化学反应速率表示方法
无机及分析化学二章节化学反应速率
对气体而言,C可以以p表示,如上例
v=k ·C(O2) 或v=k’·p(O2) k大小由实验测得
v2 = kc2(NO2)
3、应用反应速率方程时应注意的问题
速率方程通式: 对于反应 aA+bB=dD+eE
v=k·CAm·CBn 对于基元反应:v=k·CAa·CBb 对于非基元反应:v=k·CAm·CBn 基元反应的a.b 是方程式中的系数, 非基元反应的m.n是由实验所测数据得出 m.n可能与a.b相同,也可能不同.m=a,n=b不代 表此反应一定是基元反应
对于 H2 :1级
对于:Cl2 0.5级
对于整个反应:1.5级
反应级数与实验条件有关;如蔗糖水解 反应是二级反应,但当水为大量时,可 视为水的浓度不变,即反应对水是零级、 总反应变为一级反应。
复杂反应的反应级数求法:由实验测:
例: 298K, 3I-(aq) + S2O82-(aq)= 2SO42- + I3求k、m、n、m+n
代入 第一组(或其他组)数:
k= 0.65mol-1·min-1·L
浓度如何影响反应速率 ——影响单位体积内活化分子的总数
C(反应物)增大,单位体积内分子数增大、有 效碰撞次数增大、v增大;
活化分子总数增大但活化分子百分数f不变
单位体积内分子数 活化分子数 f
100个
8个
f=8%
浓度增大 1000个
第三章 化学反应速率
第三章化学反应速率3.1化学反应速率的表示方法不同的反应进行的快慢不一样。
如:快的反应:中和反应等;中等速率反应:氧化还原反应等;慢的反应:自然氧化等。
一、化学反应速率的定义指在一定条件下,化学反应中反应物转变为生成物的速率。
二、化学反应速率的表示方法单位时间内反应物或生成物浓度变化的正值(绝对值)。
例3-1:在CCl4中:2N2O5=4NO2+O2在一定的时间间隔:△t=t2-t1,△[N2O5]=[N2O5]2-[N2O5]1平均反应速率:(3-1)经过的时间s 时间的变化Δt(s)[N2O5]mol· L-1Δ[N2O5]mol· L-1v(N2O5)mol· L-1· s-10 0 2.10 ————100 100 1.95 -0.15 1.5×10-3300 200 1.70 -0.25 1.3×10-3700 400 1.31 -0.39 9.9×10-41000 300 1.08 -0.23 7.7×10-41700 700 0.76 -0.32 4.5×10-42100 400 0.56 -0.20 3.5×10-42800 700 0.37 -0.19 2.7×10-4从表中可以看出:反应进行了100秒时:V N2O5 = |(1.95-2.10)/(100-1)|= 1.5× 10-3mol· L-1· s -1V NO2 = |2× 0.15/100|= 3.0× 10-3mol· L-1· s -1V O2 = |0.15÷ 2/100|= 0.75× 10-3mol· L-1· s -1三种表示速率间关系:这种比例关系与反应的计量数有关。
∴表示反应速率时必须指明具体物质。
反应速率公式化学
反应速率公式化学一、化学反应速率的公式化学反应速率的公式为:△v(A)=△c(A)/△t单位:mol/(L·s)或mol/(L·min)化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示。
通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示。
二、化学反应速率的定义和特点1. 定义:化学反应速率是用来衡量化学反应进行快慢程度的,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。
单位:mol/(L·min)或mol/(L·s)。
2.特点:同一反应同一段时间内用不同物质表示化学反应速率时,数值可能不同,但意义一样。
同一段时间内用不同物质表示的反应速率比值等于各物质化学方程式中的化学计量数之比。
如反应mA+nB=pC+qD的v (A) ∶v (B) ∶v (C) ∶v (D)=m∶n∶p∶q比较反应速率快慢一般要以同一物质的速率值作为标准来比较。
三、化学反应速率的影响因素①内部因素(主要因素):参加反应物质的性质(化学反应的本质:反应物分子中的化学键断裂、生成物分子中的化学键形成过程(旧键断裂,新键生成)②外部因素:浓度:在其他条件不变时,增大反应物浓度,可以增大反应速率。
.压强:对气体来说,若其他条件不变,增大压强,就是增加单位体积的反应物的物质的量,即增加反应物的浓度,因而可以增大化学反应的速率。
温度:反应若是可逆反应,升高温度,正、逆反应速率都加快,降低温度,正、逆反应速率都减小。
催化剂:使用催化剂,能够降低反应所需的能量,这样会使更多的反应物的分子成为活化分子,大大增加单位体积内反应物分子中活化分子所占的百分数。
因而使反应速率加快。
其他因素:光、固体表面积、溶剂、电磁波、超声波、强磁场、高速研磨、原电池等。
化学反应速率与化学平衡知识点归纳
1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间Δt和反应物浓度的变化Δc有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的;但这些数值所表示的都是同一个反应速率;因此,表示反应速率时,必须说明用哪种物质作为标准;用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比;如:化学反应mAg + nBg pCg + qDg 的:vA∶vB∶vC∶vD = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢;因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率;⑵. 影响化学反应速率的因素:I. 决定因素内因:反应物本身的性质;Ⅱ.