(完整版)冀教版七年级上册数学知识汇总
七年级上数学冀教版知识点
七年级上数学冀教版知识点数学是一门既有科学性又有实用性的学科,是每个人都需要掌握的基本技能。
而对于七年级的学生来说,理解和掌握数学知识点是建立基础的重要一步。
冀教版数学教材内容深入浅出,循序渐进,下面就来详细介绍一下七年级上册中的数学知识点。
1. 数的概念和大小比较数是人类为了计数、计量、计算而发明的符号系统,它可以用来表示数量大小。
在七年级上册,学生们需要掌握整数的概念,了解正整数、负整数和零的含义。
此外,学生们还需要学会数字大小的比较,掌握大于、小于和等于的表示方法。
2. 表格的制作与应用表格是一种以行和列的形式组织数据的方法,是现在生活中必不可少的一种信息传递方式。
在七年级上册,学生们需要学会如何用表格来处理数据,了解表格中的横行、竖列和行列的序号等概念。
学生还需要掌握如何用平均数和众数等方法来统计和分析数据。
3. 坐标系的建立和运用坐标系是用来表示平面上点的位置关系的一种数学工具,是一条水平的x轴和一条垂直的y轴相交而成的。
在七年级上册,学生们需要学会如何根据坐标系来确定平面上点的位置,并通过坐标系计算出两个点之间的距离。
此外,学生还需要学会如何画出简单的函数图像,并了解函数的自变量和因变量的概念。
4. 分数的概念和运算分数是比整数更具体的数,它是用分子与分母表示的形式,分子表示被分的物品数量,分母表示每份是几等份。
在七年级上册,学生们需要学会分数的概念,包括分数的基本概念、分数的大小比较、分数的基本运算和分数的混合运算等。
此外,学生还要学会如何用分数解决实际问题。
5. 百分数的概念和运用百分数是百分之一,是常见的一种数学表达方式。
在生活和工作中,百分数广泛应用于比较、分析、预测等许多方面。
在七年级上册,学生们需要学会百分数的概念,包括百分数的基本概念、百分数与分数的关系、百分数的基本运算和百分数在实际中的应用等。
总之,在七年级上册数学学习中有许多重要的知识点需要我们掌握,这些知识点涉及到整数、分数、百分数、表格、坐标系等等。
冀教版数学七年级上册1.5.2有理数的加法运算律
强化训练1:用简便算法计算下列各式
(1)37+(﹣18)+(﹣20)+43
(2)2 (2.5) 3.5 ( 2)
3
3
(3)0.75+(
141)+0.125+(
4
1 8
)
例4:某水库在星期一的水位是110.3m,星期二 下降了0.2m,星期三上升了0.7m,星期四下降 了0.8m。
(1)如果规定水位上升为正,下降为负,请你将 每天水位的变化情况用正数或负数表示出来。
(2)星期四的水位是多少米?
解:(1)每天水位的变化量分别是:星期二为﹣0.2m, 星期三为﹢0.7m,星期四为﹣0.8m。 (2)根据题意,得 110.3+(﹣0.2)+(﹢0.7)+(﹣0.8)
=[110.3 +(﹢0.7)]+ [ +(﹣0.2)+(﹣0.8)] =111+(﹣1) =110(m)
合作探究一
在横线上填“=”或“≠” : (1)5+(﹣13)__=___(﹣13)+5; (2)(﹣4)+(﹣8)__=___ (﹣8)+(﹣4)
猜想:a+b _= b+a 归纳:加法交换律:
两有理数相加,交换 加数 的位置,和 不_变_。
(3) [ 2+(-3)]+(-8) _=__ 2+[(-3)+(-8)] (4) 10+[(-10)+(-5)] _=__ [10+(-10)]+(-5)
67 8
)+[(
3
2 7
)
+( 4 5
7
)]
=10+(-8)
分母相同的先相加。
=2
简便算法是 什么?
(1)互为相反数的两个数先相加——“相反数结合法” (2)符号相同的两个数先相加——“同号结合法” (3)分母相同的两个数先相加——“同分母结合法” (4)几个小数相加得整数,先相加——“凑整法”
冀教版数学七年级上册 代数式
(6)带分数与字母相乘时,一般应把带分数化成假分数来写,
1
7
1
如a的3 倍应写成 a,而不能写成3 a.
2
2
2
(7)遇有小数因数,一般应将其化成分数形式.如a与0.1的积
常写成a.
学生活动二【探究代数式的意义】
指出下列代数式的意义:
(1)2a+5
(4)(a b)
2
(2)2(a+5)
式的意义.
学习难点:理解描述数量关系的语句,正确列出
代数式,培养学生的数学抽象意识.
