(整理)多元函数的极值.
多元函数的极值及其求法
定理 设A是一个n n对称矩阵,
A正定 所有顺序主子式大于0
a11 a12 L a1k
a21 a22 L a2k
MM
M
所有特征值大于0 .
ak1 ak 2 L akk
(即特征方程 | E - A | 0的根大于0)
以 2 2 矩阵为例: A a11 a12 a21 a22
证: 由二元函数的泰勒公式, 并注意
则有
若 H f (P0 )正定, 则由引理知存在m 0使得
(h, k)H f (P0)(h, k)' m2.
故对充分小的U(P0), 只要(x, y) x0 h, y0 k U(P0), 就有
f (x, y)
f ( x0 ,
y0
)
(
m 2
o(1))
设函数z f ( x, y)在点 P0 ( x0 , y0 )的某邻域U(P0 )内 有一阶及二阶连续偏导数,且 P0是 f 的驻点,
则当H f (P0 )是正定矩阵时, f 在 P0取得极小值;
当H f (P0 )是负定矩阵时, f 在 P0取得极大值; 当H f (P0 )是不定矩阵时, f 在 P0不取极值.
极大值和极小值
x
例1. 已知函数
A 则( )
的某个邻域内连续, 且
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点. 提示: 由题设
(2003 考研)
定理1 (必要条件) 函数
存在
偏导数, 且在该点取得极值 ,
则有
证:
取得极值 ,
故
取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
(h2
多元函数极值
提示: 当(x, y)=(0, 0)时, z=0, 而当(x, y)≠(0, 0) 时, z>0. 因此z=0是函数的极小值.
首页 上页 返回 下页 结束 铃
一,多元函数的极值及最大值,最小值
极值的定义 设函数z=f(x, y)在点(x0, y0)的某个邻域内有定义, 如果对 于该邻域内任何异于(x0, y0)的点(x, y), 都有 f(x, y)<f(x0, y0)(或f(x, y)>f(x0, y0)), 则称函数在点(x0, y0)有极大值(或极小值)f(x0, y0). 例2 函数z = x2 + y2 在 (0, 0)处有极大值 点 .
首页
上页
返回
下页
结束
铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 有时可以把条件极值问题化为无条件极值问题. 例如, 求V=xyz在条件2(xy+yz+xz)=a2下的最大值.
a2 2xy 由条件2(xy+ yz + xz)=a2 , 解得z = 得 , 于是 2(x+ y) xy a2 2xy V= ( ). 2 (x+ y) 这就把求条件极值问题转化成了求无条件极值问题.
首页 上页 返回 下页 结束 铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 (2)用拉格朗日乘数法 在多数情况下较难把条件极值转化为无条件极值, 需要 用一种求条件极值的专用方法, 这就是拉格朗日乘数法. 下面导出函数z=f(x, y)在条件(x, y)=0下取得的极值的必 要条件. 假定f(x, y)及(x, y)有各种所需要的条件.
高等数学:8-5多元函数的极值与最值
y
y2
解得
x y 3 va b ,
c
即驻点为 3
va b, 3
c
va
c
b
.
z3
c2v
a b2
在定义域内有唯一的极值可疑点,且该实际问题确实有 最小值,所以这个极值可疑点就是函数的最小值点,
答:当长、宽均为 3
va b
c
,高为
3
c2v
a b2
时,造价最低。
8
三、条件极值 1. 无条件极值 :求函数在其定义域内的极值(对自变 量没有任何限制)称为无条件极值. 2. 条件极值: 对函数的自变量有附加条件的极值 条件极值
f x, y f x0 , y0 则称该函数在点 Px0 , y0 处有极小值 f x0 , y0 .
极大值与极小值统称为极值. 使函数取得极值的点称为极值点。
如,函数 z 3x2 4 y2 在点0,0处取得极小值.
z 2 x 2 y2 在点0,0 处取得极大值.
再如,函数 z xy, 在点0,0 处既不取得极小值,也不取得极大值. 1
2. 极值的判别定理
定理1(必要条件) 设函数z f x , y 在点 x0 , y0 处
偏导数存在 ,且在点 x0 , y0 有极值,则
fx ' x0 , y0 0, fy ' x0 , y0 0.
