萃取和反萃取概念

合集下载

第二章 液液萃取

第二章 液液萃取
• 思考题
2020/3/12
19
(4)溶剂的回收
➢溶剂的损耗在成本控制中占据很重要的地位,有 的甚至占很大比重。必须回收。 ➢要求萃取剂对其他组分的相对挥发度大,且不形 成恒沸物,如果被萃物不挥发或挥发度很低,而萃 取剂为易挥发组分时,则萃取剂的汽化热要小,以 节省能源。(被萃物为液体和固体两种情况?)
夹带损失。例如:水溶解有机溶剂。
2020/3/12
15
(2) 萃取剂选择要点
① 选择性好:萃取剂对某种组分的溶解能力较大, 对另一种较小,表现为选择性系数大。 ② 萃取容量大:单位体积的萃取剂能萃取大量的目 的物,表现为分配系数大。 ③ 萃取剂与原溶剂的互溶度:二者最好互不溶解, 减少了溶剂分离的步骤。 ④ 萃取剂与原溶剂有较大的密度差,易与原料液相 分层不乳化、不产生第三相。萃取剂密度最好大于 原溶剂(?)
kA

yA xA
kB

yB xB
分配系数反映了被萃组分在两个平衡液相中的分配关系,
分配系数的值越大,被萃物越容易进入萃取相,萃取分离
效果越好。k与溶剂的性质和温度有关,在一定的条件下
为常数,应根据实验来测定;k=0,表示待萃取物不被萃
取,k=∞,表示完全被萃取。
2020/3/12
7
2. 选择性系数(分离系数)
2020/3/12
18
• 几种特殊溶剂:醋酸丁酯、丁醇、戊醇、丁酮、甲 基叔丁基醚、这些溶剂在水中或酸性水中溶解度不 大。适用于萃取在酸性水中溶解度大的物质。
• 普通含氧原子的溶剂在酸性溶液中,易与氢离子形 成氢键而易溶于水,而这些含氧的大分子溶剂由于 位阻大,阻碍了氢键的形成,故在水中溶解度小。
2020/3/12

第二章_萃取分离

第二章_萃取分离

③丙酮:半极性,与水互溶,可脱脂、脱水,易 挥发易燃。
④乙醚:非极性,溶解选择性较强。 ⑤氯仿:非极性,溶解选择性较强。 ⑥石油醚:非极性,溶解选择性较强,常用作脱 脂剂。 ⑦甲醇、乙酸乙酯等。
(4)常用浸取辅助剂 凡加入浸取剂中能增加有效成分的溶解度及制品 的稳定性或能除去或减少某些杂质的试剂称为浸取辅 助剂。 浸取辅助剂作用: ①促进有效成分溶解。 ②增加制品稳定性。 ③减少杂质。
轻相(有机相) 萃取剂 重相(水相)
杂质 溶质 原溶剂
浓度 C
有机相
水相
时间 t
(2)反萃取:调节水相条件(如酸度和络合剂、 还原剂等),将目标产物从有机相转入水相的萃取操 产物或便于下一步分离操作的实施。
对一个完整的萃取过程,常在萃取与反萃取之间 增加洗涤操作:使杂质由有机相反萃到水相,而被萃 物仍留在有机相,目的是除去与目标产物同时进入有 机相中的杂质。
(3)扩散阶段 溶剂溶解有效成分后形成浓溶液具有较高渗透压, 形成扩散点,不停地向周围扩散其溶解的成分。 分子扩散:完全由于分子浓度不同而形成的扩散。 对流扩散:由于有流体的运动而加速扩散。 实际浸取过程两种扩散方式均有,而对流扩散对 浸取效率影响更大。
4、中药浸取类型 (1)单体成分提取。指单一成分的提取、分离、
(3)渗漉法。原料上端不断添加溶剂,溶剂渗过 药粉从下端出口流出,由此浸取出有效成分。
渗漉法的提取效果优于浸渍法。非组织结构药材 易软化成团、易堵塞,不宜用此法。
(4)水蒸汽蒸馏法。原料粉用适量水浸泡,加热 蒸馏或通过水蒸汽蒸馏,原料中具挥发性成分随水蒸 气而带出,经冷凝后分层,收集。
适于具挥发性、遇水蒸汽不破坏、难溶或不溶于 水的物质。
萃取 → 洗涤 → 反萃取