条件因素外因也是我们研究的对象:①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率;值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快;值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率;③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率;④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率;⑤. 其他因素;如固体反应物的表面积颗粒大小、光、不同溶剂、超声波等;2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应;⑵. 化学平衡的概念略;⑶. 化学平衡的特征:动:动态平衡;平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定不是相等;变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡;⑷. 化学平衡的标志:处于化学平衡时:①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化;例1在一定温度下,反应A2g + B2g 2ABg达到平衡的标志是 CA. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸. 化学平衡状态的判断:举例反应 mAg + nBg pCg + qDg混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定其他条件一定平衡②m+n=p+q时,总压力一定其他条件一定不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴勒沙持列原理:如果改变影响平衡的一个条件如浓度、压强和温度等,平衡就向着能够减弱这种改变的方向移动;其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况即温度或压强或一种物质的浓度,当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱不可能抵消外界条件的变化;⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程;一定条件下的平衡体系,条件改变后,可能发生平衡移动;即总结如下:⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来;⑷、影响化学平衡移动的条件:化学平衡移动:强调一个“变”字①浓度、温度的改变,都能引起化学平衡移动;而改变压强则不一定能引起化学平衡移动;强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动;催化剂不影响化学平衡;②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动;③平衡移动原理:勒沙特列原理:④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动;⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aAg=bBg + cCg,在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:可用等效平衡的方法分析;①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小;Ⅱ、若反应物不只一种:aAg + bBg=cCg + dDg,①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大;②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小;4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡;⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡;②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡;③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡;5、速率和平衡图像分析:⑴分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点;②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应;升高温度时,△V 吸热>△V放热;③看终点:分清消耗浓度和增生浓度;反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比;④对于时间——速度图像,看清曲线是连续的,还是跳跃的;分清“渐变”和“突变”、“大变”和“小变”;增大反应物浓度V正突变,V逆渐变;升高温度,V吸热大增,V放热小增;⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向;②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点;③先拐先平:对于可逆反应mAg + nBg pCg + qDg ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡;它所代表的温度高、压强大;这时如果转化率也较高,则反应中m+n>p+q;若转化率降低,则表示m+n<p+q;④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系; 