证: 不妨设 z f x , y在点x0 , y0 处取得极大值,则 f x, y f x0 , y0
(3). 在点 1,0 处, B2 AC 72 0, 又A 0, 所以函数在
1,0 处有极小值 f 1,0 5.
在点 1,2处, B2 AC 72 0, 函数在 1,2不取得极值.
第八章第六节多元函数的极值
H h 2 3 3V , 才能使制作材料最省。
50
总结求实际问题的最值步骤如下:
第一步:建立函数关系式,确定定义域;
第二步:求出所有驻点;
第三步:结合实际意义,判定最大或最小值。
三 条件极值
先看如下的例子:
在 x y 1 的条件下,求函数 z xy 的极值。
解:从 x y 1 中解出 y 1 x, 并代入 z xy
若固定 y y0, 则 z f (x, y0 ) 是 一个一元函数,则该
函数在 x x0处取得极值,又因为 z f (x, y0 ) 对
x x0处可导,故 z
df (x, y0 )
0
x x x0 y y0
dx
x x0
同理可证
z 0 y x x0
y y0
将二元函数的两个偏导数为零的点称为驻点, 则必要条件可叙述为:
是否为极值点。 总结:求极值的步骤:
第一步:确定定义域(若未给出);
第二步:解方程组 f x( x, y) 0, f y( x, y) 0 求得一切实数解,可得一切驻点。
第三步:对每个驻点,求出二阶偏导数的值A, B,C。
第四步:定出 B2 AC 的符号,按充分条件的 结论做出结论。
例1 求函数 z x2 ( y 1)2 的极值。 解:此函数的定义域为{(x, y) | x R, y R}
(1) 当 B2 AC 0, 点 P0 ( x0, y0 ) 是极值点, 且 A 0 时,点 P0 ( x0, y0 ) 是极大值点,且 A 0 时, 点 P0 ( x0 , y0 ) 是极小值点。
(2) 当 B2 AC 0时,点 P0 ( x0, y0 ) 不是极 值点。
(3)当 B2 AC 0 时,不能确定点 P0 ( x0, y0 )
多元函数的极值与最值
2
2
Ax 24 sin 4 x sin 2 x sin cos 0 A 24 x cos 2 x 2 cos x 2 (cos2 sin2 ) 0
sin 0 , x 0 12 2 x x cos 0 24 cos 2 x cos x(cos2 sin2 ) 0 60 , x 8 (cm) 解得: 3 由题意知,最大值在定义域D 内达到,而在域D 内只有
第六节
多元函数的极值与最值
第六节 多元函数的极值与最值
第 八 章 多 元 函 数 微 分 法 及 其 应 用
一 多元函数的极值
二 多元函数的最值 三 条件极值
-1-
第六节
多元函数的极值与最值
一、 多元函数的极值
第 八 章
定义: 若函数
的某邻域内有
多 则称函数在该点取得极大值(极小值). 极大值和极小值 元 函 统称为极值, 使函数取得极值的点称为极值点. 数 例如 : 微 分 在点 (0,0) 有极小值; 法 及 在点 (0,0) 有极大值; 其 应 用 在点 (0,0) 无极值.
正
负 , 因此 z(0,0) 不是极值. 0
当 x y 0 时, z ( x y ) z ( 0,0 ) 0
2 2
2
2 2
因此
-7-
为极小值.
第六节
多元函数的极值与最值
二 多元函数的最值
依据
第 八 章 多 元 函 数 微 分 法 及 其 应 用
函数 f 在闭域上连续 函数 f 在闭域上可达到最值
( D : 0 x 12 , 0 2)
x
x
多元函数极值-文档资料
一、多元函数的极值 二、最值应用问题
第八章
三、条件极值
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
1
一、 多元函数的极值
定义: 若函数 z 的某邻域内有 f ( x , y ) 在点 ( x , y ) 0 0
f ( x , y ) f ( x , y )( 或 f ( x , y ) f ( x , y )) 0 0 0 0
A
B
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉
C
6
3 3 2 2 2在点(0,0) 例2.讨论函数 zx y 及 z ( x y ) 是否取得极值.
解: 显然 (0,0) 都是它们的驻点 , 并且在 (0,0) 都有
AC B 0
3 3在(0,0)点邻域内的取值
2
zx y o 正 x 可能为 负 , 因此 z(0,0) 不是极值. 0 2 22 2 2 ( x y ) z (0,0) 0 当 x y 0 时 , z
2
B 0 2) 当 AC 时, 没有极值.
