实验报告-磁聚焦法测定电子荷质比
工作报告-实验报告-磁聚焦法测定电子荷质比
工作报告-实验报告-磁聚焦法测定电子荷质比报告摘要:本实验利用磁聚焦法测定了电子的荷质比。
实验中通过测量电子在磁场中的运动半径和电压的关系,得到了电子的荷质比值。
实验结果表明,电子的荷质比值与理论值较为接近,验证了磁聚焦法测定电子荷质比的准确性。
实验目的:1. 了解磁聚焦法测定电子荷质比的原理;2. 掌握实验中所使用的仪器和设备的操作方法;3. 测量并计算电子的荷质比。
实验原理:磁聚焦法是一种测定电子荷质比的方法。
其原理是,将电子束通过磁场,根据电子的动量和电荷情况,可以确定电子的荷质比。
实验器材和仪器:1. 电子束管;2. 磁场装置;3. 高压电源;4. 毫安表;5. X-Y示波器。
实验步骤:1. 打开仪器电源,调整高压电源,使电子束管产生稳定的电子束;2. 将电子束管放入磁场装置中,调整磁场强度,使电子在磁场中运动并聚焦;3. 在示波器上观察电子束的轨迹,并调整磁场强度和方向,使电子束呈现完整的稳定的轨迹;4. 测量电子束在不同电压下的轨迹半径,并记录数据;5. 根据测得的半径和电压数据,计算电子荷质比的平均值。
实验结果分析:通过实验测量得到的电子荷质比值与理论值较为接近,说明使用磁聚焦法测定电子荷质比的方法是准确可靠的。
存在的问题和改进措施:1. 实验中可能存在测量误差,如由于人为操作不精细、仪器的误差等原因导致的数据偏差。
下次实验可以提高操作的精确度,并使用更加精密的仪器进行测量,以减小误差;2. 实验中的磁场调整可能需要更多的时间和经验,以确保电子束的稳定和聚焦效果。
下次实验可以提前进行磁场调整的练习,以提高调整的准确性和效率。
结论:本实验利用磁聚焦法测定电子荷质比的方法,得到了与理论值较为接近的结果。
通过本实验的实践操作,加深了对磁聚焦法的理解和应用,提高了实验操作的能力。
用磁聚焦法测定电子荷质比实验报告
用磁聚焦法测定电子荷质比实验报告用磁聚焦法测定电子荷质比实验报告引言:电子荷质比是物理学中的一个重要常数,它描述了电子的电荷与质量之间的比值。
测定电子荷质比的实验方法有很多种,其中一种常用的方法是磁聚焦法。
本实验旨在通过磁聚焦法测定电子荷质比,并探讨实验过程中的一些关键问题。
实验原理:磁聚焦法是通过磁场对电子进行聚焦,从而测定电子荷质比的一种方法。
在磁场中,电子受到洛伦兹力的作用,其运动轨迹会发生偏转。
通过调节磁场强度和电场强度,使得电子在磁场中运动的轨迹与电场的方向相交,从而实现对电子的聚焦。
根据电子的速度和轨道半径的关系,可以计算出电子的荷质比。
实验装置:本实验所使用的装置主要包括电子枪、磁场和电场装置以及荧光屏。
电子枪产生一束高速电子,磁场和电场装置用来调节电子的运动轨迹,荧光屏用来观察电子束的聚焦情况。
实验步骤:1. 将实验装置搭建好,并接通电源。
2. 调节电子枪的电压和电流,使得电子枪能够产生一束稳定的电子束。
3. 调节磁场的强度,使得电子束在磁场中发生偏转。
4. 调节电场的强度,使得电子束在电场中与磁场的方向相交。
5. 观察荧光屏上的电子束图像,调节磁场和电场的强度,使得电子束能够聚焦在一个点上。
6. 记录磁场和电场的强度,以及荧光屏上电子束的聚焦位置。
7. 重复实验多次,取平均值,并计算电子荷质比。
实验结果与讨论:通过多次实验,我们得到了不同磁场和电场强度下的电子束聚焦位置。
根据电子的速度和轨道半径的关系公式,我们可以计算出电子的荷质比。
在实验中,我们发现磁场和电场的强度对电子束的聚焦效果有很大的影响。
当磁场和电场的强度适当时,电子束能够聚焦在一个点上,从而得到准确的电子荷质比值。
然而,在实际操作中,我们也遇到了一些困难和误差。
首先,由于实验装置的精度限制和环境因素的影响,我们无法完全消除系统误差。
其次,电子束的聚焦位置的测量也存在一定的误差,可能会影响到最终结果的准确性。
因此,在实验中我们需要注意这些误差来源,并尽量减小其对结果的影响。
【精编】实验报告-磁聚焦法测定电子荷质比
【精编】实验报告-磁聚焦法测定电子荷质比实验目的:利用磁聚焦法测定电子荷质比,掌握该方法的原理和操作方法,了解电子的物理性质。
实验原理:当带负电的粒子在磁场中运动时,磁场会对其进行偏转。
磁场中的带电粒子受到的力称为洛伦兹力,其大小和方向由以下公式决定:F=qvBsinθ其中,F为洛伦兹力,q为带电粒子的电荷量,v为带电粒子的速度,B为磁场强度,θ为磁场和带电粒子的速度之间的夹角。
R=mv/qB如果带电粒子同时具有不同的能量,它们将在不同的轨道上运动,轨道的半径也会不同。
但是,如果磁场强度足够大,则所有轨道都将被压缩到重叠状态,此时所有轨道的半径将相等。
根据上述原理,可以用磁聚焦法测定电子荷质比。
在实验中,首先确定磁场强度和螺旋线管的工作电压,然后改变加速电压使得电子进入不同的能级。
电子在磁场中偏转形成螺旋运动,当磁场足够强时所有的螺旋运动将在一个平面内,可以通过调节分光器的角度观察电子的轨迹。
实验步骤:1. 校准磁场强度,调整分光器位置。
2. 将螺旋线管的工作电压调整为适当的值,用万用表测量电路参数。
3. 将加速电压调整到不同的值,记录分析仪上的读数。
4. 调整分光器的角度,记录电子轨迹和屏幕上的读数。
5. 重复步骤4直到测量三组数据。
实验数据:在本次实验中,我们测定了三组数据,其加速电压分别为800V、1000V和1200V。
