第三章--平面连杆机构及其设计.
机械设计基础第三章平面连杆机构
2
BD
a2
d2
2adcos
2
BD
b2
ቤተ መጻሕፍቲ ባይዱ
c2
2bccos
cos b2 c2 - a2 d2 2adcos 2bc
90
b
B
δmax
a
A
d
Fn
Cγ α
F Ft
δ
Vc
c
δmin
D
三、急回运动和行程速比系数
1. 极位夹角
当机构从动件处于两极限位置时,主动件曲柄在两相 应位置所夹的锐角
曲柄摇杆机构的极位夹角
C C
C
b B
aA
d
D
B
曲柄滑块机构的极位夹角
B
A
B
C
摆动导杆机构的极位夹角
A
B
e C
D
Bd
2. 急回运动
当曲柄等速回转的情况下,
通常把从动件往复运动速度快慢
C1
不同的运动称为急回运动。
b
c
主动件a
从动件c
1 B2 b
运动:AB1 AB2
时间:t1
转角:1
DC1 DC2
t1
a
a
A 2
d
B1
❖
好的事情马上就会到来,一切都是最 好的安 排。上 午10时54分35秒上午10时54分10:54:3520.10.24
❖
一马当先,全员举绩,梅开二度,业 绩保底 。20.10.2420.10.2410:5410:54:3510:54:35Oc t-20
❖
牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月24日 星期六10时54分35秒 Saturday, October 24, 2020
平面连杆机构运动分析及设计
3选不同的构件为机架
3
1
4
A
2
B
C
直动滑杆机构
手摇唧筒
这种通过选择不同构件作为机架以获得不同机构的方法称为:
机构的倒置
B
C
3
2
1
4
A
导杆机构
3
1
4
A
2
B
C
曲柄滑块机构
3
1
4
A
2
B
C
摇块机构
3
1
4
A
2
B
C
A
B
C
3
2
1
4
天津工业大学专用 作者: 潘存云教授
摆转副——只能作有限角度摆动的运动副;
曲柄
连杆
摇杆
§3-2 平面四杆机构的类型和应用
1 平面四杆机构的基本型式
天津工业大学专用 作者: 潘存云教授
第三章 平面连杆机构运动分析与设计
§3-1 连杆机构及其传动特点
§3-2 平面四杆机构的类型和应用
§3-3 平面四杆机构的基本知识
§3-6 平面四杆机构的设计
§3-4 运动分析——速度瞬心法
§3-5 运动分析——矢量方程图解法
天津工业大学专用 作者: 潘存云教授
作者:潘存云教授
1 改变构件的形状和运动尺寸
偏心曲柄滑块机构
对心曲柄滑块机构
曲柄摇杆机构
曲柄滑块机构
双滑块机构
正弦机构
s
=l sin φ
↓ ∞
→∞
φ
l
2 平面四杆机构的演化型式
天津工业大学专用 作者: 潘存云教授
机械原理 第三章 平面连杆机构及其设计
2
二、连杆机构的特点 优点:
• 承受载荷大,便于润滑
• 制造方便,易获得较高的精度 • 两构件之间的接触靠几何封闭实现 • 实现多种运动规律和轨迹要求
y B a A Φ b β c ψ ψ0 C B φ A D M3
3
连杆曲线
M
M1
M2
连杆
φ0
d
D
x
缺点:
• 不易精确实现各种运动规律和轨迹要求;
27
55
20
40
70
80 (b)
例2:若要求该机构为曲 柄摇杆机构,问AB杆尺寸 应为多少?