2 3) 当 AC 时, 不能确定 , 需另行讨论. B 0
2
证明见 第九节(P65) .
贵有恒何必三更眠五更起,最无益 只怕一日曝十日寒 与君共勉 4
3 3 2 2 例1. 求函数 f 的极值. ( x , y ) x y 3 x 3 y 9 x
不是极值; f( 3 ,0 ) AC B 12 6 0 , 在点(3,2) 处 A 12 , B 0 , C 6
2
2 A0 , AC B 12 ( 6 ) 0 ,
为极大值. f( 3 , 2 ) 31
多元函数的极值
(1)在广告费不限的情况下,求最佳广告策 略。 (2)在广告费限为1.5万元的情况下,求相应 的最佳广告策略。
14
(ⅱ) 若 A > 0 (或 C > 0), 则 P0 (x0, y0) 是 f (x, y) 的极小值点. (2) 当 B2 - AC > 0 时, 则 P0 (x0, y0) 不是 f (x, y) 的极值点. (3) 当 B2 - AC = 0 时, 不能判定 P0 (x0, y0) 是否 为 f (x, y) 的极值点.
f x x0 , y0 0, f y x0 , y0 0.
记
A f xx ( x 0 , y 0 ), B f xy ( x 0 , y 0 ), C f yy ( x 0 , y 0 ).
4
(1) 当 B2 - AC < 0 时, (ⅰ) 若 A < 0 (或 C < 0), 则 P0 (x0, y0) 是 f (x, y) 的极大值点;
x, y的函数关系是c (x, y) = 700 + 20x +60y. 问该厂应如何规定这两种产品的产量,方 可获得最大利润,最大利润多少?
9
二﹑条件极值与拉格朗日乘数法
1. 条件极值的意义
2. 拉格朗日乘数法 在约束条件 g (x, y) = 0 (也称约束方程)之下, 求函数 z = f (x, y) (通常称为目标函数)的极值 问题, 有两种方法: 其一是转化为无条件极值: 从约束方程 g (x, y) = 0中解出 y = φ(x), 代入 得 z = f (x,φ(x)), 这个一元函数的极值就是函
z f ( x , y ) x y , P0 (0, 0 )
2 2
(整理)多元函数求极值(拉格朗日乘数法)
第八节多元函数的极值及其求法教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。
熟练使用拉格朗日乘数法求条件极值。
教学重点:多元函数极值的求法。
教学难点:利用拉格朗日乘数法求条件极值。
教学内容:一、多元函数的极值及最大值、最小值定义设函数z = f (x,y)在点(x。
, y o)的某个邻域内有定义,对于该邻域内异于(X0,y0)的点,如果都适合不等式f (x, y)< f (X0, y o)则称函数f(X,y)在点(X0,y0)有极大值f(X0,y0) o如果都适合不等式f (X, y)> f (X o, y o)则称函数f(X,y)在点(X0,y。
)有极小值f(X0,y o).极大值、极小值统称为极值。
使函数取得极值的点称为极值点。
-2 , 2例1函数z=3X +4y在点(0, 0)处有极小值。
因为对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为正,而在点(0, 0)处的函数值为零。
从2 2 几何上看这是显然的,因为点(0, 0, 0)是开口朝上的椭圆抛物面z = 3X+4y的顶点。
2 2例2函数z=rx +y在点(0, 0)处有极大值。
因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负,点(0, 0, 0)是位于xOy平面下方的锥面z = r x2+y2的顶点。
例3 函数z=x y在点(0, 0)处既不取得极大值也不取得极小值。
因为在点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。
定理1 (必要条件)设函数z= f(x,y)在点(X0,y0)具有偏导数,且在点y。
)处有极值,则它在该点的偏导数必然为零:(x0,f x(x°, y°) = 0, f y(x0,y0) =0证不妨设z=f(x,y)在点(x0,y0)处有极大值。
9(8)多元函数的极值及其求法
函数的极大值与极小值统称为函数的 极值.
函数的极大值点与极小值点统称为函数的 极值点.
注 多元函数的极值也是局部的, 是与P0的邻域
内的值比较. 一般来说:极大值未必是函数的最大值. 极小值未必是函数的最小值.
有时, 极小值可能比极大值还大.