第五章萃取技术.课件

第五章萃取技术.课件
有机溶剂中胶束 的表面活性剂分子的 疏水尾部向外,而亲 水头部向内,称为反 胶束。
当表面活性剂在有机溶剂中形成 反胶束时,水在有机溶剂中的溶解 度随表面活性剂浓度线性增大。
通过测定有机相中平衡水浓度的 变化,可以确定形成反胶束的最低 表面活性剂浓度。
反胶束的形成是表面活性剂分子 自发形成的纳米尺度的聚集体,是热 力学稳定的体系。
K a AH
(5-3)
其中,Ka为弱酸的解离常数;
[AH]和[A-]分别为游离酸和其酸根离 子的浓度。
如果在有机相中溶质不发生缔和, 仅以单分子形式存在,则游离的单分 子溶质符合分配定律,其分配常数为
Aa
AH
AH
(5-4)
其中,AH 表示有机相中游离酸的
浓度,Aa为游离酸的分配常数。
利用一般的分析方法测得的水 相浓度为游离酸和酸根离子的总 浓度,故为方便起见,用水相总
3.物理萃取和化学萃取
物理萃取
定义:溶质根据相似相溶原理在两相间 达到分配平衡,萃取剂与溶质间不发生 化学反应。
应用:广泛应用于抗生素及天然植物中 有效成分的提取。如利用乙酸丁酯萃取 青霉素。
化学萃取
定义:利用脂溶性萃取剂与溶质的化 学反应生成脂溶性复合分子,使溶质 向有机相分配。
应用:用于氨基酸、抗生素和有机酸 等生物产物的分离回收。
液体
双水相萃取
萃取剂
液固萃取(浸取)
固体原料 超临界流体
液体原料
2.反 萃 取
定义:调节水相条件,将目标产物从有机相 转入水相的操作。
作用:为了进一步纯化目标产物或便于后续 分离操作。
洗涤:常常加在萃取与反萃取操作之间,目 的是除去与目标产物同时萃取到有机相的杂 质,提高反萃取液中目标产物纯度。

有机物分离和提纯的常用方法

有机物分离和提纯的常用方法

有机物分离和提纯的常用方法1.蒸馏:蒸馏是一种经典的分离和提纯方法,适用于具有不同沸点的有机物混合物。

通过加热混合物,使其中沸点较低的有机物蒸发为气体,然后在冷凝器中冷凝为液体,从而实现分离。

常用的蒸馏方法包括简单蒸馏、真空蒸馏和分馏等。

2.萃取:萃取是利用不同有机物在不同溶剂中的溶解度不同,从而实现分离和提纯的方法。

常见的萃取方法包括常压萃取和反萃取。

常压萃取是将待分离的混合物与适合的溶剂接触,使其中一个或多个有机物溶解到溶剂中,从而实现分离。

反萃取是从溶剂中将之前溶解的有机物重新提取出来。

3.结晶:结晶是通过控制溶液中溶质在溶剂中的浓度,使溶质逐渐从溶液中析出晶体的过程。

通过结晶可以实现有机物的纯化和提纯。

常见的结晶方法包括普通结晶、溶剂结晶和慢性结晶等。

4.纯化:纯化是指通过对有机物进行一系列的加工和处理,去除其中的杂质,使有机物达到较高纯度的过程。

常用的纯化方法包括重结晶、冻结干燥、溶剂萃取和分离纯化等。

5.凝固:凝固是指通过控制温度使有机物从液态转变为固态的过程。

通过凝固可以实现有机物的分离和提纯。

常见的凝固方法包括冷却和冷冻等。

6.过滤:过滤是将固体颗粒从液体中分离的方法。

常见的过滤方法包括重力过滤、压力过滤和吸滤等。

过滤可以用于分离具有不同粒径和不溶性的固体颗粒。

7.分液:分液是利用具有不同密度的有机物在溶剂中的分层现象进行分离的方法。

常见的分液方法包括漏斗分液和离心分液等。

除了上述常用的分离和提纯方法,还有许多其他的方法,如层析、电离、扩馏和萃取桶等。

这些方法在不同的实验和工业环境中都有广泛的应用。

选择适合的方法取决于具体的有机物性质、分子量、溶解度等因素。

溶剂萃取和浸取

溶剂萃取和浸取

用某种溶剂把有用物质从固体原料中提取 到溶液中的过程称为浸取或浸出。
用温水从甜菜中提取糖, 用有机溶剂从大豆、花生等油料作物中提取食用油, 用水或有机溶剂从植物中提取药物、香料或色素等。
几种萃取方法的比较
萃取方法
液-固萃取