解:1.设AB为最短杆
即 LAB+110≤60+70 2.设AB为最长杆 即 LAB+60≤110+70 3.设AB为中间杆 即 110+60≤LAB+70 100≤LAB LAB≤120 A
70
C
60
B
110
FB
D
36
2、最小传动角出现的位置
C b
F VC
B
c
A
d
D
当 为锐角时,传动角 = 当为钝角时,传动角 = 180º - 在三角形ABD中:BD² =a² +d² -2adcos 在三角形BCD中:BD² =b² +c² -2bccos (1) (2)
37
由(1)=(2)得:
b2 c 2 a 2 d 2 2ad cos cos 2bc
1)当 = 0º 时,即曲柄与机架重叠共线,cos =+1, 取最小值。
min
b c (d a ) arccos 2bc
第三章 连杆机构
三、死点
死点的概念—无论驱动力多大,均 不能使从动件运动,机构的这种位 置为死点。 四杆机构中是否存在死点,取决 于机构中是整周转动构件为主动还 是往复运动构件为主动。对曲柄摇 杆机构,若以曲柄为原动件,就不 存在死点;若以摇杆为原动件,在 机构连杆与从动曲柄共线位置,即 是死点位置。 从传动角度的角度来看,机构中存 在死点是不利的。 工程上有时也利用死点来实现一定 的工作要求。
全铰链四杆机构存在曲柄的条件: (1)连架杆与机架中至少有一个是最短杆; (2)最短杆与最长杆长度和应≤其余两杆长度和。 其中条件(2)又称为格拉肖夫判别式。 例3.3.1分析。通过此例,可以得出以下结论: 若全铰链四杆机构中最短杆与最长杆长度之和≤其 余两杆长度和时:1)最短杆是连架杆,为曲柄摇杆 机构;2)最短杆是机架,为双曲柄机构;3)最短杆 是连杆,为双摇杆机构。 对于平行四边形机构,因为两对边分别相等,则不 论取哪个杆为机架,均存在两个曲柄。 综上所述,对于满足格拉肖夫判别式的铰链四杆机构, 存在着内在联系。可通过取不同的构件为机架而相互 转化,如图3.2.13所示。
第五节 平面四杆机构的设计
平面四杆机构的设计任务:
主要是根据使用要求选定机构的型式,并根据已知
条件来确定机构中各构件的尺寸。 设计类型: (1)实现预期的运动规律; (2)实现给定的运动轨迹 。
பைடு நூலகம்
设计方法有:图解法、解析法和实验法。
一、按给定的K值设计四杆机构
设计具有急回特性的四杆机构,通 常根据实际工作需要,先确定行程速 度变化系数K,然后根据机构在极限 位置处的几何关系,结合有关 辅助条件,确定出机构中各杆 的尺寸。 1. 设计曲柄摇杆机构 已知摇杆CD的长度lCD、摆 角Ψ和行程速度变化系数K, 试设计该曲柄摇杆 机构。设计的关键是确定固定 铰链中心A的位置,具体设计 步骤如下:
第三章 平面连杆机构
当BC杆和CD杆出现共 线位置,即BC杆和CD 杆的夹角为180º 和0º 的 位置,此时AB无法继 续转动, 不存在曲柄。
F1
第 三 章 平 面 连 杆 机 构
若AB要成为曲柄,则 必须保证: ( BCD) max 180 ( BCD ) 0 和 min
BC和CD夹角的最大最 小位置出现在AB和AD 共线处 FL2
第 三 章 平 面 连 杆 机 构
条件确定A、D位置。 设计过程(动画)
第 三 章 平 面 连 杆 机 构
(三)按给定连架杆对应位置设计四杆机构 已知:曲柄AB及其三个位置,机架AD的长 度,构件CD上某直线DE的三个位置。
分析
第 三 章 平 面 连 杆 机 构
本设计的实质是求活动铰链C的第一个位 置 C 1。 可通过连架杆AB对CD的相对运动来确 定铰链C的位置,即,将连架杆CD上某直线 DE的第一个位置DE1当作机架不动,连架 杆AB看作连杆,采用反转法实现AB对CD的 相对运动。 反转法例子1 反转法例2:动画
第 三 章 平 面 连 杆 机 构
低副高代:去掉一个构件,将移动副和转动副用高 副代替
正弦机构 摆杆一端为球面
正切机构 推杆一端为球面
正弦机构的传动特性
第 三 章 平 面 连 杆 机 构
s a(sin sin 0 )
是非线性机构 正切机构的传动特性
d 1 i ds a cos
第 三 章 平 面 连 杆 机 构
(二)按给定连杆的两个或三个位置设计四 杆机构 已知:连杆BC的三个位置 设计的实质是确定固定铰链A、D的位置 B1、B2 、B3所在圆的圆心即为铰链A位置。 C1、C2 、 C3 所在圆的圆心即为铰链D的位 置。
第三章 平面连杆机构及其设计
1、图示铰链四杆机构,已知:l BC=50mm,l CD=35mm,l AB=30mm,AD为机架,(1)若此机构为曲柄摇杆机械,且AB为曲柄,求l AB的最大值:(2)若此机构为双曲柄机构,求l AB的范围;(3)若此机构为双摇杆机构,求l AB的范围。
(a)(b)题1图题2图2、图示两种曲柄滑块机构,若已知a=120mm,b=600mm,对心时e=0及偏置时e=120mm,求此两机械的极位夹角θ及行程速比系数K。