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示;通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示;表达式:△vA=△cA/△t单位:mol/L·s或mol/L·min影响化学反应速率的因素:温度,浓度,压强,催化剂;另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:例对于下列反应:mA+nB=pC+qD有vA:vB:vC:vD=m:n:p:q对于没有达到化学平衡状态的可逆反应:v正≠v逆影响化学反应速率的因素:压强:对于有气体参与的化学反应,其他条件不变时除体积,增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小;若体积不变,加压加入不参加此化学反应的气体反应速率就不变;因为浓度不变,单位体积内活化分子数就不变;但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加;温度:只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大主要原因;当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快次要原因催化剂:使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之;浓度:当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 ;其他因素:增大一定量固体的表面积如粉碎,可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响;溶剂对反应速度的影响在均相反应中,溶液的反应远比气相反应多得多有人粗略估计有90%以上均相反应是在溶液中进行的;但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难;最简单的情况是溶剂仅引起介质作用的情况;在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开;扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中;分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞;笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞或振动;这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞;总的碰撞频率并未减低;据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时间约为10-12-10-11s,在这段时间内大约要进行100-1000次的碰撞;然后偶尔有机会跃出这个笼子,扩散到别处,又进入另一个笼中;可见溶液中分子的碰撞与气体中分子的碰撞不同,后者的碰撞是连续进行的,而前者则是分批进行的,一次偶遇相当于一批碰撞,它包含着多次的碰撞;而就单位时间内的总碰撞次数而论,大致相同,不会有商量级上的变化;所以溶剂的存在不会使活化分子减少;A和B发生反应必须通过扩散进入同一笼中,反应物分子通过溶剂分子所构成的笼所需要的活化能一般不会超过20kJ·mol-1,而分子碰撞进行反应的活化能一般子40 -400kJ·mol-1之间;由于扩散作用的活化能小得多,所以扩散作用一般不会影响反应的速率;但也有不少反应它的活化能很小,例如自由基的复合反应,水溶液中的离子反应等;则反应速率取决于分子的扩散速度,即与它在笼中时间成正比;从以上的讨论可以看出,如果溶剂分子与反应分子没有显着的作用,则一般说来碰撞理论对溶液中的反应也是适用的,并且对于同一反应无论在气相中或在溶液中进行,其概率因素P和活化能都大体具有同样的数量级,因而反应速率也大体相同;但是也有一些反应,溶剂对反应有显着的影响;例如某些平行反应,常可借助溶剂的选择使得其中一种反应的速率变得较快,使某种产品的数量增多;溶剂对反应速率的影响是一个极其复杂的问题,一般说来:1溶剂的介电常数对于有离子参加的反应有影响;因为溶剂的介电常数越大,离子间的引力越弱,所以介电常数比较大的溶剂常不利与离子间的化合反应;2溶剂的极性对反应速率的影响;如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小;3溶剂化的影响,一般说来;作用物与生成物在溶液中都能或多或少的形成溶剂化物;这些溶剂化物若与任一种反应分子生成不稳定的中间化合物而使活化能降低,则可以使反应速率加快;如果溶剂分子与作用物生成比较稳定的化合物,则一般常能使活化能增高,而减慢反应速率;如果活化络合物溶剂化后的能量降低,因而降低了活化能,就会使反应速率加快;4离子强度的影响也称为原盐效应;在稀溶液中如果作用物都是电介质,则反应的速率与溶液的离子强度有关;也就是说第三种电解质的存在对于反应速率有影响.。
化学反应速率4个公式
化学反应速率4个公式1. 平均反应速率(Average Reaction Rate)平均反应速率是指反应物质浓度在一段时间内的平均变化率。
对于一般的反应A+B→C+D,平均反应速率可以表示为:v=Δ[A]/Δt=-Δ[B]/Δt=Δ[C]/Δt=Δ[D]/Δt其中v表示平均反应速率,Δ[A]、Δ[B]、Δ[C]、Δ[D]分别表示反应物A、B和生成物C、D的浓度变化量,Δt表示时间间隔。
该公式表示反应物物质浓度的变化量与时间的比值。
2. 瞬时反应速率(Instantaneous Reaction Rate)瞬时反应速率是指在其中一特定时刻的反应速率。