通过计算,得出三组数据的电子荷质比分别为:1. 1.76×10^11C/kg实验结论:在本次实验中,我们通过磁聚焦法成功测定了电子的荷质比。
由于实验条件的限制,测得的结果存在一定的误差,但是这些误差在实验中进行了充分的考虑和控制。
通过该实验,我们不仅掌握了磁聚焦法的操作方法,还深入了解了电子的物理性质和运动规律。
参考文献:1. 《大学物理实验》高等教育出版社。
实验报告-磁聚焦法测定电子荷质比
上海交通大学实 验 报 告姓 名: 班 级: 学 号: 实验成绩:同组姓名: 实验日期:2008/03/31 指导老师: 批阅日期: ---------------------------------------------------------------------------------------------------------------------------------磁聚焦法测定电子荷质比【实验目的】1、学习测量电子荷质比的方法。
2、了解带点粒子在电磁场中的运动规律及磁聚焦原理。
【实验原理】1、电子在磁场中运动的基本参数2、零电场法测定电子荷质比=n 2*10143、电场偏转法测定电子荷质比=【实验数据记录、结果计算】 数据记录K1==3.789*107电子荷质比理论值:X0==1.758*1011c/kgX偏转板上加交流偏转电压:/V/V数据处理与结果比较0.415=0.4270.8551.289X1=k=1.766*1011 c/kg与理论值的相对误差=0.455%0.455=0.4500.8981.346X2=k=1.778*1011 c/kg与理论值的相对误差=1.14%电场偏转法测定电子荷质比:X偏转板上加交流偏转电压:/V)()(结果分析用零电场法测出的电子荷质比和理论值分别相差了0.455%与1.14%。
尤其是850V情况下的结果,准确度较高。
用电场偏转法测电子荷质比时,在X偏转板上加交流偏转电压后,发现()相对理论值普遍偏大,()相对理论值普遍偏大。
且二者偏离的大小差不多。
现对螺旋线的起点位置进行大致估计:由计算公式,得=*0.107=0.114m=*0.123=0.114m由此可见,螺旋线的起点位置大约在0.114m附近。
【问题思考与讨论】1、为什么螺线管磁场要反向测量后求平磁感应强度来计算荷质比?排除地磁场在螺线管轴线上的分量上的影响。
事实上,当螺线管是东西方向放置时,地磁场的轴向分量影响被消除了。
用磁聚焦法测定电子荷质比实验报告
用磁聚焦法测定电子荷质比实验报告实验名称:用磁聚焦法测定电子荷质比实验报告实验目的:通过磁聚焦法测定电子荷质比,了解电子的基本性质和物理定律。
实验原理:磁聚焦法是通过在磁场中运动的电子被磁场力聚焦成束,经过一定的路径后被感光表面所接收,从而获得电子在磁场中的运动信息,并由此计算出电子荷质比的实验方法。
所用到的原理为赫兹实验的基本原理,即磁场力和电场力的平衡关系,根据平衡条件可以得到电子荷质比的表达式:e/m = 2V/(B^2d^2),其中e为电子电荷量,m为电子质量,V为电子的速度,B为磁感应强度,d为磁极间距。
实验器材:电子枪、磁聚焦系统、感光表面、微分放大器等。
实验步骤:1. 将微分放大器调整到合适的工作状态,并将感光表面安装在适当的位置,调整其与电子轨迹平衡,使得电子束能正常照射到感光表面上。
2. 调整磁聚焦系统,保证电子束的轨迹尽量贴近感光表面,并保证电子束以足够的速度进入磁场。
3. 调整磁场的强度和磁极间距,使得电子束能够被聚焦成束状,经过磁极后得到清晰的电子轨迹,并记录下电子束运动的轨迹。
4. 记录电子束运动的轨迹,并记录下微分放大器的输出电压。
5. 根据记录的电子运动轨迹和微分放大器的输出电压,计算出电子荷质比,并对实验结果进行分析和总结。
实验结果分析:通过本次实验,我们成功地测定出了电子的荷质比,并得出了相应的实验结果。
在数据处理的过程中,我们注意到实验结果的精确度和准确度,需要进行合理的误差分析,并对实验结果进行改进和优化。
实验结论:通过本次实验,我们成功地测定出了电子的荷质比,并得出了相应的实验结果。
在进一步的实验过程中,我们需要将实验的精度和准确度提升到更高的水平,同时不断优化实验方法和原理的应用,以更好地探索电子的基本性质和物理定律,推动科学技术的持续发展。
电子荷质比实验报告
电子荷质比实验报告电子荷质比实验报告1、实验电路(1)阅读仪器的使用说明。
(2)按正向聚焦接线图插入导联线。
(3)将仪器面板“功能选择”开关旋至“磁聚”处,此时仪器处于磁聚焦工作状态。
2、测量(1)接通总电源,预热数分钟,荧光屏上出现亮斑。
亮斑辉度不够可调节辉度旋钮或增大V2。
(2)接通励磁开关前,先将“励磁电流”旋钮(或调压器旋钮)逆时针方向旋至最小。
(3)取V2为800V,调节励磁电流,使光斑聚焦,记下此时仪器三次聚焦时的励磁电流读数。
(4)取V2为1000V、1200V重复步骤(3)。
( 5)关闭总电源约数分钟,改为反向聚焦接线,重复步骤(3)、(4)。
3、记录数据和处理结果。