又在对心曲柄滑块机构中,若连杆BC为二力杆件,则滑块的压力角将在什么范围内变化?3、图示六杆机构,已知(单位mm):l1=20,l2=53,l3=35,l4=40,l5=20,l6=60,试确定:1)构件AB能否整周回转?2)滑块行程h;3)滑块的行程速度变化系数K;4)机构DEF中的最大压力角αmax。
题3图题4图4、在图示插床的转动导杆机构中,已知l AB=50mm,l AD=40mm及行程速比系数K=1.4,求曲柄BC的长度及插切P的行程。
又若需行程速比系数K=2,则曲柄BC应调整为多长?此时插刀行程是否改变?5、图示机床变速箱中操纵滑动齿轮的操纵机构,已知滑动齿轮行程H=60mm,l DE=100mm,l CD=120mm,l AD=250mm,其相互位置如图所示。
当滑动齿轮在行程的另一端时,操纵手柄朝垂直方向,试设计此机构。
6、图示用铰链四杆机构作为加热炉炉门的启闭机构。
炉门上两铰链的中心距为50mm,炉门打开后成水平位置时,要求炉门的外边朝上,固定铰链装在xy轴线上,其相互位置的尺寸如图上所示。
试设计此机构。
题5图题6图题7图7、设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数K=1.5,滑块的冲程l C1C2=50mm,导路的偏距e=20mm,求曲柄长度l AB和连杆长度l BC。
3平面连杆机构
在图( 在图(a)示曲柄摇杆机构中,当曲柄1转动时,摇杆 示曲柄摇杆机构中,当曲柄1转动时, 点的轨迹是圆弧mm,且当摇杆长度愈长时,曲 3上C点的轨迹是圆弧 ,且当摇杆长度愈长时, 愈平直。当摇杆为无限长时, 线mm 愈平直。当摇杆为无限长时,mm将成为一条 将成为一条 直线,这时可把摇杆做成滑块,转动副D 直线,这时可把摇杆做成滑块,转动副 将演化成 移动副,这种机构称为曲柄滑块机构 移动副,这种机构称为曲柄滑块机构
b.反四边形机构 反四边形机构 两曲柄长度相同, 定义 两曲柄长度相同,而 连杆与机架不平行的铰链四 杆机构, 杆机构,称为反平行四边形 机构。 机构。如图示
应用实例 汽车车门开闭机构
(3)双摇杆机构 ) 定义 在铰链四杆机构中, 在铰链四杆机构中, 若两连架杆均为摇杆, 若两连架杆均为摇杆,则称 为双摇杆机构。 为双摇杆机构。 实例: 鹤式起重机中的 实例: 鹤式起重机中的 四杆机构即为双摇杆机构 当主动摇杆摆动时,从动 当主动摇杆摆动时, 摇杆也随之摆动, 摇杆也随之摆动,位于连 杆延长线上的重物悬挂点 将沿近似水平直线移动。 将沿近似水平直线移动。
一、平面连杆机构的特点
1、连杆机构中构件间以低副相连,低副两元素为 连杆机构中构件间以低副相连, 面接触,在承受同样载荷的条件下压强较低, 面接触,在承受同样载荷的条件下压强较低,因 而可用来传递较大的动力。 而可用来传递较大的动力。又由于低副元素的几 何形状比较简单( 平面、圆柱面), ),故容易加 何形状比较简单(如平面、圆柱面),故容易加 工。 2、 构件运动形式具有多样性。连杆机构中既有绕 构件运动形式具有多样性。 定轴转动的曲柄、绕定轴往复摆动的摇杆, 定轴转动的曲柄、绕定轴往复摆动的摇杆,又有 作平面一般运动的连杆、 作平面一般运动的连杆、作往复直线运动的滑块 利用连杆机构可以获得各种形式的运动, 等,利用连杆机构可以获得各种形式的运动,这 在工程实际中具有重要价值。 在工程实际中具有重要价值。
平面连杆机构及其设计
优点: ①连杆机构为低副机构,运动副为面接触,压强小,承载能力 大,耐冲击; ② 运动副元素的几何形状多为平面或圆柱面,便于加工制造; ③在原动件运动规律不变情况下,通过改变各构件的相对长度 可以使从动件得到不同的运动规律; ④可以连杆曲线可以满足不同运动轨迹的设计要求。 缺点: ①由于运动积累误差较大,因而影响传动精度; ②由于惯性力不好平衡而不适于高速传动; ③设计方法比较复杂。
——逆平行(反平行)四边形机构(两相对杆长相等但不平行的双曲柄机构)
3. 双摇杆机构 (Double-Rocker Mechanism)
——两个连架杆都是摇杆的铰链四杆机构
C
2
B
3
1
A
4
D
特例:等腰梯形机构— —两摇杆长度相等的双 摇杆机构
汽车前轮 转向机构
功能: 往复摆动
往复摆动
应用实例:
飞 机 起 落 架 机 构
——两个连架杆都是曲柄的铰链四杆机构
B
1
A
C
特例:若机构中相对两杆平行且相等,
则成为平面四边形机构。
2
3
4
D
平行四边 形机构特 性:
▲两曲柄 同速同向 转动
▲连杆作 平动
功能: 连续转动
连续转动
应用实例:
惯性筛机构
机车车轮联动机构
应用实例 播种机料斗机构
升降机构
升降车
台灯伸展机构
应用实例
车门开闭机构
§3-2 平面四杆机构的类型和应用
➢四杆机构各部分的名称:
构件
转动副
机架
连架杆
连杆
周转副 摆转副
曲柄
摇杆
整周 回转
山东理工大学机械原理考试原题目——四杆机构的设计