1.如果甲数为x,乙数为y,那么甲、乙两数的差是 x-y .
2.如果长方形的长和宽分别为a和b,那么它的面积
是 ab .
16n
3.某种瓜子的单价为16元/千克,则n千克需_______元.
4.钢笔每枝a元,铅笔每枝b元,买2枝钢笔和3枝铅笔共
1
x
解:(4)(a+b)2表示的是a,b两数和的平方.
1
(5) 表示的是x的倒数.
x
(6)x + 表示的是x与它的倒数的和.
学生活动三【列代数式】
我们用代数式可以表示数量和数量之间的关系.如用代
列代数式的关键是要分析数量关系,能准确地
数式表示“a,8两数之和与b, c两数之差的积”,可按下面
把文字语言翻译成数学语言.
2a+3b
需_________元.
学生活动一【一起探究】
上述各问题中出现的如x-y、ab、16n、2a+3b等式子,
都叫代数式.
问题:
你能分析这些式子的共同特征,试着说一说代数式的概念吗?
小组合作交流.
(1)这些式子中,都含有数字或表示数字的字母;
冀教版初一数学知识点上册
冀教版初一数学(上)知识点第一章 有理数1.有理数:(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0和正整数; a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =an 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位. 18.混合运算法则:先乘方,后乘除,最后加减;第二章 几何图形的初步认识1、知识结构2、直线的性质:经过两点有一条直线,并且只有一条直线。
完整word版,【冀教版】初一数学上册知识点总结{完整}
冀教版初一上册数学知识点总结有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① ②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;(3) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.代数初步知识【几何的初步认识】一、多姿多彩的图形1.从实物中抽象出的各种图形统称为几何图形。
冀教版七年级数学上册知识讲义-1.数轴
初中数学数轴课标定位一、考点突破1. 了解数轴的概念和数轴的画法;2. 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;3. 能利用数轴比较有理数的大小。
二、重难点提示重点:数轴的画法和用数轴上的点表示数的方法。
难点:从直观认识到理性认识,建立数轴概念,培养数形结合的思想。
考点精讲1. 数轴的几何意义数轴是一种特定的几何图形,原点、正方向、单位长度称为数轴的三要素,这三者缺一不可。
2.数轴的画法第一步:画直线(一般画成水平的)、定原点,标出原点“O”;第二步:取原点向右方向为正方向,并标出箭头;第三步:选适当的长度作为单位长度,并标出……-3,-2,-1,1,2,3,……各点。
【注意】标注数字时,负数的次序不能写错。
3.有理数和数轴上的点的对应关系(1)任意一个有理数都可以在数轴上找到一个点与之对应。
(2)从原点出发,朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。
4. 有理数的大小比较(1)正数都大于0,负数都小于0,正数大于一切负数。
(2)在数轴上表示的两个数,右边的数总比左边的数大。
【随堂练习】下列语句说法正确的有( )A. 数轴上的点只能表示整数;B. 数轴是一条射线;C. 数轴上的一个点只能表示一个数;D. 数轴上找不到既不表示正数,又不表示负数的点。
思路分析:结合数轴上的点与有理数的特点进行判断。
答案:数轴上的点可以表示任意数,可见A 是错误的;数轴是一条直线,所以B 是错误的;C 是正确的;D 既不表示正数,又不表示负数的点是原点,所以D 错误;故选C 。
典例精析例题1 下列所画数轴正确的个数有( )A. 0个B. 1个C. 2个D. 3个思路分析:根据数轴的特点进行解答即可.答案:①没有正方向,故①错误;②没有原点,故②错误;③单位长度不统一,故③错误;④不符合数轴右边的数总比左边的数大的特点,故④错误;⑤符合数轴的特点,故⑤正确,⑥数轴是直线,不是射线,故⑥错误。
冀教版七年级上册数学知识汇总
- 1 -有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.- 2 - 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,ba b a =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;- 3 -(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;- 4 -(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;- 5 -(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
3.3 数量之间的关系七年级上册数学冀教版
用代数式表示为:
(1)水平相邻的三个数 a-1,a,a+1
(a-1) +(a+1)=2a.
(3) 斜下相邻的三个数 c-8,c,c+8
(c-8)+(c+8)=2c.
(2) 竖直相邻的三个数
b-7,b,b+7
(b-7) +(b+7)=2b.
(4)斜上相邻的三个数 d-6,d,d+6
(d-6)+(d+6)=2d.
8+9+10+15+16+17+22+23+24=144=9×16.