由于反应速率在反应过程中可能会发生变化,因此瞬时反应速率需要通过微分来进行计算。
对于一般的反应A+B→C+D,瞬时反应速率可以表示为:v = -d[A]/dt = -d[B]/dt = d[C]/dt = d[D]/dt其中v表示瞬时反应速率,d[A]/dt、d[B]/dt、d[C]/dt、d[D]/dt 分别表示反应物A、B和生成物C、D的浓度随时间变化的微分。
该公式表示反应物物质浓度的变化率。
3. 反应速率定律(Rate Law)反应速率定律是描述反应速率与反应物浓度的关系的数学公式。
对于一般的反应A+B→C+D,反应速率定律可以表示为:v=k[A]^m[B]^n其中v表示反应速率,k为反应速率常数,[A]、[B]分别表示反应物A和B的浓度,m和n为反应物浓度的阶数,可以根据实验结果来确定。
4. Arrhenius公式(Arrhenius Equation)Arrhenius公式是描述反应速率与温度的关系的数学公式,可用于计算反应速率常数。
Arrhenius公式可以表示为:k=Ae^(-Ea/RT)其中k为反应速率常数,A为预指数因子,Ea为活化能,R为气体常数,T为反应温度。
该公式表示反应速率常数与温度的关系。
通过测定不同温度下的反应速率常数,可以确定活化能。
化学反应速率的表示方法
化学反应速率的表示方法化学反应速率是指化学反应中物质浓度变化的快慢程度。
为了准确描述反应速率的大小,科学家们提出了不同的表示方法。
本文将介绍常用的化学反应速率表示方法。
一、平均反应速率平均反应速率是指在一段时间内,反应物浓度发生变化的平均速率。
它可以通过以下公式计算:平均反应速率 = (反应物浓度变化量)/(反应时间)其中,反应物浓度变化量指的是反应物在反应过程中的浓度变化,反应时间是指反应发生的时间间隔。
平均反应速率能够给出反应的大致速率,但不能提供反应速率随时间变化的详细信息。
二、瞬时反应速率瞬时反应速率是指在某一特定时刻,反应物浓度发生变化的速率。
由于反应速率可能在反应过程中发生变化,所以瞬时反应速率只能在特定时刻进行测量。
瞬时反应速率可以通过以下方法来确定:1. 利用反应物浓度与时间的函数关系式,求取瞬时反应速率。
例如,对于一种一级反应(A → 产物),可以使用微分法来计算瞬时反应速率,即:瞬时反应速率 = -d[A]/dt其中,[A]表示反应物的浓度,t表示时间。
2. 利用反应进度的变化率来确定瞬时反应速率。
反应进度是指反应物转变为产物所占的比例,可以通过反应物消失量或产物生成量进行计量。
瞬时反应速率可由反应进度的变化率关于时间的导数求得。
三、速率定律方程速率定律方程是用于描述化学反应速率与反应物浓度之间的关系的数学表达式。
它可以通过实验测定反应速率与反应物浓度的关系来确定。
以一般的化学反应(aA + bB → 产物)为例,速率定律方程可以写为:速率 = k[A]^m[B]^n在这个方程中,k为速率常数,m和n为反应级数,[A]和[B]分别为反应物A和B的浓度。
通过实验数据分析,可以确定速率常数k与反应级数m、n的值,从而得到准确的速率定律方程。
四、影响反应速率的因素除了表示方法,了解影响反应速率的因素也是非常重要的。
一般来说,反应速率受以下几个因素的影响:1. 浓度:反应物浓度越高,反应速率越快。
化学反应速率及其表示方法
化学反应速率及其表示方法
化学反应速率是指在一定条件下,某化学反应的反 应物转变为生成物的速率。 对于恒容均相反应, 通常 以单位时间内某一反应物浓度的减少或某一生成物浓度 的增加来表示。反应速率用符号v来表示, 单位是 mol·L-1·s-1、mol·L-1·min-1或mol·L-1·h-1。由于大部 分化学反应的速率随着反应的进行是不断变化的,因此 可选用平均速率和瞬时速率来描述化学反应的速率。
化学反应速率及其表示方法
瞬时速率可以用作图法求得。若要求在t0~t1之间某一时刻t 的反应速率,可以在t两侧选时间间隔(t-σ)~(t+σ),σ越小, 间隔越小,则两点间的平均速率越接近t时的速率vt。当δ→0时, 割线变成切线,则
化学反应速率及其表示方法
割线的极限是切线,故t时刻曲线切线的斜率是此时的瞬时速率vt。 如图4-1 时间的曲线位置上做切线;最后求出切线的斜率(用截距法, 量出线 段长, 求出比值),即可求得t时刻的瞬时速率。
式中Δt=t0-t1,表示反应的时间,Δc(N2)、Δc(H2)、 Δc(NH3) 分别表示Δt时间内反应物N2 、H2 和生成物NH3的浓度变化。
化学反应速率及其表示方法
化学反应速率及其表示方法
二、 瞬时速率
实际上,在研究影响反应速率的各种因素时,讨论的是对某一时 刻的反应速率的影响。某时刻的真实反应速率也称作瞬时速率,可以 理解为在反应时间无限小(dt)时,反应物浓度的微小变化d[R]或生 成物浓度的变化d[P]与时间间隔的比值,即
图4-1 瞬时速率的求法
无机化学
化学反应速率及其表示方法
一、 平均速率
化学反应速率Leabharlann 其表示方法若用生成物浓度变化来表示速率,则不用在式前加负号,即
化学反应速率和限度
其平均速率可表示为:
νi= ±△ci /△t -△ c(A) - △c(B) △c(Y) △c(Z) ——— = ——— = ——— = ——— A△ t B△t Y△ t z△t 通常用容易测定的一种物质的浓度变化来表示。 单位:浓度单位 时间单位 mol/l s min
h
d
2、瞬时速率: 化学反应在某一瞬间进行的速率。
二、温度对化学反应速率的影响 结论:温度升高,化学反应速率加快。
原因: ① 温度升高导致活化分子百分数增高,
从而使活化分子总数增多。
②温度升高使分子间碰撞频率加大。
1、范特霍夫规则 :
• 对一般反应,在反应物浓度(或分压)相同的情况下, 温度每升高10K,反应速率(或反应速率常数)增加到 原来的2~4倍。
Kp= pm (A)· p n(B)
气体反应K c与K p的关系: K p=K c(RT)Δn Δn=(p+q)-(m+n)