函数
存在极值, 在简单的情形下是 椭圆抛物面
容易判断的. 例 函数 z 3 x 2 4 y 2
例4 有一宽为 24cm 的长方形铁板 ,把它折起来做成 一个断面为等腰梯形的水槽, 问怎样折法才能使断面面 积最大. 解: 设折起来的边长为 x cm, 倾角为 , 则断面面积 1 为 ( 24 2 x 2 x cos ) x sin 2
24 x sin 2 x sin x cos sin ( D : 0 x 12 , 0 ) 2
点的偏导数必然为零: f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0. 证 不妨设 z f ( x, y )在点( x0 , y0 )处有极大值, 则对于( x0 , y0 )的某邻域内任意( x , y ) ( x0 , y0 ), 都有 f ( x , y ) f ( x0 , y0 ), 故当y y0 , x x0时,
第八节 多元函数的极值及其求法
一、多元函数的极值 二、最值应用问题
三、条件极值
一、多元函数的极值和最值
1.极大值和极小值的定义 一元函数的极值: 是在一点附近(区间) 将函数值比大小. 定义 设在点P0的某个去心邻域, f ( P ) f ( P0 ), 则称 点P0为函数的极大值点. f ( P0 )为极大值. 类似可定义极小值点和极小值.
其中 为某一常数, 可由
(整理)多元函数的极值及其求法.
(整理)多元函数的极值及其求法.第六节多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题.内容分布图示★ 引例★ 二元函数极值的概念例1-3★ 极值的必要条件★ 极值的充分条件★ 求二元函数极值的一般步骤★ 例4 ★ 例5★ 求最值的一般步骤★ 例6 ★ 例7★ 例8 ★ 例9 ★ 例10 ★ 例11★ 条件极值的概念★ 拉格郎日乘数法★ 例12★ 例13 ★ 例14 ★ 例15 ★ 例 16*数学建模举例★ 最小二乘法★ 线性规划问题★ 内容小结★ 课堂练习★ 习题6-6 ★ 返回内容提要:一、二元函数极值的概念定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果),,(),(00y x f y x f <则称函数在),(00y x 有极大值;如果),,(),(00y x f y x f >则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点.定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即.0),(,0),(0000==y x f y x f y x (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导数,又,0),(00=y x f x .0),(00=y x f y 令.),(,),(,),(000000C y x f B y x f A y x f yy xy xx === (1) 当02>-B AC 时,函数),(y x f 在),(00y x 处有极值,且当0>A 时有极小值),(00y x f ;0(2) 当02<-B AC 时,函数),(y x f 在),(00y x 处没有极值;(3) 当02=-B AC 时,函数),(y x f 在),(00y x 处可能有极值,也可能没有极值.根据定理1与定理2,如果函数),(y x f 具有二阶连续偏导数,则求),(y x f z =的极值的一般步骤为:第一步解方程组,0),(,0),(==y x f y x f y x 求出),(y x f 的所有驻点;第二步求出函数),(y x f 的二阶偏导数,依次确定各驻点处A 、 B 、C 的值,并根据2B AC -的符号判定驻点是否为极值点. 最后求出函数),(y x f 在极值点处的极值.二、二元函数的最大值与最小值求函数),(y x f 的最大值和最小值的一般步骤为:(1)求函数),(y x f 在D 内所有驻点处的函数值;(2)求),(y x f 在D 的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 在通常遇到的实际问题中,如果根据问题的性质,可以判断出函数),(y x f 的最大值(最小值)一定在D 的内部取得,而函数),(y x f 在D 内只有一个驻点,则可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最大值(最小值).三、条件极值拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题. 对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数),(y x f 和),(y x ?在区域D 内有一阶连续偏导数,则求),(y x f z =在D 内满足条件0),(=y x ?的极值问题,可以转化为求拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=(其中λ为某一常数)的无条件极值问题.于是,求函数),(y x f z =在条件0),(=y x ?的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数),(),(),,(y x y x f y x L λ?λ+=其中λ为某一常数;(2) 由方程组===+==+=0),(,0),(),(,0),(),(y x L y x y x f L y x y x f L y y y x x x ?λ?λ?λ解出λ,,y x , 其中x , y 就是所求条件极值的可能的极值点.注:拉格朗日乘数法只给出函数取极值的必要条件, 因此按照这种方法求出来的点是否为极值点, 还需要加以讨论. 不过在实际问题中, 往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲:二元函数极值的概念例1(讲义例1)函数2232y x z +=在点(0, 0)处有极小值. 从几何上看,2232y x z +=表示一开口向上的椭圆抛物面,点)0,0,0(是它的顶点.(图7-6-1).例2(讲义例2)函数22y x z +-=在点(0,0)处有极大值. 从几何上看,22y x z +-=表示一开口向下的半圆锥面,点)0,0,0(是它的顶点.(图7-6-2). 例3(讲义例3)函数22x y z -= 在点(0,0)处无极值. 从几何上看,它表示双曲抛物面(马鞍面)(图7-6-3)例4(讲义例4)求函数x y x y x y x f 933),(2233-++-=的极值.例5 证明函数y y ye x e z -+=cos )1(有无穷多个极大值而无一极小值.二元函数的最大值与最小值例6(讲义例5)求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x上的最大值和最小值.。
多元函数的极值及其求法
条件极值:对自变量有附加条件的极值.