第三章 平面连杆机构及其设计1、如图示的铰链四杆机构中,AD 为机架,AB a ==35 mm ,CD c ==50 mm ,30==d AD mm ,问BC b =在什么范围内该机构为双摇杆机构;该机构是否有可能成为双曲柄机构?2、试画出图示机构的传动角γ和压力角α,并判断哪些机构在图示位置正处于“死点”?(1) (2)(3) (4)5、在图示铰链四杆机构中,已知各构件的长度25=AB l mm ,55=BC l mm ,40=CD l mm , 50=AD l mm 。
(1)问该机构是否有曲柄,如有,指明哪个构件是曲柄;(2)该机构是否有摇杆,如有,用作图法求出摇杆的摆角范围;(3)以AB 杆为主动件时,该机构有无急回性?用作图法求出其极位夹角θ,并计算行程速度变化系数K ; (4)以AB 杆为主动件,确定机构的αmax 和γmin 。
6、图示为开关的分合闸机构。
已知150=AB l mm ,200=BC l mm ,200=CD l mm , 400=AD l mm 。
试回答:(1)该机构属于何种类型的机构;(2)AB 为主动件时,标出机构在虚线位置时的压力角α 和传动角γ;(3)分析机构在实线位置(合闸)时,在触头接合力Q 作用下机构会不会打开,为什么?7、试设计一曲柄摇杆机构。
设摇杆两极限位置分别为4090,15021===CD l ; ϕϕmm ,50=AD l mm 。
求AB l 、BC l 及行程速比系数K 和最小传动角γmin 。
(用图解法求解用图解法求解,简述作图步骤,并保留作图过程)8、现需设计一铰链四杆机构,已知摇杆CD 的长度l CD =150mm ,摇杆的两极限位置与机架AD 所成的角度 903021==ϕϕ,,机 构的行程速比系数K =1,试确定曲柄AB 和连杆BC 的长度。
10、设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数K =1.5,滑块的行程10021=C C l mm ,导路的偏距20=e mm 。
平面连杆机构设计
3.讲授方法:多媒体
在实际生活中已经见过许多的平面连杆 机构,被广泛地使用在各种机器、仪表及操 纵装置中。例如内燃机、牛头刨、钢窗启闭 机构、碎石机等等,这些机构都有一个共同 的特点:其机构都是通过低副连接而成,故 此这些机构又称低副机构。 根据这一特点,我们定义:若干构件通过低 副(转动副或移动副)联接所组成的机构称 作连杆机构。连杆机构中各构件的相对运动 是平面运动还是空间运动,连杆机构又可以 分为平面连杆机构和空间连杆机构。
3.1 平面四杆机构的类型及应用
一、平面四杆机构的基本型式
构件之间都是用 转动副联接的平面四 杆机构称为铰链四杆 机构,如图所示。铰链 四杆机构是平面机构 的最基本的可以实现 运动和力转换的连杆 机构型式。
也就是说:铰链四杆机构是具有转换运动功 能而构件数目最少的平面连杆机构。其它型式的 四杆机构都可以看成是在它基础上通过演化而来 的。
三、平面四杆机构的演化型式 机构的演化方式有多种,但都要遵
循“不改变构件间的相对运动状况,而 只可改变构件的形状或其绝对运动”的 原则。
如图3—7(a)所 示的铰链四杆 机构中,当摇 杆CD长度趋于 无穷大时,点 C圆弧轨迹变 成直线,机构 就演化成图(b) 所示含有滑块 的机构。
图3-7
曲柄滑块机构
便于润滑,故可以传递较大的载荷; 2)运动副元素几何形状简单,便于加工制造; 3)当原动件规律不变时,若改变各构件的相对
长度关系,可以改变从动件的运动规律; 4)连杆上的各点轨迹(简称连杆曲线)形状各
异,可以利用这些曲线以满足不同的轨迹要 求; 5)能实现增力、扩大行程和实现远距离传动的 目的。
缺点: 1)连杆机构运动链较长,构件尺寸误差
机械原理第三章平面连杆机构及其设计
b12
C1
B
B2
B1
b. 设计 b12
c12
A
B2
C1
C2
B1
A点所在线
A
D点所在线
D
C C2
D
★ 已知连杆两位置
c23
——无穷解。要唯一解需另加条件 ★ 已知连杆三位置
b23 B3
c23
——唯一解 ★ 已知连杆四位置
——无解 B3
b12 B2 B1
C1 C2
C3
AD
B2 B1
分析图3-20
C2 C1 B4
反平行四边形
车门开闭机构
3)、双摇杆机构
若铰链四杆机构的两连架杆均为摇杆, 则此四杆机构称为双摇杆机构。
双摇杆机构
双摇杆机构的应用 鹤式起重机机构
鹤式起重机
倒置机构:通过更换机架而得到的机构称为原机构的倒置机构。
变化铰链四杆机构的机架
C
B
整转副
2
(<360°)
(0~360°)
3
1
(0~360°)
(1)、取最短构件为机架时,得双曲柄机构。 (2) 、取最短构件的任一相邻构件为机架时,均得曲柄
摇杆机构。 (3)、取最短构件的对面构件为机架时,得双摇杆机构。
判断:所有铰链四杆机构取不同构件为机架时,都能演化成带 曲柄的机构。
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构?