【数据处理】螺线管的长度L=296mm 螺线管直径D=91.5mm 线圈匝数N=4141 示波管阳极到荧光屏的距离d=193.0mm3.数据处理将各数据代入公式平均值为1.765×1011C/kg 算出标准差为0.013×1011C/kg 得出电子的荷质比所以电子的荷质比为(1.765?0.013)×1011C/kg ? 【实验结论】实验测得的电子的荷质比为:(1.765?0.013)×1011C/kg ? 【误差分析】1. 电子束与磁场没有严格垂直导致误差;电子束具有一定宽度,导致测量误差;3. 测量者利用点一线法测半径时没有完全对齐导致随机误差;4. 实验仪器精确度不够导致测量误差;5. 实验理论的不完善导致误差。
篇三:实验报告-磁聚焦法测定电子荷质比实验报告姓名:班级:学号:实验成绩:同组姓名:实验日期:201X0331 指导老师:批阅日期:------------------------------------------------- 磁聚焦法测定电子荷质比【实验目的】1、学习测量电子荷质比的方法。
2、了解带点粒子在电磁场中的运动规律及磁聚焦原理。
【实验原理】1、电子在磁场中运动的基本参数2、零电场法测定电子荷质比 =n23、电场偏转法测定电子荷质比上海交通大学 *1014 = 【实验数据记录、结果计算】 ? 数据记录系数:K1==3.789*107 电子荷质比理论值:X0==1.758*1011kg 实验数据:数据处理与结果比较 X1=k =1.766*1011 kg 与理论值的相对误差=0.455% X2=k =1.778*1011 kg 与理论值的相对误差=1.14% 电场偏转法测定电子荷质比:X偏转板上加交流偏转电压:上海交通大学 ? 结果分析用零电场法测出的电子荷质比和理论值分别相差了0.455%与1.14%。
电子荷质比实验
《基础物理》实验报告学院:专业:年月日实验名称电子荷质比姓名年级/班级学号一、实验目的四、实验内容及原始数据二、实验原理五、实验数据处理及结果(数据表格、现象等)三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论)一:实验原理:一·磁聚焦法测定电子荷质比1.带电粒子在均匀磁场中的运动:a.设电子e在均匀磁场中以匀速V运动。
当V⊥B时,则在洛仑兹力f作用下作圆周运动,运动半径为R,由得如果条件不变,电子将周而复始地作圆周运动。
可得出电子在这时的运动周期T:由此可见:T只与磁场B相关而与速度V无关。
这个结论说明:当若干电子在均匀磁场中各以不同速度同时从某处出发时,只要这些速度都是与磁场B垂直,那么在经历了不同圆周运动,会同时在原出发地相聚。
不同的只是圆周的大小不同,速度大的电子运动半径大,速度小的电子运动半径小(图1)。
b.若电子的速度V与磁场B成任一角度θ:我们可以把V分解为平行于磁场B的分量V∥和垂直于B的分量V⊥;这时电子的真实运动是这两种运动的合成:电子以V⊥‘作垂直于磁场B的圆周运动的同时,以V∥作沿磁场方向的匀速直线运动。
从图2可看出这时电子在一条螺旋线上运动。
可以计算这条螺旋线的螺距l:由式3得由此可见,只要电子速度分量V∥大小相等则其运动的螺距l就相同。
这个重要结论说明如果在一个均匀磁场中有一个电子源不断地向外提供电子,那么不论这些电子具有怎样的初始速度方向,他们都沿磁场方向作不同的螺旋线运动,而只要保持它们沿磁场方向的速度分量相等,它们就具有相同的由式4决定的螺距。
这就是说,在沿磁场方向上和电子源相距l处,电子要聚集在一起,这就是电子的旋进磁聚焦现象。
至于V∥B时,则磁场对电子的运动和聚焦均不产生影响。
2.利用示波管测定电子的荷质比把示波管的轴线方向沿均匀磁场B的方向放置,在阴极K和阳极A₁之间加以电压,使阴极发出的电子加速。
设热电子脱离阴极K后沿磁场方向的速度为零。
电子荷质比实验报告(参考)
电子荷质比实验报告电子荷质比实验报告1、实验电路(1)阅读仪器的使用说明。
(2)按正向聚焦接线图插入导联线。
(3)将仪器面板“功能选择”开关旋至“磁聚”处,此时仪器处于磁聚焦工作状态。
2、测量(1)接通总电源,预热数分钟,荧光屏上出现亮斑。
亮斑辉度不够可调节辉度旋钮或增大V2。
(2)接通励磁开关前,先将“励磁电流”旋钮(或调压器旋钮)逆时针方向旋至最小。
(3)取V2为800V,调节励磁电流,使光斑聚焦,记下此时仪器三次聚焦时的励磁电流读数。
(4)取V2为1000V、1200V重复步骤(3)。
( 5)关闭总电源约数分钟,改为反向聚焦接线,重复步骤(3)、(4)。
3、记录数据和处理结果。
【数据处理】螺线管的长度L=296mm 螺线管直径D=91.5mm 线圈匝数N=4141 示波管阳极到荧光屏的距离d=193.0mm3.数据处理将各数据代入公式平均值为1.765×1011C/kg 算出标准差为0.013×1011C/kg 得出电子的荷质比所以电子的荷质比为(1.765?0.01 3)×1011C/kg ? 【实验结论】实验测得的电子的荷质比为:(1.765?0.013)×1011C/kg ? 【误差分析】1. 电子束与磁场没有严格垂直导致误差;电子束具有一定宽度,导致测量误差;3. 测量者利用点一线法测半径时没有完全对齐导致随机误差;4.实验仪器精确度不够导致测量误差; 5. 实验理论的不完善导致误差。
篇三:实验报告-磁聚焦法测定电子荷质比实验报告姓名:班级:学号:实验成绩:同组姓名:实验日期:201X0331 指导老师:批阅日期:------------------------------------------------- 磁聚焦法测定电子荷质比【实验目的】1、学习测量电子荷质比的方法。