拉 格 朗 日 乘 数 法
要 找 函 数zf(x,y)在 条 件(x,y)0下 的 可 能
极 值 点 ,
先构造函数 F(x, y) f (x, y) (x, y),其中
为某一常数,可由
fx(x, y) x(x, y) 0,
0,
Ft(x, y,z,t) 0,
(x, y,z,t) 0, ( x , y , z , t ) 0 .
解出 x, y, z, t 即得 可能极值点的坐标.
例6 求表面积为 a2 而体积为最大的长方体的体积.
解 设长方体的长、宽、高为 x , y,z. 体积为 V . 则问题就是条件 2 x y 2 y z2 x z a 2 0 下, 求函数 V x( x y 0 ,y z 0 , z 0 )的最大值.
若满足不等式
f (x, y) f (x0, y0),
则称函数在(x0, y0)有极大值;
若满足不等式
f (x, y) f (x0, y0),
则称函数在(x0, y0)有极小值;
极 大 值 、 极 小 值 统 称 为 极 值 .
使 函 数 取 得 极 值 的 点 称 为 极 值 点 .
例1 函数z 3x2 4y2
例 5求 zx 2x y 2 y 1的 最 大 值 和 最 小 值 .
解令
zx(x2(y x2 2 1y )2 21 x)(2xy)0, zy(x2(y x2 2 1y )2 21 y)(2xy)0,
得 驻 点 (1,1)和 (1,1),
22
22
四、小结
多元函数的极值 (取得极值的必要条件、充分条件) 多元函数的最值 拉格朗日乘数法
(整理)第六章第六节多元函数的极值及其求法
第八节 二元函数的极值 一、 二元函数的极值 1. 定义2. 极值存在的必要条件:定理:如果函数()y x f ,在点()00,y x 处有极值,且两个一阶偏导数存在,则有()0,00='y x f x()0,00='y x f y驻点:满足()0,00='y x f x()0,00='y x f y 的点注:驻点可能是极值点,极值点不一定是驻点,极值点有可能是偏导数不存在的点。
例1求()22,y x y x f +=的极值例2求()222,yx R y x f --=的极值例3讨论()1,22+-=x y y x f 是否有极值。
注:驻点不一定是极值点。
3. 极值存在的充分条件:定理 如果函数()y x f ,在点()00,y x 的某一邻域内有连续的二阶偏导数,且()00,y x 是它的驻点,设()A y x f xx=''00, ()B y x f xy=''00,()C y x f yy=''00,ACB -=∆2①00<<∆A 且,则()00,y x f 是极大值。
②00><∆A 且,则()00,y x f 是极小值。
③0>∆,则()00,y x f 不是极值。
④0=∆ ,需另法判断。
例4求函数()5126,23+-+-=y x x y y x f 的极值。
注:极值的一般求法: ①解方程组()()⎩⎨⎧='='0,0,y x f y x f y x求出一切驻点;②对每一个驻点,求出()A y x f xx=''00, ()B y x f xy=''00,()C y x f yy=''00,③对每一驻点,由判别式法判断。
4.多元函数最值的求法:在实际应用中,只有一个驻点,即为所求的点。
例 5 要造一个容量一定的长方体箱子,问选择怎样的尺寸,才能使所用的材料最省?例6 某工厂生产两种产品I 与II ,出售单价分别为10元与9元,生产x 单位的产品I 与y 单位的产品II 的总费用是:())(3301.03240022元y xy x y x +++++求取得最大利润时,两种产品的产量各多少?二、 条件极值与拉格朗日乘数法 无条件极值:自变量x 与y 相互独立 条件极值:有约束条件 ()0,=y x g拉格朗日乘数法 (一)()()⎩⎨⎧→=→=约束条件函数0,,y x g y x f z①构造拉格朗日函数()()()y x g y x f y x F ,,,,λλ+=②解方程组()⎪⎩⎪⎨⎧=='='+'='='+'='0,00y x g F g f F g f F y y y x x x λλλ解出的()y x ,可能为极值。
多元函数的极值
L( x, y, ) f ( x, y) ( x, y),
(2) 解方程组
Lx ( x, y, ) Ly ( x, y, )
fx( x, y) x ( x, y) 0, f y( x, y) y ( x, y) 0,
L ( x, y, ) ( x, y) 0.
