项目温度(0C)液相x 气相y饱和蒸汽压P s*100000数据1 正己烷74.468.8899 76.127 1.206289 正庚烷31.1101 23.873 0.472527数据2 正己烷76.472.2217 77.8291 1.280930 正庚烷27.7783 22.1709 0.505914数据3 正己烷79.156.6229 66.8828 1.383679 正庚烷43.3771 33.1172 0.553946数据4 正己烷82.550.4742 45.1909 1.530921 正庚烷49.5285854.8091 0.619527饱和蒸汽压的计算(c语言源程序)#include<stdio.h>#include<math.h>void main(){ int i;double pp[4],pg[4];double p=1.0158e5,t[4]={74.4,76.4,79.1,82.5};double A1=9.2164,B1=2697.55,C1=-48.78;//正己烷安托因方程系数double A2=9.2535,B2=2911.32,C2=-56.51;//正庚烷安托因方程系数for(i=0;i<4;i++){pp[i]=100000*exp(A1-B1/(t[i]+273.15+C1));// 正己烷饱和蒸汽压单位化为帕pg[i]=100000*exp(A2-B2/(t[i]+273.15+C2));//正庚烷饱和蒸汽压printf("pp[%d]=%lf\n",i,pp[i]);printf("pg[%d]=%lf\n",i,pg[i]);}}运行结果:Wilson方程计算(MACLAB源程序)function relixueclose all,clear,clc,t=[74.4,76.4,79.1,82.5]';x1=[0.688899,0.722217,0.566229,0.504742]';y1=[0.76127,0.778291,0.668828,0.451909]';x2=[0.311101,0.277783,0.433771,0.4952858]';y2=[0.23873,0.221709,0.331172,0.548091]';p=1.0258e5;ps1=[1.206289,1.280930,1.383679,1.530921]'*1.e5;ps2=[0.472527,0.505914,0.553946,0.619527]'*1.e5;V1=86/659;V2=100/684;x0=[10 10];x=lsqnonlin(@myfun,x0,[],[],optimset('Display','iter'),t,x1,y1,x2,y2,ps1,ps2,p,V1,V2); g12=x(1)g21=x(2)fprintf('EEA|NS2IEyIa:\n'),fprintf('g12=%f\tg21=%f\n',g12,g21),F=simulator(g12,g21,x1,x2,ps1,ps2,p,V1,V2,t);y1cal=F(:,1)y2cal=F(:,2)plot(x1,t,':>',y1cal,t,':d')legend('x1-t','y1-t')xlabel('x1,y1')ylabel('温度/t')title('正己烷T-x-y图')figureplot(x2,t,':>',y2cal,t,':d')legend('x2-t','y2-t')xlabel('x2,y2')ylabel('温度/t')title('正庚烷T-x-y图')figurex1=[1,0.688899,0.722217,0.566229,0.504742,0]';y1=[1,0.76127,0.778291,0.668828,0.451909,0]';y1cal=[ 1 y1cal' 0];plot(x1,y1,':>',x1,y1cal,':s')xlabel('x1')ylabel('y1')title('正己烷x-y图')legend('测量值','计算值')x2=[0,0.311101,0.277783,0.433771,0.4952858,1]';y2=[0,0.23873,0.221709,0.331172,0.548091,1]';y2cal=[ 0 y2cal' 1];figureplot(x2,y2,':>',x2,y2cal,':s')xlabel('x2')ylabel('y2')title('正庚烷x-y图')legend('测量值','计算值')function F=myfun(x,t,x1,y1,x2,y2,ps1,ps2,p,V1,V2)g12=x(1); g21=x(2);g21=x(2);A12=V2/V1*exp(-g12/8.314./(t+273.5));A21=V1/V2*exp(-g21/8.314./(t+273.15));gangma1=exp(-log(x1+A12.*x2)-x2.*(A12./(x1+A12.*x2)-A21./(x2+A21.*x1))); gangma2=exp(-log(x2+A21.*x1)-x1.*(A21./(x2+A21.*x1)-A12./(x1+A12.*x2))); y1cal=gangma1.