新知探究 知识点2 用代数式表示数阵的变化规律
归 纳:
探索规律的一般步骤:
具
体
观 察
问
、
题
比 较
猜
表
想
示
规
规
律
律
索探 新重
得 出 结 论 验 证 成立 规 律 不成立
头回
新知探究 知识点2 用代数式表示数阵的变化规律 观察与思考
…
(1)一张桌子可坐6人,2张桌子可坐 8 人; (2)按照上图方式继续排列桌子,完成下表:
桌子张数 3 4 5 6 … n 可坐人数 10 12 14 16 … 4+2n
课堂小结
用代数式表示规律
表示数的规律 表示数阵的规律 表示图形的规律
43
第7个数是___6_4____;第n(n为正整数)个数是
n2 (n 1)
_____(_n _1_)_2 ____.
随堂练习
2.观察下列等式:
32-12=4×2;
42-22=4×3;
冀教版初中数学七年级上册知识点汇总Microsoft Word 文档
冀,教版,初中,数学,七年级,上册,知识点,汇总,冀教版初中数学七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。
数a的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
或※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a,都有|a|≥0②若|a|=0,则|a|=0,反之亦然③若|a|=b,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
(完整word版)冀教版七年级上册数学知识汇总,推荐文档
- 1 -有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.- 2 - 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,ba b a =. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;- 3 -(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;- 4 -(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;- 5 -(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
新冀教版数学七年级上册第二章几何图形的初步认识 小结与复习
考点三 线段的相关计算
例3 在直线a上任取一点A,截取AB=16 cm,再截取 AC=40 cm,求AB的中点D与AC的中点E之间的距离.
[解析] 题中没有指明点C的具体位置,故应该分两种 情况进行分析,从而求得DE的长.
解:(1)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE-AD=20-8=12(cm);
6.如图,D是线段AB的中点, E是线段BC的中 点,BE=1/5AC=2 cm,则线段DE的长为 5cm 点A,O,E在同一直线上,∠AOB=40°, ∠EOD=25°,OD平分∠COE.
(2)如图,因为AB=16 cm,AC=40 cm,
点D,E分别是AB,AC的中点, 所以AD=1/2AB=8 cm,AE=1/2AC=20 cm, 所以DE=AE+AD=20+8=28(cm);
针对训练
5.点A,B,C 在同一条直线上,AB=3 cm, BC=1cm.则AC的长是 2cm或4cm .
射线只有一个端点,以点 A,B,C,D 为端点的 射线分别有 2 条,由图可知共有 8 条射线;直线只有 1 条.
针对训练
3.如图,图中共有___6_____个角.
4.乘火车从A站出发,沿途经过3个车站方可到达B站, 那么A,B两站之间需要安排____2_0___种不同的车票.
[解析] 如图,从A到B共有AC, AD,AE,AB,CD,CE,CB, DE,DB,EB10条线段,因为两站之间,出发点不同, 车票就不同,如A到C与C到A不同,故应有20种车票.
(1)角是有公共端点的两条射线所组成的图形.这个 公共端点叫做角的顶点,两条射线叫做角的边. (2)角可以看做一条射线绕着端点旋转到另一个位置所 形成的图形. 2.角的表示方法
2冀教版七年级数学上册.第2章几何图形的初步认识
第二章几何图形的初步认识2.1 从生活中认识几何图形2.2 点和线专题一探索平面图形的规律1.下列第一行所示的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如由a,b组成的图形记作a⊙b,那么由此可知,下列第二行的图中可以记作a⊙d的是()A B C D专题二与点、直线有关的规律题2.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7…则数字“2013”在()A.射线OA上B.射线OB上C.射线OC上D.射线OF上3.两条直线相交将平面最多分成4个部分,三条直线两两相交将平面最多分成7个部分,请问n条直线将平面最多分成多少个部分?(用含n的式子表示)【知识要点】1.