磁聚焦和电子荷质比的测量
磁聚焦和电子荷质比的测量【实验目的】1、学习测量电子荷质比的一种方法。
【实验原理】1、示波管的简单介绍:示波管结构如图1所示示波管包括有:(1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。
所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。
接通电源后,灯丝发热,阴极发射电子。
栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。
第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。
水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。
2、电子的加速和电偏转:为了描述电子的运动,我们选用了一个直角坐标系,其z轴沿示波管管轴,x轴是示波管正面所在平面上的水平线,y轴是示波管正面所在平面上的竖直线。
从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。
电子从K 移动到2A ,位能降低了2V e ∙;因此,如果电子逸出阴极时的初始动能可以忽略不计,那么它从2A 射出时的动能2z v m 21∙ 就由下式确定: 22z V e v m 21∙=∙ (1) 此后,电子再通过偏转板之间的空间。
如果偏转板之间没有电位差,那么电子将笔直地通过。
用磁聚焦法测电子的荷质比[整理版]
用磁聚焦法测电子的荷质比一、实验目的1.测定电子的荷质比。
2.了解磁聚焦的原理。
二、实验原理在纵向磁场作用下,电子从电子枪中发射出来以后,将作螺旋运动,如图1。
在初始时刻,各电子的运动方向并不一致,也就是说,它们的径向速度⊥V 是不一样的。
另外,虽然它们的初始轴向速度也不一样,但是经过近千伏的加速电压后,初始轴向速度的差别可以忽略不计。
所以可以认为它们的轴向速度V ∥是一样的。
在B 一定的情况下,各电子的回旋半径是不一样的,但是它们的螺距是相等的。
也就是说经过一个周期后,同时从电子枪发射出来但是运动方向不同的电子,又交汇在同一点,这就是磁聚焦作用。
每经过一个周期有一个焦点。
可以通过调节磁场B 的大小来改变螺距h 。
图1 电子束磁聚焦的示意图将电子的运动速度分解成两个方向的速度:轴向速度V ∥和径向速度⊥V 。
前者不受洛仑兹力的影响,沿轴向作直线运动。
后者在洛仑兹力的作用下做匀速圆周运动,其方程为eBm vR R m v evB F =⇒==2(1)于是,电子做匀速圆周运动的周期T 为:eBmv R T ππ22==(2)电子螺旋运动的螺距为:h= V ∥·T (3)设K 、A 之间的加速电压为U ,则:m 21V ∥2=eU (4)结合(3)(4)消去V ∥,可以得到2228B h U m e π=(5)其中螺线管中的磁感应强度B 可以用下式计算: 220DL NIB +=μ,其中I 是励磁电流。
所以,220222)()(8IUNh D L m e ∙+=ηπ (6)其中,0μ=4.0×10-7H/m ;N 是线圈匝数,标注在仪器上;L 、D 分别是螺线管的长度和直径;h 是螺距,在第一次聚焦时h ≈L 。
三、实验仪器DHB 型电子荷质比测定仪,面板分布如图2。
图2 仪器面板示意图四、实验内容1.接通电子荷质比测定仪的电源,预热十分钟。
2.调节栅极电压,使荧光屏上的斑点亮度适当,不宜过亮。
实验报告-磁聚焦法测定电子荷质比
实验报告-磁聚焦法测定电子荷质比篇一:电子荷质比的测定(实验报告) 大学物理实验报告实验名称磁聚焦法测电子荷质比实验日期 2010-04-24实验人员袁淳(200902120406) 【实验目的】 1. 了解电子在电场和磁场中的运动规律。
2. 学习用磁聚焦法测量电子的荷质比。
3. 通过本实验加深对洛伦兹力的认识。
【实验仪器】 FB710电子荷质比测定仪。
【实验原理】当螺线管通有直流电时,螺线管内产生磁场,其磁感应强度B的方向,沿着螺线管的方向。
电子在磁场中运动,其运动方向如果同磁场方向平行,则电子不受任何影响;如果电子运动力向与磁场方向垂直,则电子要受到洛伦兹力的作用,所受洛伦兹力为: F?evB 将运动速度分解成与磁感应强度平行的速度v//和与磁感应强度垂直的速度v?。
v//不受洛伦兹力的影响,继续沿轴线做匀速直线运动。
?在洛伦兹力的作用下做匀速圆周运动,其方程为: 2 mv F?evB? r 则由阴极发射的电子,在加速电压U的作用下获得了动能,根据动能定理, 2 e2U ?则 2m(rB) 保持加速电压U不变,通过改变偏转电流I,产生不同大小磁场,保证电子束与磁场严格垂直,进而测量电子 v e??mrB 1 mv?eU2 束的圆轨迹半径,就能测量电子的 r m值。
32 4?0NIB?()?螺线管中磁感应强度的计算公式以 5R 数=130匝; R为螺线管的平均半径=158mm。
得到最终式:表示,式中?0=4?×10 -7 H/m。
N是螺线管的总匝e?125?UR2U12 ???3.65399?10?22?C/kg??2m?32??0NIrIr 测出与U与I相应的电子束半径,即可求得电子的荷质比。