应 用
属于用液体提取固体原料中有 多用于提取存在于胞内的有效 用成分的扩散分离操作。 成分。 利用溶质在两个互不混溶的液 相(通常为水相和有机溶剂相) 可用于有机酸、氨基酸、维生 中溶解度和分配性质上的差异进 素等生物小分子的分离纯化。 行的分离操作。
超临界流体萃取
第一节 溶剂萃取
一、溶剂萃取过程的理论基础
1.物质的溶解和相似相溶原理
从热力学角度考虑,一个过程要能自动进行,体系的自
由能应下降,自由能的变化包括焓变化和熵变化两部分:
为了简单起见,忽略熵的变化,并忽略压力和体积变化(一般溶解过 程压力和体积的变化很小),这样只要考虑体系能量的变化即可。
若原来料液中除溶质A以外,还含有溶质B,则由于A、
B的分配系数不同,萃取相中A和B的相对含量就不同于萃 余相中A和B的相对含量。如A的分配系数较B大,则萃取
相中A的含量(浓度)较B多,这样A和B就得到了一定程度
的分离。 β越大,A、B的分离效果越好,即产物与杂质越容易 分离。
5.水相条件的影响
发酵液中存在与产物性质相近的杂质、未完全利用的底物、无机
溶剂萃取应用
1)青霉素萃取
青霉素是有机酸 , pH 值对 其分配系数有很大影响。很 明显 , 在较低 pH 下有利于青 霉素在有机相中的分配 , 当 pH 大于 6.0 时 , 青霉素几乎完 全分配于水相中。从图中可 知 , 选择适当的 pH, 不仅有利 于提高青霉素的收率 , 还可 根据共存杂质的性质和分配 系数 , 提高青霉素的萃取选择 性。

食品分离技术(3)萃取技术1

食品分离技术(3)萃取技术1
疏水性 共价键化合物 弱极性或非极性
35
萃取百分率
E
溶质溶 在质 有的 机总 相量 中的量
mo mo mw
coVo coVo cwVw
co
co cw cw Vw
Vo
D DR
其中
R
Vw Vo
称为相比
当 R = 1 时,
E
D D 1
D
1 10 100 1000
E % 50 91 99 99.9
在实际工作中,人们所关注的是被萃物分配在两 相中的实际总浓度各为多少,而不是它们的具体存 在的型体。
分配比
D CA(有机 ) C(A 水)
即,在一定条件下,当达到萃取平衡时,被萃物 质在有机相和在水相的总浓度之比。
9
分配系数和分配比的比较
●概念不同,关注的对象有差别 ●两者有一定的联系
KD表示在特定的平衡条件下,被萃物在两相中的 有效浓度(即分子形式一样)的比值;而D表示实际 平衡条件下被萃物在两相中总浓度(即不管分子以 什么形式存在)的比值。分配比随着萃取条件变化 而改变。
丁酯逆流萃取
萃取液
乳酸沉淀
分解转碱
红霉素乳酸盐 调 pH9.8, 溶于丙酮 红霉素碱
加水
红霉素碱成品
结晶
18
2. 温度T
◆ T↑,分子扩散速度↑,故萃取速度↑ ◆ T影响分配系数
例:pen ― T↑ 水中的溶解度↑ ∴ 萃取时 T↓使K↑;反萃时 T↑使K反↑ 红霉素、螺旋霉素― T↑ 水中的溶解度↓ ∴ 萃取时 T ↑使K ↑ ;反萃时 T ↓使K反↓
16
举例:
青霉素 ( pK2.75 ) 工业钾盐 :
预处理及过滤
发酵液
滤洗液