几何图形对于各种物体,如果不考虑它们的颜色、材料和质量等,而只关注它们的形状(如方的、圆的等)、大小(如长度、面积、体积等)和它们之间的位置关系(如垂直、平行、相交等)就得到几何图形.2.几何图形的分类几何图形包括立体图形和平面图形.3.线段、射线、直线线段的直观形象是拉直的一段线.射线:将线段AB沿AB方向(或BA方向)无限延伸所形成的图形叫做射线.直线:将线段AB沿着这条线段向两个方向无限延伸形成的图形,叫做直线.4.基本事实经过两点有一条直线,并且只有一条直线.【温馨提示】1.分类是数学中的一种基本思想方法,对几何体进行分类时,首先确定分类的标准,分类过程中标准要统一,且要不重不漏.2.“有且只有”包含两层含义: “有”说明存在一条直线,“只有”说明这条直线是唯一的.【方法技巧】1.要善于观察、勤于思考,在生活中多用数学的眼光审视常见的物体和现象,这样才能把空间图形和平面图形联系起来,为学好数学积累生活素材,逐步培养空间想象能力.2.射线、线段都是直线的一部分,线段向一个方向延长就成为射线,向两个方向延长就成为直线,射线反方向延长也可得到直线.3.从端点个数上看:线段有两个端点,射线有一个端点,直线没有端点;从方向上,直线向两个方向无限延伸,射线向一个方向无限延伸,线段不能向任何一方延伸.直线和线段无方向性,射线有方向性.从表示方法上看:线段AB与线段BA表示同一条线段,射线OA与射线AO表示不同的射线;直线AB和直线BA表示同一条直线.从度量上看:直线和射线无法度量,无法比较大小,线段可度量,可比较大小.参考答案:1.A 解析:根据题意,知a 代表长方形,d 代表直线,所以记作a ⊙d 的图形是长方形和直线的组合,故选A . 2.C 解析:2008÷6=338…4,故选C . 3.12)1(++n n2.3 线段的长短 2.4 线段的和与差专题一 各种方法求线段的长1.如图,已知线段AB 的长度是a cm ,线段BC 的长度比线段AB 长度的2倍多5 cm ,线段AD 的长比线段BC 的长度的2倍少5 cm . (1)写出用a 表示的线段CD 长度的式子; (2)当a =15 cm 时,求线段CD 的长.2.如图所示,已知线段AB 上有两点C ,D ,AD =35,BC =44,AC =BD 32,求线段AB 的长.专题二 与线段有关的综合性题3.已知m ,n 满足等式()04262=+−+−m n m .(1)求m ,n 的值;(2)已知线段AB =m ,在直线AB 上取一点P ,恰好使AP =nPB ,点Q 为PB 的中点,求线段AQ 的长.4.如图,点C 在线段AB 上,线段AC =4厘米,BC =6厘米,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长度.(2)根据(1)的计算过程和结果,设AC +BC =a ,其他条件不变,你能求出MN 的长度吗?请用一句简洁的话表述你发现规律.【知识要点】1.比较线段大小的方法:(1)估测法;(2)度量法;(3)叠合法.2.基本事实两点之间的所有连线中,线段最短.3.两点之间的距离两点之间线段的长度,叫做两点之间的距离.4.线段的中点线段AB上的一点M,把线段AB分成两条线段AM=BM,那么点M就叫做线段AB的中点. 5.用圆规画一条线段等于已知线段.【温馨提示】1.度量法主要体现在“数”上的比较,而叠合法主要体现在“形”上的比较.2..点之间的距离指的是线段的长度,是数值,而不是线段.【方法技巧】1.由线段的中点得出线段的数量关系及线段的基本性质,解决有关线段的计算问题. 2.初学几何,同学们可能对题目的分析步骤的书写很困惑,书写步骤大体参照两个环节来进行,一是先确定要计算的线段表达式;二是再做运算前的准备.参考答案:1.解:(1)由线段BC 的长度比线段AB 的长度的2倍多5 cm 则有BC =2a +5.由线段AD 的长度比线段BC 的长度的2倍少 5 cm 则有AD =2(2a +5)-5=4a +5,所以CD =DA +AB +BC =(4a +5)+a +(2a +5)=(7a +10)(cm). (2)当a =15时,CD=115 cm . 2.解:设CD =x ,因为AC =32BD , 所以AD -CD =32(BC-CD ), 即35-x =32(44-x ), 解方程得x =17.所以AB =AD+BC -CD =35+44-17=62. 3.解:(1)由条件可得m =6,n =2.(2)当点P 在AB 之间时,AP=2PB ,∴AP =4,PB =2.而Q 为PB 的中点,∴PQ =1,故AQ =3. 当点P 在AB 的延长线上时,AP -PB =AB ,即2PB -PB =6, ∴PB =6.而Q 为PB 的中点,∴BQ =3. ∴AQ =6+3=9.4.解:(1)因为点M ,N 分别为线段AC ,BC 的中点,所以CM =21AC =21×4=2(cm), CN =21BC 621⨯==3(cm).所以MN =2+3=5(cm). (2)由(1)解答知CM =21AC ,CN =21BC ,所以=MN =21AC +21BC =21(AC +BC )= 21a .所以C 无论在线段AB 的什么地方(不能和点A ,B 重合),只要点M ,N 分别是线段AC ,CB的中点,都有线段MN 的长度等于线段AB 长度的一半.2.5 角以及角的度量2.6 角的大小2.7 角的和与差专题一与角有关的探索规律题1.