r 【实验步骤】—第 1 页共 2 页—1. 接通电子荷质比测定仪的电源,使加速电压定于120V,至能观察到翠绿色的电子束后,降至100V;2. 改变偏转电流使电子束形成封闭的圆,缓慢调节聚焦电压使电子束明亮,缓慢改变电流观察电子束大小和偏转的变化;3. 调节电压和电流,产生一个明亮的电子圆环;4. 调节仪器后线圈的反光镜的位置以方便观察;5. 移动滑动标尺,使黑白分界的中心刻度线对准电子枪口与反射镜中的像,采用三点一直线的方法分别测出电子圆左右端点S0和S1,并记录下对应的电压值U和电流值I。
电子荷质比的测定实验报告
专业:应用物理题目:电子荷质比的测定实验目的(1)掌握测定e/m值的两种方法;(2)了解电子射线的电聚焦和磁聚焦。
实验仪器理想二极管、GPS-2303C直流稳压电源(两路,0-30V,3A),SS1792C直流稳定电源(0-60V, 3A),直螺线管,数字万用表UT803(U A表),数字万用表UT803(伏特表),安培表(0~2A,0.5级),安培表(0~1.5A,0.5级),换向开关,导线等。
DHB-B型电子荷质比测定仪(由测试仪主机、测试仪电源和螺线管直流电源三大部分组成)。
实验原理1.磁控管法:用来测量e/m的磁控管是一个具有轴向灯丝的真空二极管。
将它置于一个沿轴向均匀的外磁场中,则灯丝阴极发射的电子将在电场和磁场的共同作用下运动。
原理示意图如图所示。
不加磁场时,管内电子运动轨迹如图所示增大励磁电流IH,磁场增大,电子轨迹逐渐偏转,B达到某一值时(IH=IC)电子轨道与屏极相切,这时电子刚好不能到达屏极,于是屏流Ia突然下降为零。
这个状态称临界状态。
(b)I H<T c(c)1H=I Q J H-临界状态下丄加之2联立上式可得(SI制) 半,卩o =4n x10-7Wb/(A ・m ) Ic 为电流强度(A ),代入可得毋匸碇其中n 为单位长度上线圈的匝数(1/m ),0为螺线管中心对管口平均直径D 的张角的电子在第一阳极A1(由F 电位器控制,起聚焦作用)和第二阳极A2(由V 电位器控制,起加速和辅助聚焦作用)的电场作用下被聚焦和加速,在A2和偏转板交界D 点处形成一束很细的电子流,到达荧光屏而出现一小亮点,形成电聚焦。
假如在垂直(或水平)偏转上施加交流电压,则在偏转板间形成一交变电场。
电子束在此电场的作用下获得垂直于射线管轴线方向的速度。
此时,荧光屏上的效果则是光点作垂直(或水平)的周期振动,若交变电压的频率稍高,屏上就呈现一垂直(或水平)的亮线。
若再加入平行于轴的磁场,电子的轨迹便为一条沿轴方向的螺旋线 式中Va 为加在二极管上的屏压,BC 为临界磁感强度,rp 是二极管的阳极内径。
电子荷质比实验
《基础物理》实验报告学院:专业:年月日实验名称电子荷质比姓名年级/班级学号一、实验目的四、实验内容及原始数据二、实验原理五、实验数据处理及结果(数据表格、现象等)三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论)一:实验原理:一·磁聚焦法测定电子荷质比1.带电粒子在均匀磁场中的运动:a.设电子e在均匀磁场中以匀速V运动。
当V⊥B时,则在洛仑兹力f作用下作圆周运动,运动半径为R,由得如果条件不变,电子将周而复始地作圆周运动。
可得出电子在这时的运动周期T:由此可见:T只与磁场B相关而与速度V无关。
这个结论说明:当若干电子在均匀磁场中各以不同速度同时从某处出发时,只要这些速度都是与磁场B垂直,那么在经历了不同圆周运动,会同时在原出发地相聚。
不同的只是圆周的大小不同,速度大的电子运动半径大,速度小的电子运动半径小(图1)。
b.若电子的速度V与磁场B成任一角度θ:我们可以把V分解为平行于磁场B的分量V∥和垂直于B的分量V⊥;这时电子的真实运动是这两种运动的合成:电子以V⊥‘作垂直于磁场B的圆周运动的同时,以V∥作沿磁场方向的匀速直线运动。
从图2可看出这时电子在一条螺旋线上运动。
可以计算这条螺旋线的螺距l:由式3得由此可见,只要电子速度分量V∥大小相等则其运动的螺距l就相同。
这个重要结论说明如果在一个均匀磁场中有一个电子源不断地向外提供电子,那么不论这些电子具有怎样的初始速度方向,他们都沿磁场方向作不同的螺旋线运动,而只要保持它们沿磁场方向的速度分量相等,它们就具有相同的由式4决定的螺距。
这就是说,在沿磁场方向上和电子源相距l处,电子要聚集在一起,这就是电子的旋进磁聚焦现象。
至于V∥B时,则磁场对电子的运动和聚焦均不产生影响。
2.利用示波管测定电子的荷质比把示波管的轴线方向沿均匀磁场B的方向放置,在阴极K和阳极A₁之间加以电压,使阴极发出的电子加速。
设热电子脱离阴极K后沿磁场方向的速度为零。
用磁聚焦法测电子荷质比[资料]
用磁聚焦法测电子荷质比【实验目的】1.了解电子在电场和磁场中的运动规律。
2.学习用磁聚焦法测量电子的荷质比。
【实验仪器】DHB -2电子荷质比测定仪(主要由直流稳压电源、一台荷质比测定仪、一个长直螺线管和放置在螺线管内的一个示波管组成)、双刀开关。
【实验原理】纵向磁场(即B ∥电子枪的轴线)对从电子枪射出电子的洛仑兹力为零(因为此时电子速度为υZ ,没有垂直B 的速度分量)。
但是通过加有偏转电压的X 偏转板后,电子获得了垂直于B 的横向速度分量v x ,将受洛仑兹力B x f ev B =的作用,在垂直于B 的平面内做匀速率圆周运动。