求 L( x, y, ) 的驻点坐标 ( x0 , y0 , z0 );
1 000xy 2 000x 3 000 y 1 000x2 500 y2 1 000 ( x 0, y 0)
解方程组
Lx 1 000 y 2 000 2 000x 0
Ly
1
000 x
3
000
1
000 y
0
求得唯一驻点(5, 8).
由于 A Lxx (5,8) 2000, B Lxy(5,8) 1000, C Lyy (5,8) 1 000, B2 AC 1 000 000 0, A 2000 0,
例4 求函数 f ( x, y) sin x sin y sin( x y) 在有 界闭区域 D 上的最大值和最小值, 其中 D 是由直线 x y 2π, x 轴和 y 轴所围成的有界闭区域.
解 先求 f ( x, y) 在 D 内部的极值.
解方程组
fx( x, y) cos x cos( x y) 0
一、多元函数的极值
定义7.7 设 f ( x, y) 在点 P0( x0 , y0 ) 的某一邻域 O (P0 ) 内有定义, 若 ( x, y) O (P0 ) f ( x, y) f ( x0 , y0 ) ( f ( x, y) f ( x0 , y0 )), (7 20)
则称 f ( x0, y0 ) 是 f ( x, y) 的一个极小值( 极大值), 这时称 ( x0, y0 ) 是 f ( x, y) 的一个极小值点( 极大值点). 极小值和极大值统称为极值.
高数第八节 多元函数极值
A fx x 6 x 6, B fx y 0, C f y y 6 6 y, AC B2 36(1 x)(1 y)
(3)对每一个驻点,判断 AC B2 的符号
( AC B2 ) |(1,2) ( AC B2 ) |(3,0) 72 0
• 求可微函数最大值和最小值的一般方法: (1)求函数在 D 内的所有驻点;
(2)求函数在 D 的边界上的最大值和最小值;
(3)将函数在所有驻点处的函数值及在 D 的边界上的 最大值和最小值相比较,最大者就是函数在 D 上 的最大值,最小者就是最小值。
• 在实际问题中,如果根据问题的性质,知道函数的最 大或最小值存在且一定在 D 的内部取得,而函数在 D 内只有一个驻点,则该驻点就是函数在 D 上的最大或 最小值点。
面的面积最大?
解: A (sin cos 2sin )x2 24x sin
D : 0 x 12, 0
2
Ax 2(sin cos 2sin )x 24sin 0
A (cos2
sin2
2cos )x2
24xcos
0
注意到 x 0, sin 0 得唯一驻点
x 8, , A(8, ) 48 3 ,
第八节: 多元函数的极值
一元函数 y = f (x) 的极值概念:
y
y f (x)
0
x1 x1 x1 x2
x
x U ( x1, ) ( x1 , x1) ( x1 , x1 )
总有 f ( x) f ( x1) , x1 称为极小值点 ,
f (x1) 称为极小值 ,
(1)极值是一个局部概念,它只是对极值点邻 近范围的所有点的函数值进行比较。
多元函数的极值
课堂练习 求函数 f ( x , y ) = x 3 + y 3 − 3 xy 的极值 . 解 取到极值的必要条件 : f x ( x , y ) = 3 x 2 − 3 y = 0, x 2 − y = 0, 定理1 用P110定理 定理 即 2 2 y − x = 0. f y ( x , y ) = 3 y − 3 x = 0, y = x2, y = x2, y = x2, 即 2 2 即 即 3 ( x ) − x = 0 . x ( x − 1 ) = 0 . x = 0 或 x = 1 . 得驻点 (1,1), ( 0,0 ).