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?2.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数;(3)当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化,若变化,说明理由;若不变,求∠DOE的度数.专题二利用角平分线的知识求角的度数3.如图,已知∠AOB=90°,∠AOC是60°,OD平分∠BOC,OE平分∠AOC.求∠DOE.4.如图,已知∠AOC与∠AOB互为补角,OM,ON分别是∠AOC,∠AOB的平分线,且∠MON=35°,求∠AOC和∠AOB.【知识要点】 1.角的定义有公共顶点的两条射线所组成的图形叫做角. 2.角的换算 1°=60′,1′=60″.3.角的比较大小的方法(1)估测法;(2)度量法;(3)叠合法. 4.作一个角等于已知角 5.角平分线如果从一个角的顶点引出的一条射线把这个角分成的两个角相等,那么这条射线叫做这个角的平分线.6.互余、互补性质同角(或等角)的余角相等,同角(或等角)的补角相等.【温馨提示】1.角的两边是射线,角的大小与角的两边的长短无关. 2.度、分、秒之间是六十进制,而不是十进制. 3.互余和互补只与角的度数有关,而与其位置无关.【方法技巧】1.角的度、分、秒之间的换算采用60进制,由高到低换算时乘60,由低到高时除以60或乘601,避免与习惯的“十进制”混淆. 2.可运用类比的方法学习,即把角的大小比较、角的平分线与线段长短的比较、线段的中点类比学习,它们有共同之处,这样,既有利于新知识的掌握,又有利于旧知识的复习. 3.学习角的和差运算可与线段的和差对比学习.4.有关余角、补角的问题,一般都用代数方法,依题意列出方程,求出结果,注意充分利用余角、补角条件,学会简单的推理.参考答案:1.2.3.解:∵∠AOB =90°,∠AOC =60°, ∴∠BOC =∠AOB +∠AOC =150°. ∵OD 平分∠BOC ,∴∠DOC =21∠BOC =75°. 同理∠EOC =21∠AOC =30°,∴∠EOD =∠COD -∠EOC =75°-30° =45°.4.由题意,知⎩⎨⎧︒=∠−∠︒=∠+∠.35,90AON AOM AON AOM 解得⎩⎨⎧︒=∠︒=∠.5.27,5.62AON AOM 又因为OM ,ON 分别是∠AOC ,∠AOB 的平分线,所以∠AOC=125°,∠AOB=55°.2.8 平面图形的旋转专题一与有旋转有关的探索规律的题1.…依次观察左边的三个图形,并判断照此规律从左向右的第四个图形是()2.一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第2009个图案是第_____个.专题二利用旋转性质计算阴影部分的面积3.如图,AB,CD是同心圆中半径最大的圆的直径,且AB⊥CD于点O,若AB=4,则图中阴影部分的面积等于______.4.【知识要点】1.旋转的定义在平面内,一个图形绕一个定点沿某个方向转过一个角度,这样的图形运动叫做旋转,这个定点叫做旋转中心,转过的这个角叫做旋转角.2.旋转的性质在平面内,一个图形旋转后得到的图形与原来的图形之间有如下结果:对应点到旋转中心的距离相等;每对对应点与旋转中心连线所成的角都是相等的角,它们都等于旋转角. 3.旋转作图旋转作图一般具备三个条件:①已知图形;②旋转中心;③旋转方向和旋转角度.【温馨提示】1.旋转的概念是判断一个图形运动是否为旋转的一个理论依据.2.旋转中心在旋转过程中保持不动.3.图形的旋转都是由旋转中心、旋转角和旋转方向来决定的.4.图形的旋转不改变图形的形状、大小.5.旋转角的确定:确定一对对应点,则两点与旋转中心的连线所成的角为旋转角,且旋转角均相等.【方法技巧】1.利用旋转解决问题时,我们应抓住以下几点:(1)旋转中的“变”与“不变”;(2)找准旋转前后的“对应关系”.2.旋转作图时,需要找出平面图形的关键点,再把每个点按要求旋转找到对应点,最后连接作图.参考答案:1.D2.三 解析:观察几个图形能看出三个一循环,所以2013÷3=671,所以第2013个图案是第三个图案.3.π 解析:利用旋转知识将阴部分旋转到一起正好为圆的面积的四分之一,所以()π=π⨯2241. 4.1。
冀教版初中数学知识点学习资料
1. 数与式(实数,整式,分式, 二次根式) 2. 方程与不等式(整式方程,分 式方程,不等式) 3. 函数(函数及其图像,一次函 数,反比例函数,二次函数)
1、理解圆的相关概念, 熟练运用圆
的相关定理 ,会判断点、线、圆与圆
的位置关系,会与圆有关的计算
式分解
4、会解一元一次不等式和由两
个一元一次不等式组成的不等
式组,能根据具体问题中的数
量关系,用列出一元一次不等
44 2
4
式解决简单问题。
8.4 整式的乘法 8.5 乘法公式
5、掌握三角形的三边关系定 理,三角形内角和,外角,多
8.6 科学计数法
边形内角和
★★★
第九章、三角形 9.1 三角形的边 9.2 三角形的内角和外角
学习目标
同查
综
步 漏 冲刺 合
精 补 拔高 应
讲缺
用
1、理解有理数的概念, 熟练掌 4 2
2
4
握有理数的运算
2、认识线段、 射线、直线、角,