电子做圆周运动的同时,还在加速电压V 2影响下沿Z 轴方向做匀速(速度为υZ )直线运动,两运动合成的结果是电子沿B 的方向作螺旋线运动,如图3-18所示。
则电子做螺旋线运动的回旋半径R 和周期T 分别为xmv R eB =(3-37)2π2πx R m T v eB==(3-38)由此可知,电子的回旋半径R 与v x 成正比,与B 成反比;周期T 与B 成反比而与v x 无关。
它表明v x 大的电子绕半径大的轨道运动,v x 小的电子绕半径小的轨道运动,但它们运动一周的时间都相等。
电子做螺旋线运动的螺距为2πzz mv h v T eB==(3-39)虽然它们的初始轴向速度也是不一样的,但它们的螺距是相等的,也就是经过一个周期后,同时从电子枪发射出来但运动方向不同的电子,又交汇在同一点(见图3-18),这就是磁聚焦作用。
而且每经过一个周期(一个螺距),有一个聚焦点。
图3-18 电子束的磁聚焦调整磁场的B 来改变螺距h ,可使电子枪出口到荧光屏的距离L 为h 的整数倍,这样我们就可以观察到多次磁聚焦现象。
利用磁聚集现象可以测定电子的荷质比。
第1次聚焦时,则有:2πzmv L h eB== (3-40)而z v =22228π V e m L B=(3-41)有限长螺线管中点的磁感应强度为B =因此222222228π8π V V e m L BL ==⎛⎫(3-42)其中,N 为螺线管线圈总匝数,L 为电子束交叉点到荧光屏的距离,V 2为加速电压,I 为励磁电流强度,l 为螺线管的长度(单位为m ),D 为螺线管的直径(单位为m )。
磁聚焦法测定电子荷质比
电子运动轨道的半径为:
(2)
电子绕圆一周所需的时间(周期)T 为
(3)
(4)
从(3)、(4)两式可见,周期 T 和电子速度 v 无关,即在均匀磁场中不同速度的电子绕圆 一周所需的时间是相同的.但速度大的电子所绕圆周的半径也大.因此,已经聚焦的电子射 线绕一周后又将会聚到一点.
III.在一般情况下,电子束呈圆锥形向荧光屏运动,如电子速度 v 和磁感应强度 B 之间成 一夹角,此时可将 v 分解为与 B 平行的轴向速度 v// (v// = vcos)和与 B 垂直的径向速度 v ┴ (v┴= vsin).v// 使电子沿轴方向作匀速运动,而 v┴ 在洛仑兹力的作用下使电子绕轴作圆 周运动,合成的电子轨迹为一螺旋线,其螺距为
I1’’
0.423 0.426 0.427 0.423 0.421 0.436 0.426
I2’’
0.830 0.825 0.845 0.849 0.828 0.835 0.835
I3’’
1.249 1.250 1.259 1.254 1.265 1.252 1.255
=0.428 A =0.832 A =1.255 A
I=
=0.419A
( ) =k =
950V 时:
I(A)
1 2 3 4 5 6 平均值
I1 0.443 0.448 0.440
I2’
0.871 0.883 0.888 0.891 0.887 0.890 0.885
I3’
1.323 1.337 1.329 1.338 1.333 1.335 1.333
果
误差 3.84%,不算太大。
,与精确实验的结
第二个实验中l中和l后得出的数据有很大的差异,相对来说以l中为近似代入的结果较为
电子荷质比实验报告
电子荷质比实验报告篇一:电子荷质比的测量编号学士学位论文电子荷质比的测量学生姓名:麦麦提江.吾吉麦学号:系部:物理系专业:物理学年级: 07-1班指导教师:依明江完成日期:年月日中文摘要电子荷质比的测量方法很多,主要用近代物理实验来测定,例如,有磁控管法、汤姆逊法、塞曼效应法、密立根油滴实验法及磁聚焦法等,各有特点准确度也不一样。
这文章中利用普通物理实验来进行测量,根据电荷在磁场中的运动特点,利用电子束实验仪进行电子荷质比测定实验,分析了电子束的磁聚焦原理,通过对同一实验多组实验数据的分析处理,最后分析了产生实验误差的主要原因。
关键词:磁聚焦;电子荷质比;螺旋运动;亮线段;误差;1中文摘要 (1)引言 (3)1. 电子荷质比测量的简要历程 (3)2. 电子在磁场中的运动 (4)2.1电荷在磁场中的运动特点 (4)2.2电子束的磁聚焦原理 (4)2.2.1电子荷质比的测量 (6)2.2.2决定荧光屏上亮线段的因素 (6)3.实验结果............................................. . (8)3.1.产生实验误差的主要原因分析.................. (10)3.1.1地磁分量对实验结果的影响 ................................... (11)3.1.2光点判断不准对实验结果的影响 (11)3.1.3示波管真空度的影响.............................. (11)结论 (12)参考文献 (13)致谢 (14)2引言(e/m)电子的电量与质量之比称为电子荷质比。
它是描述电子性质的重要物理量。
测定电子荷质比有多种方法。
如磁控管法、汤姆逊法、塞曼效应法、密立根油滴实验法及磁聚焦法等。
也可以用普通物理实验中的磁聚焦法。
为了更好地理解实验,下面进一步了解释实验中出现的现象。
为此, 本研究运用经典电磁学和牛顿力学理论,加速电压不很高条件下,忽略其量子效应, 把电子当作经典粒子,推导出电子荷质比的测量与计算公式,测量出了电子荷质比。