*x1.*ps1/p;y2cal=gangma2.*x2.*ps2/p;F=[y1-y1cal;y2-y2cal];function F=simulator(g12,g21,x1,x2,ps1,ps2,p,V1,V2,t)A12=V2/V1*exp(-g12/8.314./(t+273.5))A21=V1/V2*exp(-g21/8.314./(t+273.15))gangma1=exp(-log(x1+A12.*x2)-x2.*(A12./(x1+A12.*x2)-A21./(x2+A21.*x1))) gangma2=exp(-log(x2+A21.*x1)-x1.*(A21./(x2+A21.*x1)-A12./(x1+A12.*x2))) y1cal=gangma1.*x1.*ps1/p;y2cal=gangma2.*x2.*ps2/p;F=[y1cal,y2cal]运行结果:Norm of First-orderIteration Func-count f(x) step optimality CG-iterations0 3 0.1122 6.37e-0051 6 0.110667 10 6.26e-005 12 9 0.107667 20 6.05e-005 13 12 0.101932 40 5.62e-005 14 15 0.0914919 80 4.79e-005 15 18 0.0745998 160 3.19e-005 16 21 0.055209 320 1.98e-005 17 24 0.0383033 640 7.13e-006 18 27 0.0351408 453.591 5.51e-007 1 Optimization terminated: first-order optimality less than OPTIONS.TolFun,and no negative/zero curvature detected in trust region model.g12 = -137.5221 g21 = 1.4686e+003EEA|NS2IEyIa:g12=-137.522127 g21=1468.583178A12 =1.17481.17451.17411.1736A21 =0.53700.53850.54060.5432gangma1 =0.85700.87450.79500.7649gangma2 =1.83781.87961.65811.5702F =0.6943 0.26340.7886 0.25750.6072 0.38840.5762 0.4697 y1cal =0.69430.78860.60720.5762y2cal =0.26340.25750.38840.4697。
二元气液平衡数据测定实验报告
二元气液平衡数据测定实验报告实验目的:本实验的目的是通过测定二元气液平衡数据,了解和研究物质在不同压力和温度下的相平衡情况,掌握相关的测量方法和数据处理技巧。
实验原理:二元气液平衡是指在一定温度和压力条件下,气体与液体之间达到平衡的状态。
在平衡状态下,气相和液相之间存在着平衡态的物质交换。
对于二元体系来说,平衡时液相的组成可以用熔点或沸点表示,而气相则可以用饱和蒸气压来表示。
因此,通过测量不同温度和压力下的饱和蒸气压和液相的组成,可以确定二元体系的气液平衡数据。
实验步骤:1.实验前准备:检查实验装置的密封性,准备好实验所需的试剂和设备。
2.组装实验装置:将液相样品装入恒温槽内,并连接好压力计、温度计、气体进口和出口管道。
3.调整温度:根据实验要求,调整恒温槽的温度至目标温度,并确保温度的稳定性。
4.调整压力:通过调整气体进口和出口的阀门,使压力计的指示保持在所需的压力范围内。
5.测量饱和蒸气压:根据实验要求,每隔一定温度间隔测定一次饱和蒸气压,并记录下相应的温度和压力值。
6.测量液相的组成:在平衡状态下,取一定量的液相样品,并进行化学分析或使用相应的设备测量其组成。
7.数据处理:根据测得的实验数据,绘制对应的平衡曲线或图表,并进行数据分析和讨论。
实验结果与讨论:根据所测得的二元气液平衡数据,可以得到平衡曲线和相应的饱和蒸气压与液相组成的关系。
通过分析实验结果,可以得到以下结论:1.在一定温度范围内,随着压力的升高,饱和蒸气压和液相组成均会增加。
2.对于不同的二元体系,其平衡曲线和相应的饱和蒸气压与液相组成的关系会有所不同,反映了体系的特性和组成。
3.可以根据平衡曲线和相应的饱和蒸气压与液相组成的关系,推导得到相应的热力学关系式,用于描述体系的相平衡情况。
实验结论:通过本次二元气液平衡数据测定实验,我们了解到了不同温度和压力下的气液平衡情况,并掌握了相关的实验技巧和数据处理方法。
实验结果显示,二元体系的饱和蒸气压和液相组成与温度和压力有密切关系,对于不同的体系会有所差异。
二元气液两相平衡数据处理
二元气液平衡相图的绘制一.实验目的1.测定不同组成的环己烷-乙醇溶液的沸点及气.液两相的平衡浓度,由此绘制其沸点-组成图。
2.掌握阿贝折射仪的原理及使用方法。
二.实验原理本实验是用回流冷凝法测定不同浓度的环己烷-乙醇溶液的沸点和气﹑液两相的组成,从而绘制T—x图。
由于回流作用,两相的量一定,沸点一定,且不同平衡点气液两相的量服从杠杆原理。