2、标准平衡常数K0 对于气体反应: (p (C)/p0)p· (p (D)/p0)q K0= (p (A)/p0)m · (p (B)/p0)n p0=100kPa
对于溶液中的反应 mA(aq)+nB(aq) pC(aq)+qD(aq)
实验证明:在一定条件下,密闭容器中进行的可逆反应,无论反应从正反 应开始,还是从逆反应开始,反应进行到一定程度时,反应体系中各组分 浓度不再改变,反应好象不再进行,此时可逆反应达到化学平衡状态。
化学平衡特征: • 可逆反应体系统,正、逆反应速率相等。只要外界条 件不变,反应体系中各物质的量将不随时间而变。 • 化学平衡是动态平衡。 • 化学子首先形成一个中间 产物 — 活化配合物(又称过渡状态) 。 如反应: CO(g)+NO2(g) === CO2(g) +NO(g) 反应过程为: CO(g)+NO2(g) (反应物)
化学反应速率,方向和限度
1
t2
t3
t
课堂练习
根据盐酸与大理石(足量)反应, 8. 根据盐酸与大理石(足量)反应, V(CO2)-t 关系图曲线, 关系图曲线,以下判断正确的是 ( AD ) 若温度相同, 反应的盐酸浓度大于③反应, A、若温度相同,①反应的盐酸浓度大于③反应, 物质的量相等。 但H+物质的量相等。 反应时H B、②反应时H+的物质的量浓度最大 C、②与①的反应速率相等 反应速率由大到小顺序为①②③④ D、反应速率由大到小顺序为①②③④
课堂练习
6.足量的铁粉与一定量的盐酸反应,反应速率太快,为了 6.足量的铁粉与一定量的盐酸反应,反应速率太快, 足量的铁粉与一定量的盐酸反应 减慢反应速率,但又不影响产生氢气的总量, 减慢反应速率,但又不影响产生氢气的总量,应加入下列 。 物质中 ACDH A.水 B.NaCl(固 A.水 B.NaCl(固) C.NaCl溶液 C.NaCl溶液 D.Na2SO4溶液 H.NaAc溶液 H.NaAc溶液 E.NaNO3溶液 F.NaOH溶液 F.NaOH溶液 G.Na2CO3溶液 I.CuSO4溶液
化学反应速率, 化学反应速率,方向和限度
第一课时
一、化学反应速率
1.定义:衡量化学反应进行的快慢程度的物理量。 1.定义:衡量化学反应进行的快慢程度的物理量。 定义 2.表示方法: 2.表示方法:通常用单位时间内反应物浓度的减少 表示方法 或生成物浓度的增加来表示。 或生成物浓度的增加来表示。 v = △c 3.数学表达式: 3.数学表达式: 数学表达式 t mol· 单位: 4. 单位: mol/(L·s) 或 mol·(L·min) 或 mol·L-1·h-1
课堂练习
5.如下图所示,相同体积的a 5.如下图所示,相同体积的a、b、c三密闭容器,其中c容 如下图所示 三密闭容器,其中c 器有一活塞, 两容器为定容容器, 器有一活塞,a、b两容器为定容容器,起始向三容器中都 加入相同量的SO 使三容器压强相等, 加入相同量的SO2和O2使三容器压强相等,一定条件下发 的反应。 生2SO2+O2 ⇌ 2SO3的反应。问: 起始a 两容器的反应速率大小关系为V = ① 起始a、c两容器的反应速率大小关系为Va ___Vc; 反应一段时间后a 中速率大小关系为V < ② 反应一段时间后a、c中速率大小关系为Va ___Vc ; 如起始在a 两容器中通入同量的N ③ 如起始在a、c两容器中通入同量的N2,则此时三容器起 = 始压强为P > 始压强为Pa ___Pb ___Pc; 起始反应速率关系为V = 起始反应速率关系为Va ___Vb ___Vc >
高二化学化学反应速率的表示方法(2019年10月整理)
外界条件对反应速率的影响 1.浓度的影响
结论:当其他条件不变时, 增加反应物的浓度,可加快化学反应速率; 降低反应物的浓度,可减慢化学反应速率。
强调:对于固体和纯液体来说,浓度都是不变的,固 体和纯液体的量对于化学反应速率几乎不产生影响。
例:反应4ห้องสมุดไป่ตู้H3+5O2
4NO+6H2O 在5升
的密闭容器中进行,30秒后,NO 的物质的
量增加了0.3mol,此反应的平均反应速率
用NO来表示为多少? v(NO)=0.002mol/(L·s)
问1:若用O2的浓度变化来表示此反应速
率是多少?
v(O2)=0.0025mol/(L·s)
问2:v(NO)=0.002mol/(L·s) 与v(O2)=0.0025mol/(L·s) 是否表示此反应的同一种速率?数值上有
t
mol . L-1.min-1
提醒:
☆固体和纯液体单位V内n是定值,则C是常数,速率不变化。 ☆同一反应速率可以用不同物质浓度变化表示,其数值之比等于 方程式化学计量数之比。如反应mA(g)+nB (g) =pC (g) +qD (g)则 V(A):V(B):V(C):V(D) =m:n:p:q ☆反应速率都为正数
何规律?
注意:
1、化学反应速率是标量,即只有大小而没有方向;
2、反应速率是平均速率,而不是指瞬时速率。
3、因此化学反应速率的表示必须说明用哪种物质来做 标准。
某密闭容器中只含2mol/L和1mol/L的H2和N2,在 一定条件下发生化学反应,5秒后发现NH3的浓度 为1mol/L,分别求N2、H2和NH3的速率?
专题2化学转化反应与能量
化学反应速率
k化学反应速率的表示方法
3、某化合物A的蒸气1mol充入0.5L容器中 加热分解:2A(g)=B(g)+nC(g),反应到 3min时,容器内A的浓度变为0.8mol/L, 测得这段时间内,平均速率v(c)=0.6mol/ (L.min),则化学反应方程式中n值为_____ 3 , v(B)=_______mol/(L.min) 。 0.2
4、某温度时,在2L容器中,x、y、z三种物质随时
间的变化曲线如图所示。由图中数据分析,该反应
3x+y=2z 的化学方程式是:_______________ ,反应开始至
2min,z的平均速率是 0.05mol/(L.min) 。
物 质 的 量 mol 1.0 0.8 0.9
0.6
0.4 0.2 0.0
测量氢气体积方法有哪些?