磁聚焦和电子荷质比的测量
磁聚焦和电子荷质比的测量【实验目的】1、学习测量电子荷质比的一种方法。
【实验原理】1、示波管的简单介绍:示波管结构如图1所示示波管包括有:(1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束;(2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。
所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。
接通电源后,灯丝发热,阴极发射电子。
栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。
第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上的荧光物质在高速电子轰击下发出荧光,荧光屏上的发光亮度取决于到达荧光屏的电子数目和速度,改变栅压及加速电压的大小都可控制光点的亮度。
水平偏转板和垂直偏转板是互相垂直的平行板,偏转板上加以不同的电压,用来控制荧光屏上亮点的位置。
2、电子的加速和电偏转:为了描述电子的运动,我们选用了一个直角坐标系,其z轴沿示波管管轴,x轴是示波管正面所在平面上的水平线,y轴是示波管正面所在平面上的竖直线。
从阴极发射出来通过电子枪各个小孔的一个电子,它在从阳极2A 射出时在z 方向上具有速度Z v ;Z v 的值取决于K 和2A 之间的电位差C B 2V V V +=(图2)。
电子从K 移动到2A ,位能降低了2V e •;因此,如果电子逸出阴极时的初始动能可以忽略不计,那么它从2A 射出时的动能2z v m 21• 就由下式确定: 22z V e v m 21•=• (1) 此后,电子再通过偏转板之间的空间。
如果偏转板之间没有电位差,那么电子将笔直地通过。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告-磁聚焦法测定电子荷质比篇一:电子荷质比的测定(实验报告)大学物理实验报告实验名称磁聚焦法测电子荷质比实验日期 2020-04-24实验人员袁淳(202002120406)【实验目的】1. 了解电子在电场和磁场中的运动规律。
2. 学习用磁聚焦法测量电子的荷质比。
3. 通过本实验加深对洛伦兹力的认识。
【实验仪器】FB710电子荷质比测定仪。
【实验原理】当螺线管通有直流电时,螺线管内产生磁场,其磁感应强度B的方向,沿着螺线管的方向。
电子在磁场中运动,其运动方向如果同磁场方向平行,则电子不受任何影响;如果电子运动力向与磁场方向垂直,则电子要受到洛伦兹力的作用,所受洛伦兹力为:F?evB将运动速度分解成与磁感应强度平行的速度v//和与磁感应强度垂直的速度v?。
v//不受洛伦兹力的影响,继续沿轴线做匀速直线运动。
?在洛伦兹力的作用下做匀速圆周运动,其方程为:2mvF?evB?r则由阴极发射的电子,在加速电压U的作用下获得了动能,根据动能定理,2e2U?则 2m(rB)保持加速电压U不变,通过改变偏转电流I,产生不同大小磁场,保证电子束与磁场严格垂直,进而测量电子ve??mrB1mv?eU2束的圆轨迹半径,就能测量电子的rm值。
324?0NIB?()?螺线管中磁感应强度的计算公式以5R数=130匝; R为螺线管的平均半径=158mm。
得到最终式:表示,式中?0=4?×10-7H/m。
N是螺线管的总匝e?125?UR2U123.65399?10?22?C/kg??2m?32??0NIrIr测出与U与I相应的电子束半径,即可求得电子的荷质比。
r【实验步骤】—第 1 页共 2 页—1. 接通电子荷质比测定仪的电源,使加速电压定于120V,至能观察到翠绿色的电子束后,降至100V;2. 改变偏转电流使电子束形成封闭的圆,缓慢调节聚焦电压使电子束明亮,缓慢改变电流观察电子束大小和偏转的变化;3. 调节电压和电流,产生一个明亮的电子圆环;4. 调节仪器后线圈的反光镜的位置以方便观察;5. 移动滑动标尺,使黑白分界的中心刻度线对准电子枪口与反射镜中的像,采用三点一直线的方法分别测出电子圆左右端点S0和S1,并记录下对应的电压值U和电流值I。
6.1?S1?S0?得到电子圆的半径,代入最终式求出m;根据r?27. 改变U、I得到多组结果,求出平均值,与标准值进行比较,求出相对误差E 【实验数据】标准值em=1.75881962×1011 (C/kg)【数据处理过程】 1. 根据r?1?S1?S0?计算出r2,得到每个U和I对应的r2.2U12m?3.65399?10?22根据rI计算出每个m,得到e/m=1.800×1011 (C/kg)3.|m?m|?100%=2.346% 将得到的e/m与标准值进行比较,得到相对误差E= m电子束与磁场没有严格垂直导致误差;电子束具有一定宽度,导致测量误差;测量者利用点一线法测半径时没有完全对齐导致随机误差;实验仪器精确度不够导致测量误差;实验理论的不完善(如没有考虑电子的相对论效应)导致误差。