掌握线段及角的计算,了解立
体图形展开图
3、了解整式的相关概念, 理解
整式的加法和减法的法则
4、熟练掌握整式的加减运算
5、了解一元一次方程的有关概
念
6、熟练掌握一元一次方程的解
握特殊四边形的概念、判定和
性质,会用性质和判定解决简
24 2
4
单问题
21.5 一次函数与二元一次方程的关系
第二十二章、四边形
22.1 平行四边形的性质
22.2 平行四边形的判定
★★★
22.3 三角形的中位线 22.4 矩形
冀教版初中数学七年级上册知识点汇总MicrosoftWord文档.doc
冀 , 教版 , 初中 , 数学 , 七年级 , 上册 , 知识点 , 汇总 , 冀教版初中数学七年级上册知识点汇总(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)第一章有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
( 0 的相反数是0)※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。
数 a 的绝对值记作 |a| 。
※正数的绝对值是它本身;负数的绝对值是它的数;0 的绝对值是0。
或※绝对值的性质:除0 外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0 外)的绝对值相等;任何数的绝对值总是非负数,即|a| ≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a,都有 |a| ≥0②若 |a|=0 ,则 |a|=0 ,反之亦然③若 |a|=b ,则 a=±b④对任何有理数a, 都有 |a|=|-a|※有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为 0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0 相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
冀教版初中数学知识点总结
有理数知识归纳1、数轴“三要素”是,,数轴上的点与实数之间是关系2、实数a的相反数可表示为。
若a与b互为相反数,则a+b=3、实数a(a≠0)的倒数可表示为若a与b互为相反数,则ab=4、∣a∣=()()⎪⎩⎪⎨⎧≥aa∣a∣在数轴上表示实数a的点到的距离,∣a∣是一类重要的非负数,即不论a为何实数,总有∣a∣05、实数a(a≥0)的算术平方根表示为a;(a)2= ,()()⎪⎩⎪⎨⎧≥==0 2aaaa6、把一个实数记为a×10n的形式,其中a的范围是这样的记数方法叫科学记数法7、一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位,从左边第一个数字起,到精确的这位数字止,所有的数字都叫这个近似数的有效数字。
数轴、比较大小1、数轴上表示的两个实数,右边的数总比左边的数2、两个负数比较大小,绝对值大的反而3、比较实数a与b的大小,可以做差比较:(1)若a-b>0则a b(2)若a-b=0则a b(3)若a-b<0则a b4、实数的加、减、乘、除、乘方、开方运算中,属于一级运算,属于二级运算,属于三级运算。
在运算过程中,先在最后5、若a≠0,则a0=6、若a≠0则a-n= ;a-n与a n 互为因式分解1、把一个多项式化为几个的积的形式,叫做把这个多项式因式分解,也叫把这个多项式分解因式。
因式分解与整式乘法互为运算2、因式分解的基本方法:(1)提公因式法:ma+mb+mc=(2)运用公式法:①平方差公式:a2-b2=②完全平方公式:a2+2ab+b2=a2-2ab+b2=3、因式分解的一般步骤:(1)先观察多项式的各项有没有,有公因式时先(2)多项式没有公因式时,看能不能用来分解(3)分解因式必须分解到每一个因式整式及运算1、单项式和多项式统称为。
单项式中数字因数是单项式的,单项式的次数是指2、所含字母相同,并且相同字母的也分别相同的单项式叫做同类项。
合并同类项是把它们的相加作为系数,字母和字母的指数3、+(a+b-c)= ,-(a-b+c)= ;a+b-c=a+ (),a+b-c=a- ()4、整式的加减实际上就是合并5、幂的运算性质:(1)同底数幂的乘法:a m·a n= (m、n均为整数)(2)幂的乘方:(a m)n = (m、n为整数)(3)积的乘方:(ab)n = (n为整数)(4)同底数幂的除法:a m÷a n= (m、n为整数)6、(1)单项式乘以单项式,把系数和同底数幂分别相乘,作为积的因式,只在一个单项式中出现的字母,则连同它的 一起作为积的一个因式;(2)m (a+b+c )= (3)(a+b )(m+n)= 7、(1)单项式除以单项式,把系数、同底数幂分别相除,所得的结果作为商的因式,对于只在被除式中含有的字母,则连同它的 作为商的一个因式。
冀教版七年级上册数学《绝对值与相反数》说课教学复习课件
0
4
-2 -3.5
0 1.5 0 0
01
知识讲解
例1 (1)用数轴上的点表示下列各组数:
3,-3;5,-5; 3 ,- 3 . 55
(2) 观察表示上述各组数的点在数轴上的位置,写出
这些数的绝对值.