若体系温度一定,气﹑液两相的组成就已确定,反之,实验时利用回流的方法,控制气.液两相的相对量为一定,使体系温度一定,则气﹑液两相的组成一定。
用精密温度计可以测出平衡温度(即沸点),取出气液两相样品测定其折射率可以求出其组成。
因为折射率和组成有一一对应的关系,则可以通过测定一系列已知组成的样品的折射率,绘制工作曲线即折射率—组成曲线。
这样,只要测出样品的折射率就可以从工作曲线上找到未知样品的组成。
三.仪器药品仪器:阿贝折射仪,超级恒温槽,蒸馏瓶,调压变压器,1/10℃刻度温度计,25ml移液管1支,5ml﹑10mL移液管各2支,锥形瓶4个,滴管若干只。
药品:环己烷,乙醇,丙酮。
四.实验步骤1.把超级恒温槽调至25℃,用橡皮管连接好恒温槽与阿贝尔折射仪,使恒温水流经折射仪。
量取环己烷1、2、3、4ml分别与4.3.2.1ml 的乙醇混合,随配随测,测混合液折射率,并绘制工作曲线。
2.安装好仪器,先把调压变压器调制电压最小,将25ml环己烷加入蒸馏瓶中,打开冷凝水,接通电源,缓慢增加至12-16v,加热至液体沸腾时,记下温度稳定值。
3.停止加热,依次加入1﹑4﹑7ml乙醇,每次加完后,加热至液体沸腾测其沸点,停止加热,及时测定气相样品折射率,再测定液相样品。
4.做完后,拔下电源插头,回收母液,加入25ml乙醇,测定其沸点,再依次加入1﹑4﹑7ml环己烷,分别测定气.液两相的折射率。
五.注意事项1.进气管应较低,加热时不可过猛,以免液沫进入气相样品中。
2.由于气相样品挥发性大,应在停止加热后迅速测定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元汽液平衡数据测定实验数据处理:一、原理:以循环法测定气液平衡数据的平衡釜基本原理相同,如图1所示,体系达到平衡时,两个容器的组成不随时间变化,这时从A 和B 两容器中取样分析,即可得到一组平衡数据。
当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:V i L i f f = (1)i i i i i x f py ογφ=常压下,气相可视为理想气体,;再忽略压力对液体逸度的影响,οi i p f =从而得出低压下气液平衡关系为:i i i i x f py ογ= (2)式中 p ——体系压力(总压);p i 0——纯组分I 在平衡温度下饱和蒸汽压,可用安托尼(Antoine )公式计算; x i 、y i ——分别为组分I 在液相和气相中的摩尔分率; γi ——组分i 的活度系数由实验测得等压下气液平衡数据,则可用ογii i i p x py =...................................... .. (3)计算出不同组成下的活度系数。
本实验中活度系数和组成关系采用Wilson 方程关联。
Wilson 方程为:ln γ1=-ln 22121x )x Λx ++()(121x 221212112Λx Λx Λx Λ+-+ (4)ln γ2=-ln )x Λx Λx Λx Λ(x )x Λ(x 21211212122111212+-+++ (5)Wilson 方程二元配偶参数12Λ和21Λ采用非线形最小二乘法,由二元气液平衡数据回归而得.目标函数选为气相组成误差的平方和,即F=∑=-+-mj j j y y y y 1222211)()(计实计实…………………………………(6) 二、数据处理(以表1的实验数据为例子)Ⅰ.实测温度及苯的气液相组成大气压:101.33Kpa表1 苯—正庚烷混合液平衡温度及气、液相组成的测定数据组号主温度t主/(℃)辅助温度t s/(℃)气相(苯) 液相(苯)折射率y i/mol% 折射率x i/mol%1 82.0 22.0 1.4610 81.9 1.4510 74.62 83.4 23.0 1.4475 72.9 1.4361 63.63 84.8 24.0 1.4398 67.0 1.4235 53.74 86.2 25.0 1.4310 59.4 1.4155 46.85 87.6 28.1 1.4238 52.6 1.4038 38.4表2 水银温度计检定结果温度计示值(℃)80 85 90 95 100 修正值(℃)+0.08 +0.07 +0.07 +0.09 +0.08 Ⅱ.平衡温度及纯物质的饱和蒸气压的计算:①平衡温度的计算:(使用热电偶测温时略去此步骤)t实际值= t主+t校正t校正=kn(t主-t s)matlab运算结果如下:t0=[82.0 83.4 84.8 86.2 87.6];t2=[22.0 23.0 24.0 25.0 28.1];t1=0.00016*60*(t0-t2);t3=t0+t1结果:t3 = 82.5760 83.9798 85.3837 86.7875 88.1712其中t3 代表平衡温度,结果填入表3中②饱和蒸气压的计算lg P i0=A i– B i/(C i+t)式中:t—温度,℃P0—饱和蒸汽压,mmHgP i0(苯)=10^(6.87987-(1196.76/(219.161+t)))P i0(正庚烷)=10^(6.89386-(1264.37/(216.64+t)))用matlab运算结果如下t=[82.5760 83.9798 85.3837 86.7875 88.1712];for i=1:5p1(i)=10^(6.87987-(1196.76/(219.161+t(i))))p2(i)=10^(6.89386-(1264.37/(216.640+t(i))))end结果:p1 =819.6614 855.0698 891.6626 929.4612 967.9270p2 =465.8546 487.5090 509.9562 533.2131 556.9509Ⅲ.