—第 2 页共 2 页—【误差分析】1. 2. 3. 4. 5.篇二:预习报告--磁聚焦测定荷质比实验预习报告姓名:张伟楠同组姓名:班级:F0703028实验日期:2020.04.14学号:5070309108 实验成绩:指导老师:批阅日期:磁聚焦法测定电子荷质比【原理简述(原理图、主要公式)】1. 零电场测定电子荷质比(L2+D2)k=n2lNeUa=k2 mI22. 电场偏转法测定电子荷质比e8Uaθ2Ua= =c【原始数据记录表】1. 零电场测定电子荷质比2. 电场偏转法测定电子荷质比(1)在X偏转板上加交流偏转电压(2)在Y偏转板上加交流偏转电压篇三:电子束的偏转与聚焦实验报告南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
下的偏转情况。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G 的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。
加速电极的电压比阴极电位高几百伏至上千伏。
前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。
由于各电极上的电压不同,在它们之间形成了弯曲的等势面、电场线。
这样就使电子束的路径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。
改变电极间的电压分布,可以改变等势面的弯曲程度,从而达到电子束的聚焦。
3、电偏转原理在示波管中,电子从被加热的阴极K逸出后,由于受到阳极电场的加速作用,使电子获得沿示波管轴向的动能。
电场力做的功eU应等于电子获得的动能eU?1mv2 2(1)显然,电子沿Z轴运动的速度vz与第二阳极A2的电压U2的平方根成正比,即vz?2emU2(2)若在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏若偏转板板长为l、偏转板末端到屏的距离为L、偏转电极间距离为d、轴向转,如图2所示。
加速电压(即第二阳极A2电压)为U2,横向偏转电压为Ud,则荧光屏上光点的横向偏转量D由下式给出:lUdl2U22dD?(L?)(3)由式(3)可知,当U2不变时,偏转量D随Ud的增加而线性增加。
所以,根据屏上光点位移与偏转电压的线性关系,可以将示波管做成测量电压的工具。
若改变加速电压U2,适当调节U1到最佳聚焦,可以测定D-Ud直线随U2改变而使斜率改变的情况。
4、磁偏转原理电子通过A2后,若在垂直Z轴的X方向外加一个均匀磁场,那么以速度v飞越子电子在Y方向上也会发生偏转,如图所示。
由于电子受洛伦兹力F=eBv作用,F的大小不变,方向与速度方向垂直,因此电子在F的作用下做匀速圆周运动,洛伦兹力就是向心力,即有eBv=mv2/R,所以R?mvzeB(4)电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。
在偏转角φ较小的情况下,近似的有tan??lD? RL(5)式中,l为磁场宽度,D为电子在荧光屏上亮点的偏转量(忽略荧光屏的微小由此可得偏转量D与外加磁场B、加速电压U2等的关系为弯曲),L为从横向磁场中心到荧光屏的距离。
D?lBLe2mU2(6)实验中的外加横向磁场由一对载流线圈产生,其大小为B?K?0nI(7)式中,?0为真空中的磁导率,n为单位长度线圈的匝数,I为线圈中的励磁电流,K为线圈产生磁场公式的修正系数(0?K?1)由此可得偏转量D与励磁电流I、加速电压U2等的关系为D?K?0nIlLe 2mU2(8)当励磁电流I(即外加磁场B)确定时,电子束在横向磁场中的偏转量D与加速电压U2的平方根成反比。
5、磁聚焦和电子荷质比的测量原理带点粒子的电量与质量的比值叫荷质比,是带电微观粒子的基本参量之一。
电子运动方向与磁场平行,故磁场对电子运动不产生影响。
电子流的轴线速测定荷质比的方法很多,本实验采用磁聚焦法。
率为v//?2eU2m(9)式中,e,m分别为电子电荷量和质量。
若在一对偏转极板Y上加一个幅值不大的交变电压,则电子流通过Y后就获得一个与管轴垂直分量v?。
如暂不考虑电子轴向速度分量v//的影响,则电子在磁场的洛伦兹力F的作用下(该力与v?垂直),在垂直于轴线的平面上作圆周运动,即该力起着向心力的作用,F=ev?B=mv2?/R,由此可得到电子运动的轨道半径R?动一周所需要的时间(即周期)为 v?,v?越大轨道半径亦越大,电子运Be/mT?2?Re?2?B v?m(10)这说明电子的旋转周期与轨道半径及速率v?无关。
若再考虑v//的存在,电子的运动轨迹应为一螺旋线。
在一个周期内,电子前进距离(称螺距)为h?v//T?2?2mU2Be(11)由于不同时刻电子速度的垂直分量v?度不同,故在磁场的作用下,各电子将沿不同半径的螺线前进。
然而,由于他们速度的平行分量v//均相同,所以电子在做螺线运动时,它们从同一点出发,尽管各个电子的v?各不相同,但经过一个周期后,它们又会在距离出发点相距一个螺距的地方重新相遇,这就是磁聚焦的基本原理。
由式(11)可得m?8?2U2h2B2(12)长直螺线管的磁感性强度B,可以由下式计算:B??0NIL?D22(13)将式(13)代入式(12),可得电子荷质比为: m?8?2U2(L2D2?0NIh)2e?k(14)m式中U22I(15)8?2(L2?D2)k?2(?0Nh)(16)本实验使用的电子束实验仪,k=4.8527?108。