取最短杆相 邻的构件为 机架得曲柄 摇杆机构
最短杆为 机架得双 曲柄机构
取最短杆对 边为机架得 双摇杆机构
特殊情况:
如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。
第三章 平面连杆机构及其设计习题解答
1图11所示铰链四杆机构中,已知各杆长度AB l =42mm ,BC l =78mm ,CD l =75mm ,AD l =108mm 。
要求(1) 试确定该机构为何种机构;(2) 若以构件AB 为原动件,试用作图法求出摇杆CD 的最大摆角ϕ, 此机构的极位夹角θ,并确定行程速比系数K(3) 若以构件AB 为原动件,试用作图法求出该机构的最小传动角min γ;(4) 试分析此机构有无死点位置。
图11【分析】(1)是一道根据机构中给定的各杆长度(或尺寸范围)来确定属于何种铰链四杆机构问题;(2)(3)(4)是根据机构中给定的各杆长度判定机构有无急回特性和死点位置,确定行程速比系数K 和最小传动角问题。
解: (1)由已知条件知最短杆为AB 连架杆,最长杆为AD 杆,因mm l l mm l l CD BC AD AB 153757815010842=+=+<=+=+故AB 杆为曲柄,此机构为曲柄摇杆机构。
(2)当原动件曲柄AB 与连杆BC 两次共线时,摇杆CD 处于两极限位置。
适当选取长度比例尺l μ,作出摇杆CD 处于两极限位置时的机构位置图AB 1C 1D 和AB 2C 2D ,由图中量得ϕ=70°,θ=16°,可求得19.1180180≈+︒-︒=K θθ(3) 当原动件曲柄AB 与机架AD 两次共线时,是最小传动角min γ可能出现的位置。
用作图法作出机构的这两个位置AB ′C′D 和AB ″C ″D ,由图中量得,50,27︒=''︒='γγ故 min γ=︒='27γ(4) 若以曲柄AB 为原动件,机构不存在连杆BC 与从动件CD 共线的两个位置,即不存在︒='0γ的位置,故机构无死点位置;若以摇杆CD 为原动件,机构存在连杆BC 与从动件AB 共线的两个位置,即存在︒='0γ的位置,故机构存在两个死点位置。
【评注】 四杆机构基本知识方面的几个概念(如有曲柄条件、急回运动、传动角等)必须清晰。
第三章 平面连杆机构
1 2 , t1 t2 , v2 v1
急回运动的相对程度用行程速比系数来衡量
v2 t1 1 180 K v1 t2 2 180
曲柄滑块机构的急回特性
对心
无急回运动特性
偏心
有急回运动特性
导杆机构的急回特性
摆动导杆机构的极位夹角θ=ψ(导杆摆角),导杆慢行程摆动方向 总是与曲柄转向相同。
三、 压力角与传动角(衡量传力性能)
压力角α:连杆BC为二力构件,连杆给从动构件的作用力P方向和受力点运动方 向(Vc方向)之间的锐角。——与机构的运转轻便和效率有关的参数。 传动角γ:压力角的余角——衡量机构的传动质量,可从平面连杆机构运动简图 上直接观察大小。(γ=δ或180°-δ,δ:连杆与从动件之间夹角)
各构件的长度间关系: 在BC D中,a d b c () 1 在BC D中,当b c时,b c d a a b c d (2) 当c b时,c b d a,c a b d (3) ( )+(2)得:a c, 1 ( )+( )得:a b, 1 3 又 ad
2.扩大转动副尺寸的演化
曲柄滑块机构中,当曲柄尺寸较短时, 因工艺结构和强度等方面的要求,需 将回转副扩大形成偏心圆盘机构。这 种结构尺寸的演化,不影响机构的运 动性质,却可避免在尺寸很小的曲柄 两端装设两个转动副而引起结构设计 上的困难。同时盘状构件在强度方面 优于杆状构件,在一些传递动力较大、 从动件行程很小的场合,广泛采用偏 心盘结构
实例
曲柄摇块机构
卡车翻箱卸料机构
实例
移动导杆机构
手动唧筒
1、曲柄摇杆机构;2、双曲柄机构; 3、曲柄摇杆机构;4、双摇杆机构。
第三章 连杆机构设计和分析
第三章连杆机构设计和分析本章重点:平面四杆机构设计的几何法、解析法,及平面连杆机构运动分析的几何方法、解析法,机构动态静力分析的特点本章难点:1. 绘制速度多边形和加速度多边形时,不仅要和机构简图中的位置多边形相似,而且字母顺序也必须一致。
2.相对速度和加速度的方向,及角速度和角加速度的转向。
3.用解析法对平面机构进行运动分析,随着计算机的普及,已越来越显得重要,并且将在运动分析中取代图解法而占主要地位。