解:(1)如下图:
5
3
3
3
55
3
5
-5 -4 -3 -2 -1 0 1 2 3 4 5
(2)观察各点在数轴上的位置,得到
随堂训练
1.-1.6是_1_._6_的相反数,_-0_._3_的相反数是0.3. 2.下列几对数中互为相反数的一对为( C ).
A. (8) 和 (8) B. (8) 与 (8)
C. (8) 与 (8) 3.5的相反数是__-5__;a的相反数是_-_a_;
4.若a是负数,则-a是_正____数;若-a是负数,则
| 3 | 3 ,| 2.5 | 2.5 88
互为相反数的两个 数的绝对值相等.
知识讲解
例4 已知|x-3|+|y-2|=0,求x+y的值 分析:
一个数的绝对值总是大于或等于0,即为非负数,若两个非负 数的和为0,则这两个数同时为0. 解:根据题意可知x-3=0,y-2=0,所以x=3,y=2,故x+y=5.
0
(a 0) (a 0) (a 0)
|a|≥0 任何一个有理数的绝对值都是非负数.
知识讲解
例3 求下列各数的绝对值:
3 , 3 , -2.5,+2.5 88
[解析] 先判断该数的符号,再根据正数的绝对值是它本
身;负数的绝对值是它的相反数;0的绝对值是0,即可
求解.
解:| 3 | 3 ,| 2.5 | 2.5, 88
冀教版初一数学上册知识点总结(4篇)
冀教版初一数学上册知识点总结(4篇)冀教版初一数学上册知识点总结(4篇)积累知识的过程也是一个发现自我的过程,可以让我们更好地认识自己、提高自我意识和情商。
知识的积累需要保持开放、包容的心态,接纳不同的观点和思想,从而更好地发挥个人的创造力和创新力。
下面就让小编给大家带来冀教版初一数学上册知识点总结,希望大家喜欢!冀教版初一数学上册知识点总结1正数和负数⒈、正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃3、0表示的意义(1)0表示“没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。
如:(3)0表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。
有理数1、有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)(2)正分数和负分数统称为分数(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。
冀教版初一数学上册知识点总结2相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2代数式求值(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.3由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法冀教版初一数学上册知识点总结3第一章有理数1、大于0的数是正数。
冀教版七年级上册数学线段的和与差知识点
冀教版七年级上册数学线段的和与差知识
点
知识点一:线段的和与差
(1)线段的和
1.画线段AB=1.5cm,延长AB到C,使BC=
2.5cm。
你认为线段AB、 BC、AC之间有怎样的数量关
系?_____________
2.如图,已知线段a和b,且agt;b。
在直线L上画线段AB=a,
BC=b,则线段AB、 BC、AC之间有怎样的数量关
系?__________
即AC=__________
(2)线段的差
1.画线段MN=3cm,在MN上截取线段MP=2cm。
你认为线段PN和MN、MP有怎样的关系?____________
2.已知线段a和b,且agt;b。
在直线L上画线段AB=a,
AD=b,则线段AB、 BD、AD之间有怎样的数量关
系?_________
即BD=_________
精品小编为大家提供的七年级上册数学线段的和与差
知识点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
华师大版七年级上册数学第二章重点知识(汇总)
华师大版七年级上册数学三元一次方程组及其解法重点知识。
(完整word版)冀教版七年级上册数学知识汇总,推荐文档
-1 -有理数1.有理数:(1) 凡能写成q (p,q 为整数且p 0)形式的数,都是有理数.正整 P 数、0、负整数统称整数;正分数、负分数统称分数;整数和 分数统称有理数•注意:0即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数;不是有理数; 正有理数⑵有理数的分类:①有理数零负有理数正整数 整数零负整数特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数; a > 0 a 是正数;a v 0a 是负数; a > 0 a 是正数或 0 a 是非负数;a < 0a 是负数或0 a 是非正数.正分数负整数负分数 分数正分数 负分数(3)注意:有理数中, 1、0、-1是三②有理数2. 数轴:数轴是规定了原点、正方向、单位长度的一条直线.3 •相反数:(1) 只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;⑵注意:a-b+c的相反数是-a+b-c ; a-b的相反数是b-a ; a+b 的相反数是-a-b ;⑶相反数的和为0 a+b=0 a、b互为相反数.4. 绝对值:(1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a (a 0)⑵绝对值可表示为: a 0 (a 0)或aa (a 0)绝对值的问题经常分类讨论;|a a|⑶ 1 a 0 ; 1 a 0 ;a a⑷|a|是重要的非负数,即|a| > 0;注意:a (a 0)a (a 0);-2 -|a|• |b|=|a•b1,:即5. 有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0 ,小数-大数v 0.6. 互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a丰0,那么a的倒数是丄;倒数是本身的数是土1;若ab=1aa、b互为倒数;若ab=-1 a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.&有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b) +c=a+ (b+c).-3 -9 •有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+ (-b ).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab) c=a (bc);(3)乘法的分配律: a (b+c) =ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a无意义•13. 有理数乘方的法则:(1)正数的任何次幕都是正数;(2)负数的奇次幕是负数;负数的偶次幕是正数;注意:当n为正奇数时:(-a)n=-a n或(a -b) [-(b-a) n ,当n 为正偶数时:(-a) n =a n或(a-b) n=(b-a) n .14. 乘方的定义:(1)求相同因式积的运算,叫做乘方;-4 -(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幕;(3)a2是重要的非负数,即a2> 0 ;若a2+|b|=0 a=0,b=0 ;-5 -2 - 6 -0.12 0.01(4)据规律121底数的小数点移动一位,平方数的102 100小数点移动二位.15. 