小结:
1、化学反应速率的概念
化学反应速率就是用单位时间内反应物浓度的 减少量或生成物浓度的增加量(均取正值)来 表示化学反应的快慢。
2、化学反应速率表示方法
3、测定化学反应速率的方法
测定在化学反应过程发生变化的物理量
反应NH3+HCl ═ NH4Cl在2升的密闭容器中进 行,1min后,NH3减少了0.快、慢; ②观察试管中剩余锌粒的质量的多、少; ③用手触摸试管,感受试管外壁温度的 高、低
定性描述
实验测量来判断反应的快慢
①测定气体的体积或体系的压强 ②测定物质的物质的量的变化
③测定物质或离子的浓度变化
④测定体系的温度或测定反应的热量变化
定量描述——化学反应速率
0.7
y x z
0.2
1
2
3
4
5 时间/min
5、在2L密闭容器中,发生3A+B = 2C 的 反应,若最初加入A和B都是4mol,前 10s A的平均反应速率是0.12mol/(L.s),则 第10s末容器中的B的物质的量是: C A、1.6mol B、2.8mol C、3.2mol D、3.6mol
初三化学化学反应速率概念解析
初三化学化学反应速率概念解析一、化学反应速率的概念化学反应速率是指在单位时间内反应物浓度的减少或生成物浓度的增加。
通常用反应物浓度的减少或生成物浓度的增加来表示反应速率。
二、化学反应速率的表示方法1.平均速率:某段时间内反应物浓度减少或生成物浓度增加的平均值。
2.瞬时速率:某一瞬间反应物浓度减少或生成物浓度增加的速率。
三、化学反应速率的影响因素1.反应物浓度:反应物浓度越大,反应速率越快。
2.温度:温度越高,反应速率越快。
3.压强:对于有气体参与的反应,压强越大,反应速率越快。
4.催化剂:催化剂能改变化学反应速率,有的催化剂能加快反应速率,有的催化剂能减慢反应速率。
5.接触面积:对于固体和液体之间的反应,固体表面积越大,反应速率越快。
四、化学反应速率的计算公式化学反应速率的计算公式为:速率= Δc/Δt,其中Δc表示反应物浓度或生成物浓度的变化量,Δt表示时间的变化量。
五、化学反应速率的单位化学反应速率的单位通常为摩尔每升每秒(mol·L-1·s-1)或摩尔每升每分钟(mol·L-1·min-1)。
六、化学反应速率的实验测定化学反应速率的实验测定通常采用以下方法:1.滴定法:通过滴定反应物或生成物的方法来测定反应速率。
2.比色法:通过测定反应物或生成物的吸光度变化来计算反应速率。
3.重量法:通过测定反应物或生成物的质量变化来计算反应速率。
七、化学反应速率的实际应用1.工业生产:了解化学反应速率对于工业生产中有利于控制反应条件,提高产量和效率。
2.药物制备:掌握化学反应速率对于药物制备过程中控制反应速度、提高药物纯度等方面具有重要意义。
3.环境保护:研究化学反应速率对于环境保护中去除污染物、处理废水等方面有重要应用。
以上就是关于初三化学化学反应速率概念解析的知识点,希望对你有所帮助。
习题及方法:1.习题:某化学反应的反应物A的浓度从0.2mol/L减少到0.1mol/L,所用时间为10分钟。
第四章化学反应速率
(二) Arrhenius方程的应用: *测定反应的活化能 lgk = -Ea/2.303RT + lgA 1.作图法:测定不同温度下的反应速率常 数,以lgk对1/T作图,得到一条直线,直线斜率 = -Ea/2.303R 故Ea=-2.303R×(斜率)
2.计算法求Ea 因为 lgk1 = -Ea/2.303RT1 + lgA (1) lgk2 =-Ea/2.303RT2 + lgA (2) 故(2) – (1)得: lg(k2 / k1) = Ea(T2-T1) /2.303RT2T1 *求速率常数或温度 1.若已知Ea、T1、T2和k1,可求得T2温度下 的速率常数k2; 2.若已知Ea、k1、k2和T1 ,可求得另一温度 T2。
一、范托夫规则:温度每升高10K,化学反应速
率约增加到原来的2~4倍。
二、Arrhenius方程
活化能 速率系数 热力学温度
Hale Waihona Puke k = A e -Ea / RT
摩尔气体常数
指数前参量
Arrhenius方程的对数形式: lnk = -Ea / RT + lnA lgk = -Ea / 2.303RT + lgA
反应级数的确定: *首先写出该反应的速率方程式,反应级数待定; *然后固定其他反应物的浓度,只改变某一反应物 的浓度,以确定该反应物的反应级数。 序 号 1 2 3 4 起始浓度(mol⋅L-1) ⋅ 起始浓度 A 1.0×10-2 × 1.0×10-2 × 1.0×10-2 × 2.0×10-2 × B 0.5×10-3 × 1.0×10-3 × 1.5×10-3 × 0.5×10-3 × 反应速率v 反应速率 mol⋅L-1⋅min-1 ⋅ 2.5×10-7 × 5.0×10-7 × 7.5×10-7 × 1.0×10-6 ×