又, A = f xx( x, y) = 6x, B = f xy ( x, y) = −3, C = f yy ( x, y) = 6 y.
∵ AC − B2 = 6 ⋅ 6 − (−3)2 > 0, 又 A > 0, 点(1,1 )处 ,
定理2 用P110定理 定理
∴ f (1,1) = − 1是极小值 ;
又设 又设 ϕ ( x , y ) = 0 可确定一个具有连续导 数的 隐函数 y = y ( x )且 y 0 = y ( x 0 ); 15
又设 又设 ϕ ( x , y ) = 0 可确定一个具有连续导 数的 隐函数 y = y ( x )且 y 0 = y ( x 0 ); 代入得 z = f [ x , y( x )], 化成了无条件极值 一元函 数 z = f [ x , y ( x )] 在 x 0 处取得极值的 dz 由隐函数求导公式得到 必要条件是 x = x0 = 0, dx dy 即 [ f x ( x , y ( x )) + f y ( x , y ( x )) ⋅ ] x = x 0 = 0, dx dx ϕ x ( x 0 , y0 ) ) = 0, 即 f x ( x0 , y0 ) + f y ( x0 , y0 )( − ϕ y ( x 0 , y0 ) f x ( x 0 , y0 ) f y ( x 0 , y0 ) 令 即 = =− λ, ϕ x ( x 0 , y0 ) ϕ y ( x 0 , y0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 多元函数的极值【实验目的】1. 多元函数偏导数的求法。
2. 多元函数自由极值的求法 3. 多元函数条件极值的求法.4. 学习掌握MATLAB 软件有关的命令。
【实验内容】求函数32824-+-=y xy x z 的极值点和极值【实验准备】1.计算多元函数的自由极值对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤:步骤1.定义多元函数),(y x f z =步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,22222yzC y x z B x z A ∂∂=∂∂∂=∂∂= 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02>-B AC ,则该驻点是极值点,当0>A 为极小值, 0<A 为极大值;,如果02=-B AC ,判别法失效,需进一步判断; 如果02<-B AC ,则该驻点不是极值点.2.计算二元函数在区域D 内的最大值和最小值设函数),(y x f z =在有界区域D 上连续,则),(y x f 在D 上必定有最大值和最小值。
求),(y x f 在D 上的最大值和最小值的一般步骤为:步骤1. 计算),(y x f 在D 内所有驻点处的函数值;步骤2. 计算),(y x f 在D 的各个边界线上的最大值和最小值;步骤3. 将上述各函数值进行比较,最终确定出在D 内的最大值和最小值。
3.函数求偏导数的MATLAB 命令MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。
可以用help diff, help jacobian 查阅有关这些命令的详细信息【实验方法与步骤】练习1 求函数32824-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y)结果为ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x yz y x x z +-=∂∂-=∂∂再求解正规方程,求得各驻点的坐标。
一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。
求解正规方程的MATLAB 代码为:>>clear;>>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y')结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数:>>clear; syms x y;>>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2)结果为A=2*x^2 B =-8 C =4由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。
当然,我们可以通过画函数图形来观测极值点与鞍点。