用Wilson方程计算如下:表3 平衡温度及饱和蒸气压组号平衡温度t/(℃)P i0(苯)/(mmHg)P i0(正庚烷)/(mmHg)1 82.58 819.6614 465.85462 83.98 855.0698 487.50903 85.38 891.6626 509.95624 86.79 929.4612 533.21315 88.17 967.9270 556.9509①Wilson方程参数的确定方程格式:ln Py1/P10x1= -ln(x1+λ12x2)+x2(λ12/(x1+λ12x2)- λ21/ (x2+λ21x1))ln Py2/P20x2= -ln(x2+λ21x1)+x1(λ21/(x2+λ21x1)- λ12/ (x1+λ12x2))目标函数:F=∑=-+-mjjjyyyy1222211)()(计实计实用非线性最小二乘法拟合:matlab拟合程序如下function xLsqnonlinbb0=[1,1][bb,resnorm,residual]=lsqnonlin(@Funlv,bb0)%-----------------------------------------function F=Funlv(bb)x1=[0.746 0.636 0.537 0.468 0.384];x2=[0.254 0.364 0.463 0.532 0.616];y1=[0.819 0.729 0.670 0.594 0.526];y2=[0.181 0.271 0.330 0.406 0.474];p10=[819.6614 855.0698 891.6626 929.4612 967.9270];p20=[465.8546 487.5090 509.9562 533.2131 556.9509];for i=1:5F(i)=y1(i)-p10(i)*x1(i)/760*exp(-log(x1(i)+bb(1)*x2(i))+x2(i)*(bb(1)/ (x1(i)+bb(1)*x2(i))-...bb(2)/(x2(i)+bb(2)*x1(i))));endfor i=6:10j=i-5F(i)=y2(j)-p20(j)*x2(j)/760*exp(-log(x2(j)+bb(2)*x1(j))+...x1(j)*(bb(2)/(x2(j)+bb(2)*x1(j))-bb(1)/(x1(j)+bb(1)*x2(j)))); end拟合的结果:Optimization terminated: first-order optimality less than OPTIONS.TolFun,and no negative/zero curvature detected in trust region model.bb =0.5192 1.3205resnorm =6.2205e-004residual =0.0065 -0.0026 0.0146 -0.0111 -0.0045 0.0020 0.0099 -0.0091 0.0052 -0.0016由结果可以看出,λ12=0.5192;λ21=1.3205;余差平方和F=∑=-+-mjjjyyyy1222211)()(计实计实=6.2205e-004,说明拟合的效果比较好。
residual是各温度下y i实际测量值与计算值之间的偏差,前5项是苯,后5项是正庚烷。
②用Wilson方程计算苯的气相组成y i:由于偏差已经算出,因此,由y i计算值=y i测量值-△y i可以得出y i计算值,结果填入表4:表4 苯的气相组成组号平衡温度t/(℃)苯气相组成y i测量值y i计算值偏差△y i1 82.65 0.819 0.8125 0.00652 84.05 0.729 0.7316 -0.00263 85.45 0.670 0.6554 0.01464 86.86 0.594 0.6051 -0.01115 88.24 0.526 0.5305 -0.0045Ⅳ.作气液平衡图(t-x-y):用matlab绘图程序如下:t=[80.0996 82.5760 83.9798 85.3837 86.7875 88.1712 98.4249];y=[1 0.819 0.729 0.670 0.594 0.526 0];ycalcd=[1 0.81250.7316 0.6554 0.6051 0.5305 0]x=[1 0.746 0.636 0.537 0.468 0.384 0];plot(ycalcd,t,'r-s',y,t,'k-o',x,t,'g-o'),legend('ycalcd_1','y_1','x_1 ')xlabel('x_1 (y_1)'),ylabel('t/¡æ')。