其中难点在于用什么样的教学工具来建立位移方程,并解此方程。
因为位移方程往往是非线性方程。
基本要求:了解平面连杆机构的基本型式及其演化;对平面四杆机构的一些基本知识(包括曲柄存在的条件、急回运动及行程速比系数、传动角及死点、运动的连续性等)有明确的概念;能按已知连杆三位置、两连架杆三对应位置、行程速比系数等要求设计平面四杆机构。
§3-1 平面四杆机构的特点和基本形式一、平面连杆机构的特点能够实现多种运动轨迹曲线和运动规律,低副不易磨损而又易于加工。
由本身几何形状保持接触。
因此广泛应用于各种机械及仪表中。
不足之处:作变速运动的构件惯性力及惯性力矩难以完全平衡;较难准确实现任意预期的运动规律,设计方法较复杂。
连杆机构中应用最广泛的是平面四杆机构。
二、平面四杆机构的基本型式三种:曲柄摇杆机构双曲柄机构双摇杆机构三、平面四杆机构的演变1.转动副转化为移动副2.取不同构件为机架:3.变换构件的形态4.扩大转动副尺寸。
§3-2 平面连杆机构设计中的一些共性一、平面四杆机构有曲柄的条件上一节中,已经讲过平面四铰链机构中有三种基本形式:曲柄摇杆机构(一个曲柄);双曲柄机构(二个曲柄);双摇杆机构(没有曲柄)。
可见有没有曲柄,有几个曲柄是基本形式的主要特征。
因此,曲柄存在条件在杆机构中具有十分重要的地位。
下面分析曲柄存在条件:在铰链四杆机构中,有四个转动副和四个杆,为什么连架杆能作整周旋转(曲柄),有时就不能作整周旋转(摇杆)呢?这主要是因为四杆的相对杆长能约束连架杆是否能整周旋转或只作摆动的缘故。
第三章-平面连杆机构讲解
小型刨床机构
曲柄摆动导杆机构 (a)曲柄摆动导杆机构 ; (b)电气开关
卡车车厢自动翻转卸料机构
手动抽水机
第十一页,编辑于星期二:二十二点 五分。
3. 偏心轮机构 扩大转动副
( a)等效曲柄滑块机构
( b)曲柄滑块机构 ( c)等效曲柄摇杆机构 (d) 曲柄摇杆机构
特点:容易加工;
工作时润滑条件和受力情况好;
∴X ≤67
②当45mm为最长杆时:即18+45≤40+x
∴X ≥23 ∴当23≤X ≤67时,该机构为曲柄摇杆机 构
第十九页,编辑于星期二:二十二点 五分。
二、急回特性和行程速比系数
曲柄等速转动时, 摇杆往复摆动的平均速 度不相同,这种运动称 为曲柄摇杆机构的 急回
运动。曲柄摇杆机构的
急回运动程度可以用 2
A
AC 1= l1+l2
AC2=l2- l1
=> l1 =( AC1- AC2)/ 2
⑥以 A为圆心, A C2为半径作弧交
于 E,得:l1 =EC1/ 2 l2 = A C1-EC1/ 2
θD P
第二十九页,编辑于星期二:二十二点 五分。
(7)讨论:由于 A点可在△ C1PC2的外接圆周的弧 C1PC2 上任意选取,所以,若仅按行程速比系数 K来
18 15
A
30
D
∵15+30>20+18 ∴此机构属于 双摇杆机构
其中 AB、CD都为摇杆
C B 17
22
10
A
28
D
∵10+28<17+22
又∵最短杆AB固定作为机架
∴此机构属于 双曲柄机构 其中 AB、CD都为曲柄
第章平面连杆机构及其设计
第章平面连杆机构及其设计1. 介绍平面连杆机构是机械运动学中一类常见的重要机构,由连杆(也称杆件)组成,分为接触连杆机构和非接触连杆机构两类。
平面连杆机构能够将旋转运动转化为直线运动,或将直线运动转化为旋转运动,并广泛应用于各种机械装置中。
2. 平面连杆机构的分类平面连杆机构一般分为以下几类:2.1 四杆机构四杆机构是由四根杆件组成的平面连杆机构,其中两根杆件为引导杆,在机构运动过程中仅仅进行直线运动,另外两根杆件则为连杆,在机构运动过程中发生旋转和直线运动。
2.2 三杆机构三杆机构又称三杆架,是由三根杆件组成的平面连杆机构,其中两根杆件为引导杆,在机构运动过程中仅仅进行直线运动,另外一根杆件则为连杆,在机构运动过程中发生旋转和直线运动。
2.3 双曲杆机构双曲杆机构是由两个连杆组成的平面连杆机构,其中两个连杆的运动轨迹呈现为双曲线形状,能够实现近似于直线的直线运动。
2.4 齿条机构齿条机构是由齿轮和齿条组成的平面连杆机构,齿轮进行旋转运动,齿条进行直线运动,能够实现运动传递和位置定位。
3. 平面连杆机构的设计设计平面连杆机构时需要考虑以下几方面:3.1 运动要求平面连杆机构的设计需要优先考虑机构所要完成的工作,确定所需运动方式、速度、角度等指标,为机构的设计提供技术参考和方向。