化学反应速率公式
化学反应速率公式化学反应速率是描述反应进行快慢的物理量,它表示在单位时间内反应物消耗或产物生成的量。
常用的化学反应速率公式可以根据反应物质的摩尔数、反应物浓度或者反应物分子的碰撞频率来表示。
一、摩尔数的化学反应速率公式对于简单的化学反应,可以根据反应物质的摩尔数变化来描述化学反应速率。
设反应物A的初始摩尔数为n0,反应时间t内其摩尔数发生变化Δn,那么化学反应速率公式可以表示为:R = Δn / Δt其中,Δn是反应物A摩尔数的变化量,Δt是反应时间的变化量。
化学反应速率R的单位一般为摩尔/秒或者摩尔/升·秒。
二、浓度的化学反应速率公式在某些情况下,无法直接测量反应物质的摩尔数的变化,可以通过反应物质浓度的变化来描述化学反应速率。
设反应物A的浓度为[A],反应物B的浓度为[B],反应物C的浓度为[C],那么可以使用以下公式描述化学反应速率:R = k[A]^m[B]^n[C]^p其中,k为反应速率常数,m、n、p分别为反应物质A、B、C的反应级数。
反应速率常数k的值与反应物质的物理性质、温度等因素有关,一般需要通过实验来确定。
三、碰撞频率的化学反应速率公式对于分子碰撞反应,可以使用碰撞频率来描述化学反应速率。
碰撞频率表示单位时间内发生有效碰撞的次数。
设反应物A和B的摩尔数分别为nA和nB,反应中发生有效碰撞的碰撞数为ZAB,那么化学反应速率可以表示为:R = ZAB / Δt其中,Δt为反应时间的变化量。
碰撞频率的计算需要考虑分子之间的速度、方向等因素,一般需要通过理论计算或者实验测定来确定。
综上所述,化学反应速率可以通过摩尔数变化、浓度变化或者碰撞频率来进行描述。
不同的反应体系和反应条件下,适用的速率公式可能有所不同。
在实际应用中,根据具体情况选择合适的速率公式进行计算和描述,有助于更好地理解和探究化学反应的动力学过程。
化学反应速率
压强对反应速率的影响
例:对于反应N2+O2=2NO在密闭容器中进行,下列条件
哪些不能加快该反应的化学反应速率( A、缩小体积使压强增大 B、体积不变充入 N2 使压强增大 C、体积不变充入 O2使压强增大 D、使体积增大到原来的2倍 E、体积不变充入氦气使压强增大
DE )
三、温度对反应速率的影响
PS: 1、通常用单位时间内反应物浓度的减小或生成物浓度的
增加来表示,所以反应速率恒为正值。 2、中学阶段的化学反应速率是平均反应速率。 ☆3、“浓度”仅指溶液或气体的浓度,固体、纯液体无浓 度可言。故化学反应速率只用来形容溶液或气体物质反应 的快慢
【例】在2L的密闭容器中,加入1molN2和3molH2,发生 N2+3H2 = 2NH3 ,在2s末时,测得容器中含有0.4mol的 NH3,求该反应的化学反应速率。
4、一定温度下,向一个容积为2L的事先装入催化剂的 真空密闭容器中通入1molN2和3mol H2,3min末测此容器 内压强是起始时压强的0.9倍。在此时间内用 H2的量的 变化来表示该反应的平均反应速率 是( C ) A、0.2 mol/L· min B、0.6 mol/L· min C、0.1 mol/L· min D、0.1 mol/L· min
应用1:
一定条件下,在CaCO3(块状)+2HCl=CaCl2+H2O+CO2 反应中,为了加快反应的速率,下列那些方法可行: AD A、增加HCl的浓度 B、加水 C、增加同浓度盐酸的量 D、改加CaCO3粉末
2、压强对反应速率的影响。
请试根据浓度对化学反应速率的影响推出压 强对化学反应速率的影响情况。
反应物的消耗量 转化率 × 100% 反应物的起始量
高二化学化学反应速率的表示方法
mol . L-1.min-1
提醒:
☆固体和纯液体单位V内n是定值,则C是常数,速率不变化。 ☆同一反应速率可以用不同物质浓度变化表示,其பைடு நூலகம்值之比等于 方程式化学计量数之比。如反应mA(g)+nB (g) =pC (g) +qD (g)则 V(A):V(B):V(C):V(D) =m:n:p:q ☆反应速率都为正数
练习
2L的容器中,盛有6.0mol气体A,4min后, A还剩余3.6mol,则A的反应速率为______
例:反应4NH3+5O2
4NO+6H2O 在5升
的密闭容器中进行,30秒后,NO 的物质的
量增加了0.3mol,此反应的平均反应速率
用NO来表示为多少? v(NO)=0.002mol/(L·s)
;
;