>>clear;>>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);>>Z=X.^4-8*X.*Y+2*Y.^2-3;>>mesh(X,Y,Z)>>xlabel('x'),ylabel('y'),zlabel('z')结果如图6.1图6.1 函数曲面图可在图6.2种不容易观测极值点与鞍点,这是因为z的取值范围为[-500,100],是一幅远景图,局部信息丢失较多,观测不到图像细节.可以通过画等值线来观测极值.>>contour(X,Y,Z, 600)>>xlabel('x'),ylabel('y')结果如图6.2图6.2 等值线图由图6.2可见,随着图形灰度的逐渐变浅,函数值逐渐减小,图形中有两个明显的极小值点-P和)2,4(Q.根据提梯度与等高线之间的关系,梯度的方向是等高线的法方向,且指(-,4)2Q周围没有等高线环绕,不向函数增加的方向.由此可知,极值点应该有等高线环绕,而点)0,0(是极值点,是鞍点.练习2 求函数xy z =在条件1=+y x 下的极值..构造Lagrange 函数)1(),(-++=y x xy y x L λ求Lagrange 函数的自由极值.先求L 关于λ,,y x 的一阶偏导数>>clear; syms x y k >>l=x*y+k*(x+y-1); >>diff(l,x) >>diff(l,y) >>diff(l,k)得,1,,-+=∂∂+=∂∂+=∂∂y x L x y L y x L λλλ再解正规方程 >>clear; syms x y k>>[x,y,k]=solve('y+k=0','x+k=0','x+y-1=0','x','y','k')得,21,21,21-===λy x 进过判断,此点为函数的极大值点,此时函数达到最大值.练习3 抛物面22y x z +=被平面1=++z y x 截成一个椭圆,求这个椭圆到原点的最长与最短距离.这个问题实际上就是求函数222),,(z y x z y x f ++=在条件22y x z +=及1=++z y x 下的最大值和最小值问题.构造Lagrange 函数)1()(),,(22222-+++-++++=z y x z y x z y x z y x L μλ求Lagrange 函数的自由极值.先求L 关于μλ,,,,z y x 的一阶偏导数>>clear; syms x y z u v>>l=x^2+y^2+z^2+u*(x^2+y^2-z)+v*(x+y+z-1); >>diff(l,x) >>diff(l,y) >>diff(l,z) >>diff(l,u) >>diff(l,v)得μλμλμλ+-=∂∂++=∂∂++=∂∂z zL y y y L x x x L 2,22,221,22-++=∂∂-+=∂∂z y x L z y x L μλ 再解正规方程>>clear;>>[x,y,z,u,v]=solve('2*x+2*x*u+v=0','2*y+2*y*u+v=0','2*z-u+v=0', 'x^2+y^2-z=0','x+y+z-1=0','x','y','z','u','v')得.32,231,33117,3353 =±-==±-=±-=z y x μλ 上面就是Lagrange 函数的稳定点,求所求的条件极值点必在其中取到。
由于所求问题存在最大值与最小值(因为函数f 在有界闭集}1,:),,{(22=++=+z y x z y x z y x ,上连续,从而存在最大值与最小值),故由359.)32,231,231(=±-±-f 求得的两个函数值,可得椭圆到原点的最长距离为359+,最短距离为359-。
练习4 求函数72422+--+=y x y x z 在上半圆0,1622≥≤+y y x 上的最大值和最小值。
首先画出等高线进行观测,相应的MATLAB 程序代码为:>>clear;>>x=-4:0.1:4; y=-4:0.1:4; >>[X,Y]=meshgrid(x,y); >>Z=X.^2+Y.^2-4*X-2*Y+7; >>contour(X,Y,Z,100) >>xlabel('x'),ylabel('y')结果如图6.3观测图6.3可看出,在区域D 内部有唯一的驻点,大约位于)1,2(在该点处汉书趣的最小值。
在圆弧与直线的交点处取得最大值,大约位于)2,4(-。
下面通过计算加以验证。
求函数在区域D 内的驻点,计算相应的函数值。
求z 关于x,y 的偏导数>>clear; syms x y; >>z=x^2+y^2-4*x-2*y+7; >>diff(z,x) >>diff(z,y)结果得,22,42-=∂∂-=∂∂y yz x x z 解正规方程 >>clear; [x,y]=solve('2*x-4=0','2*y-2=0','x','y')得驻点为(2,1),相应的函数值为2。
求函数在直线边界44,0≤≤-=x y 上的最大值和最小值。
将0=y 代入原函数,则二元函数变为一元函数.44,742≤≤-+-=x x x z首先观测此函数图形,相应的MATLAB 程序代码为:>>x=-4:0.01:4; y=x.^2-4*x+7; >>plot(x,y);>>xlabel('x'),ylabel('z')结果如图6.4所示由图6.4可看出,当4-=x 时函数取得最大值,2=x 时函数取得最小值。
下面用计算验证。
对函数求导>>clear; syms x ; >>z=x^2-4*x+7; diff(z,x) 得42-=x dxdz,可知驻点为2=x ,而边界点为4±=x ,计算着三个点上的函数值可得当4-=x 时函数取得最大值39,2=x 时函数取得最小值3。
求函数在圆弧边界线上0,1622≥≤+y y x 的最大值和最小值。
此边界线可用参数方程π≤≤==t t y t x 0,sin 4,cos 4表示。