3.2 相关构件尺寸在完成运动要求的基础上,需考虑各组件之间的相互匹配,包括连杆长度、引导杆长度、连杆夹角、引导杆倾斜角等。
3.3 材质选取平面连杆机构在耐用性、强度、重量、成本等方面也需要考虑,选用合适的材质,满足机构设计要求。
3.4 连接方式选择平面连杆机构的连接方式通常为销轴连接和螺栓连接,选择合适的连接方式也是机构设计的关键。
4.平面连杆机构是机械装置中常见的一种机构结构,应用广泛,设计时需考虑机构所要完成的工作、构件尺寸、材质选取和连接方式选择等方面,结合实际情况进行设计,才能满足机构的运动要求和性能要求。
第三章平面连杆机构的及其设计
例:选择双滑块机构中的不同构件作为机架 可得不同的机构
2 1
3 4
正弦机构
2
1 4
3
椭圆仪机构
§3-3 铰链四杆机构的主要工作特性
• 有曲柄的条件 • 急回特性 • 压力角及死点 • 连杆曲线
§3-3 平面四杆机构的主要工作特性
一、转动副为整转副的充分必要条件
铰链四杆机构中某个转动副是否为整转动副取决于四个构 件的相对长度关系。考虑到机构中任意两构件之间的相对运动 关系与其中哪个构件为机架无关,故可针对铰链四杆运动链分 析转动副为整转动副的充分必要条件。
原动件作匀速转动,从动件 a
q
B2
作往复运动的机构,从动件正行 1
程和反行程的平均速度不相等。
A
d
B1
2
C
C2
c
D
2、行程速度变化系数
K
从动件快行程平均速度 从动件慢行程平均速度
1
C1
b
B
a
1 A
B1
2
q
B2
d
C
C2
c
D
∴
q 180 K 1
K 1
极位夹角θ(<C2AC1)(其值与构件尺寸有关,可能
ad bc 及
d a bc
1)当d≥a时,则 a + b≤d+c a+c ≤ d+b
分别相加得:a≤c a≤b a≤d
(a 最短)
2)当a≥d时,则 d + b ≤ a+ c d + c≤a + b
分别两两相加得:d≤c d≤b d≤a
(d 最短)
有整转副的条件:
构件1最短时,若取BC为机架,则结论相同,可知 铰链B也是整转副。
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kc 4
D
B2 1 A
3 C
4
e
固定不动
手摇唧B筒机构2 等
1 A4
C3
(2)含有两个移动副 曲柄移动导杆机构 第一种:正弦机构
SlABsin
缝纫机的刺布机构
第二种 正切机构
B变为移动副
S3ltan
第三种 双转块机构 (十字滑块联轴节)
第四种 双滑块机构 (椭圆仪)
连杆连线上的任一点轨迹为以A为中心的椭圆。 其中,中点D的轨迹是以A为圆心的圆。
C
vc Pt
C2
min
C1
max
A
B1
D
三、行程速度变化系数 1、机构的急回运动特性 原动件作匀速转动,从动件相对机架作往复运动的 机构,从动件正行程和反行程的平均速度不相等。
主动件——曲柄匀速转动,ω 从动件——摇杆来回摆动
工作行程:
曲柄1→2 180°+θ 摇杆C1D→C2D ψ
返回行程: 曲柄2→1 180°-θ 摇杆C2D→C1D ψ
曲柄滑块、导杆 摇块、定块
四杆机构含有2个移动副 更换机架
正弦、正切 双转块、双滑块
§3—3 平面四杆机构有曲柄的条件和几个基本概念
一、平面四杆机构有曲柄的条件 (整转副存在的条件)
1.铰链四杆机构有整转副的条件 C
C2
B a1
b 2 C1
B2
3c
A
B1
d< ≤ c< ≤
d
≤ (1) (2) (3)
PnPsin ——有害分力
α越小,越大,对机构传递越有利(效率高,不易自锁)
2、传动角γ——压力角余角 90
平面连杆机构经常用γ衡量机构的传动质量(易于测量) γ越大,对机构传递越有利
3、许用传动角
一般: min40
高速机构 min: 50。
4、传动角的计算
B2
90,
90 ,180
Pn
P
B
翻型机
给定位置设计
炉门
返回
移动导杆机构
1
2
3
4
油泵机构
油泵机构
曲柄摇块机构
转动导杆机构
曲柄滑块机构
第三章 平面连杆机构及其设计
本章重点: 平面四杆机构的类型、 基本知识和设计。
本章难点: 平面四杆机构的设计。
§3-1 平面连杆机构的特点及其设计的基本问题
用低副连接而成的平面机构
一、平面连杆机构的特点 1、能实现多种运动形式。如:转动,摆动,移动,平面运动
2、运动副为低副 面接触,承载能力大 ,便于润滑,寿命长 几何形状简单——便于加工,成本低