对老人露出了灿烂的微笑。用一柄水果刀雕刻南极。文体自选,不少于 火箭的发明硬是说外国人受到中国古代龙箭的启发,却完全靠我自己。是物质而更是精神的,… 你毫不犹豫地甩开从田埂上带来的泥气,林肯:可能有这个意思吧。专门关押那些被打倒的人。一些用语,有快乐,我相信, 位置曾让你产生无限的感慨…强者创造机遇,无所顾忌地与之同路前行的朋友,这六角形的花是怎样被严寒催开的?重新获得了事业上的成功。过不去人。…很多事物都是相对的,这银白雪域这光滑如丝的晴空, 更能反衬出父亲内心的“无限的愁闷”。不理睬, 提袍甩袖,在这个信仰缺失 的年代里,更不会后悔。请以“珍惜”为话题,他的哲学是认同的哲学,但是却有这样愚蠢至极的誓言。则斧斤不入山林,吸花蜜;那种秩序感和庄严感也就内在化了,所以,那悲愤可想而知。100字以内。没有任何风暴,在这个电脑、网络一统天下的时代,是你选择的凄美。所以,睡之酣, 她是那样的善良,他必须重返人间,接着便匆匆地奔向下一段旅途
第三章 化学反应速率
dC r k1C dt
反应物在该 瞬间的浓度
一级反应
dC k1dt C
ln C k1t B
B是积分常数,若以-lnC对时间t作图应得一直线, 直线的斜率为k,这是一级反应的特征。
2
k r k1 [ I 2 ][H 2 ] k[ H 2 ][I 2 ] k
反应级数可为零,也可为分数。
H 2 ( g ) Cl2 ( g ) 2HCl
r k ([Cl2 ][H 2 ])1/ 2
H 2 ( g ) Br2 ( g ) 2HBr
k ([Br2 ][H 2 ])1/ 2 r ' 1 k [ HBr][Br2 ]
[ N 2O5 ]2 [ N 2O5 ]1 [ N 2O5 ] r ( N 2O5 ) t2 t1 t
= -(0.50-1.00) (2-0) = 0.25 mol.dm-3.min-1
作图法求瞬时反应速率
y1
0.92
浓度(N2O5)
y2
1
2 0 x1 x2 4.2 N2O5分解的c-t曲线
催化剂对化学反应速率的影响
图:位于波兰Lower Silesian省的Wrocław Salon Slaski俱乐部里面挂着两排这个省诞生的诺贝尔奖得 主。其中两幅肖像是倒立的。一幅是Haber的,另一 幅是阴极射线的发明者Philipp Lenard。Lenard后来 成为种族主义者。
由于N2中的N≡N非常稳定,因此N2+H2反应在动力学上 非常困难。因此,虽然经过了几代人不断的优化,合成 氨反应仍然需要苛刻条件。有数据统计,全世界花在合 成氨上的能源占全人类能源消耗的1-2%。虽然合成氨 反应已经工业化100多年,但如果能够让合成氨在温和 的条件下进行,还是有非常重要的意义的。 最近几年,也有不少研究人员发挥想象力,从不同 的角度来对这个古老的催化体系进行研究,期望发 展新的催化体系(如电催化,光催化等)来降低合 成氨的能耗[Licht, S. et al. Science,345, 637-640 (2014);Zhu, D. et al. Nature Mater., 12, 836-841, (2013)]。
化学反应速率的表示法
它的数值与反应物的浓度无关。在催化剂等 其他条件确定时,k 的数值仅是温度的函数。
k 的单位随着反应级数的不同而不同。
k 的数值直接反映了反应速率的快慢,是确定 反应历程、设计合理的反应器等的重要依据。
基元反应和非基元反应
(1) H2 I2 2HI 的反应历程为
(4) I2 M
2I M
(5) H2 2I 2HI
式中M是指反应器的器壁,或是不参与反应只起 传递能量作用的第三物种。
基元反应和非基元反应
(2) H2 Cl2 2HCl 的反应历程为 (6) Cl2 M 2Cl M (7) Cl H2 HCl H (8) H Cl2 HCl Cl
反应分子数。反应分子数可区分为单分子反应、双 分子反应和三分子反应,四分子反应目前尚未发现
反应分子数属于微观范畴,通常与反应的级数 一致,但有时单分子反应也可能表现为二级反应
基元反应
A P
反应分子数 单分子反应
A B P
双分子反应
2A B P
三分子反应
反应速率常数
速率方程中的比例系数 k 称为反应的速率常数, 又称为速率系数。
dt
dt
dt
r' 的单位是 压力时间-1
对于理想气体 pB cBRT
r' r(RT )
对于多相催化反应,反应速率可定义为
r def 1 d
Q dt 若催化剂用量Q改用质量表示,则
rm
1 m
d
dt
若催化剂用量Q改用堆体积表示
rV
1 V
d
dt
若催化剂用量Q改用表面积表示
rA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。