科学记数法:把一个大于10的数记成a x 10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18. 混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19. 特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法, 但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整)0p q ,p (pq≠为整数且数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔0和正整数;a>0 ⇔a是正数;a<0 ⇔a是负数;a≥0⇔ a是正数或0 ⇔ a是非负数;a≤ 0 ⇔ a是负数或0 ⇔ a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;- 2 -- 3 -(2) 绝对值可表示为:或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧<-≥=)0a (a )0a (aa 绝对值的问题经常分类讨论;(3);;0a 1aa >⇔=0a 1aa <⇔-=(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .ba ba =5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;1若a≠0,那么的倒数是;倒数是本身的数是±1;若aaab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;- 4 -- 5 -(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.无意义即0a13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:- 6 -(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 底数的小数点移动一位,平方数的⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.几何图形的初步认识1、我们把实物中抽象的各种图形统称为几何图形。
几何图形分为立体图形和平面图形。
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
几何体简称为体。
- 7 -- 8 -6、包围着体的是面,面有平的面和曲的面两种。
7、面与面相交的地方形成线(线有直的和曲的),线和线相交的地方是点(点无大小之分)。
8、点动成线,线动成面,面动成体。
9、几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
10、正方体的11种展开图:①“141型”,中间一行4个作侧面,上下两个各作为上下底面, 共有6种基本图形。
- 9 -②“132型”,中间3个作侧面,共3种基本图形。
③“222型”,两行只能有1个正方形相连。
④、“33型”,两行只能有1个正方形相连。
11、经过两点有一条直线,并且只有一条直线。
简述为:两点确定一条直线(公理)。
12、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
13、射线和线段都是直线的一部分。
14、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。
15、两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
(公理)16、连接两点间的线段的长度,叫做这两点的距离。
17、一般地,用一个大写字母表示一个点,用两个大写字母(也就是两个点)或者一个小写字母来表示直线。
18、有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
19、把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
20、角的度、分、秒是60进制的。
- 10 -21、以度、分、秒为单位的角的度量制,叫做角度制。
22、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
23、如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。
24、如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。
25、等角的补角相等,等角的余角相等。
代数初步知识1. 代数式:用运算符号“+- × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:- 11 -Al n- 12 -(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a ;21123(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成的形式;a3(6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3.几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2 ;n e - 13 -(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是:5m+n;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是:a 2 ,非正数是:-a 2 .整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)- 14 -ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为: .⎩⎨⎧多项式单项式整式6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.- 15 -7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程…… 去分母…… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定- 16 -se ei n - 17 -的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间;时间距离速度=速度距离时间=(2)工程问题: 工作量=工效·工时;工时工作量工效=工效工作量工时=(3)比率问题: 部分=全体·比率;全体部分比率=比率部分全体=(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·,101- 18 -利润=售价-成本, ;%100⨯-=成本成本售价利润率(6)周长、面积、体积问题:C 圆=2πR,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab ,C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=πR 2h.31。