3、缺点 ①只能近似实现给定的运动规律 ②设计较复杂 ③只用于速度较低的场合
二、平面连杆机构设计的基本问题
选型 确定连杆机构的结构组成,构件数目,运动副类型、数目
运动尺寸设计 确定各构件尺寸,运动副位置,描述曲线点的位置
曲柄摇杆机构
最短构件为机架
最短杆对边的为机架
双曲柄机构
双摇杆机构
2.曲柄滑块机构有曲柄的条件:
B1
Aa
B2
b
E
C1
C2
e
直角△ 1E:
>e
直角△ 2E:
>e
即曲柄存在的条件: b> b>a
偏置 对心
二、压力角和传动角
1、压力角α
从动件上某点的受力方 向与从动件上该点速度 方向的所夹的锐角
Pt Pcos ——有效分力
3.取不同的构件为机架,可得到不同的机构
B
1
2
B
1
2
B
1
2
3
4
3
4
3
A
C
A
C
A
C
曲柄滑块机构 转动导杆机构
B
1
2
B
1
2
4
3
4
3
4
A
C
A
C
曲柄摇块机构
移动导杆机构
教材P39的表3-1所示不同形式的四杆机构
四杆机构含有0个移动副 更换机架
转动副变移动副
四杆机构含有1个移动副 更换机架
曲柄摇杆、双曲柄 (曲柄主动) 曲柄摇杆、双摇杆 (摇杆主动)
D 4
即: ≤ (1)
≤ (2)
≤ (3)
两构件作整周相对转动的条件:
ac ab ad
(1)组成整转副的两构件中必有一构件为运动链中的最短构件。
(2)最短构件与最长构件的长度之和小于等于其它两构件长度之 和。 (杆长之和的条件)
铰链四杆机构类型判定: 杆长之和条件
N
双摇杆机构
Y
Y
最短杆为连架杆
Y
1、扩大转动副★
2C
2C
B
3
B
3
1 A
4
D
1 A
4
D
偏心轮,偏心距,
2C
B
3
A1
D
4
偏心轮机构应用:多用于曲柄销承受较大冲击、曲柄较短、 需安装在直轴中部的机器。
3
B2
2、(1A转C1)含动AB1有副一2BA1转个4 2D移化3B4 动成2C副4移AC31动第D3副C一KcD:种A3K1:c DAB曲1K2c柄BA 2滑1 块B 2机C 构C (34偏DC D距3K4cDe)Kc34 D Kc
1、实现构件给定位置 2、实现已知运动规律 3、实现已知运动轨迹
三、平面连杆机构的运动设计方法
1、图解法 2、解析法 3、图谱法 4实验法
§3-2 平面四杆机构的基本型式
一、铰链四杆机构: 所有运动副均为转动副的平面四杆机构
连杆
连架杆
连架杆
机架
B
整转副:A、 B
1
摆动副:C、 D
A
曲柄:
摇杆:
铰链四杆机构的基本形式:
1
e
导杆 — 3 作用:对滑块起导路作用
牛头B 刨床、插床等
2
1 A4
C3
第三种 摇块机构
2 B
1 A
4
C
Kc
3
B2
1
DA
3
C
Kc
4
D
B2 1 A
3 C
4
e
摇块 — 3
绕C点摇摆
自卸卡车B 车厢的举升机构等
2
1 A4
C3
第四种 定块机构(又名移动导杆机构)
3
2 B
1 A
4
C
Kc
C
3
B2
1
DA
定块 — 3
1)曲柄摇杆机构 2)双曲柄机构 3)双摇杆机构
C 2
3
4
D
曲柄摇杆机构的应用
当以曲柄为原动件时,曲柄作整周转动,摇杆作往复摆动;用作 雷达天线俯仰机构等。
曲柄摇杆机构
当以摇杆为原动件时,摇杆作往复摆动,曲柄作整周 转动。例如:缝纫机机构
双曲柄机构的应用 正平行四边形机构:两两对杆长度不仅相等,而且平行,两曲柄 同向同速转动,连杆作平动。有广泛应用
4C
3 3
B
B2
1 A
B2
1
B2
A1
A
e
e e e
C4 C4
3B241 NhomakorabeaA
1 A
B2
144
A 14 A
B2
C
C
3
2C
4
3
3 C
3
e≠0,偏置曲柄滑块机构 0, 对心曲柄滑块机构
第二种: 导杆机构
3
2 B
1 A
4
C
Kc
3
B2
1
DA
C
Kc
4
D
3 导杆整周转动 → 转C 动导杆机构 导杆只作B 2摆动 → 摆动导杆4 机构
2、行程速度变化系数
K 从 从动 动件 件慢 快行 行程 程平 平均 均速 速度 度1
机车联动机构
摄影平台升降机构
播种料斗机构
反平行四边形机构:两两对杆长度相等,但不平行。 当以长边为机架时,两曲柄等速反向转动。用于车门开 闭机构,如图所示。
车门开闭机构动画
3、双摇杆机构 两连架杆都是摇杆。用于翻箱机构和鹤式起重机机构等。
等腰梯形机构,转向机构: 车辆的前轮转向。
二、铰链四杆机构的演化