正相萃取和反向萃取-概述说明以及解释

正相萃取和反向萃取-概述说明以及解释

正相萃取和反向萃取-概述说明以及解释1.引言1.1 概述概述:正相萃取和反向萃取是化学分离和提取技术中常用的方法。

它们通过差异化的分配系数来实现目标物质的富集和纯化。

正相萃取是指在正相条件下,目标物质在萃取剂中的溶解度更高,从而被有效地提取出来。

反向萃取则是指在反相条件下,目标物质在萃取剂中的溶解度更高,从而被有效地提取出来。

在正相萃取中,常用的萃取剂包括极性相溶剂,例如水、甲醇等。

这些溶剂与目标物质之间具有亲和力,因此目标物质更容易从混合溶液中富集到溶剂中。

正相萃取广泛应用于化学、制药、食品科学等领域,用于萃取和纯化天然产物、有机分子、药物等物质。

相反地,在反向萃取中,常用的萃取剂包括非极性相溶剂,例如有机溶剂。

这些溶剂与目标物质之间具有较强的亲和力,因此目标物质更容易从混合溶液中富集到溶剂中。

反向萃取技术在环境科学、废物处理、分析化学等领域中得到广泛应用,用于萃取和纯化有机物、金属离子、污染物等物质。

正相萃取和反向萃取作为两种互补的分离方法,其选择与应用取决于目标物质的特性和分离需求。

正相萃取适用于亲水性较强的物质,而反向萃取适用于亲油性较强的物质。

在实际应用中,正相萃取和反向萃取经常结合使用,能够提高分离效果和纯度。

正相萃取和反向萃取技术的发展对于化学分离和提取领域具有重要意义。

它们不仅在实验室中被广泛应用,也在工业生产中得到了广泛推广。

随着科学技术的不断进步,正相萃取和反向萃取技术将继续发展,并为我们的生活和产业带来更多的福利。

1.2文章结构文章结构:本文主要分为四个部分,分别是引言、正相萃取、反向萃取和结论。

引言部分对正相萃取和反向萃取进行了概述,阐述了文章的目的。

正相萃取是一种分离和富集样品中亲水性化合物的技术,而反向萃取则是富集疏水性化合物的方法。

正相萃取部分将详细介绍该技术的原理和应用。

正相萃取是基于样品溶解性差异的原理,通过常用的极性固定相进行分离和富集目标化合物。

该技术广泛应用于食品、药品、环境等领域的样品前处理过程,可以有效提高分析灵敏度和准确性。

萃取技术

萃取技术

(CMC):表面活性 剂中水溶液中形 成胶团的最低浓 度critical micelle concentration
反胶束特点
0.1~1.0 mmol/L的范围内。在反胶束中有一个极性核心,它包 括由表面活性剂极性端组成的内表面、平衡离子和水,被称之 为“水池”(water pool)。这个“水池”具有极性,可以溶解 具有极性的分子和亲水性的生物大分子
乳化
乳化:水或有机溶剂以微小液滴分散在有机相或
水相中的现象。
这样形成的分散体系称乳浊液。
乳化带来的问题:有机相和水相分相困难,出现
夹带,收率低,纯度低。
有机相
乳化现象
水 相
乳化层
乳状液类型
水包油(O/W)型
油包水(W/O)型
水包油(O/W)型
油包水(W/O)型
发酵液乳化的原因:
a 蛋白质的存在,起到表面活性剂 b 固体粉末对界面的稳定作用
超临界流体
所谓超临界流体(SCF)即处于临界温度、临
界压力以上的流体。 在临界温度、压力以 上,无论压力多高,流体都不能液化但流 体的密度随压力增高而增加。
特点:密度接近液体
溶解能力强 粘度接近气体 流动性能好
临界点附近的P-T相图
常用萃取剂
» 极性萃取剂:乙醇、甲醇、水(难) » 非极性萃取剂:二氧化碳(易)
有机溶剂萃取又称为溶剂萃取,利用样品中不同 组分分配在两种互不相溶的溶剂中的溶解度或分 配比不同来达到分离、提取或纯化的目的。
料液 } 稀释剂B
溶质A
萃取液S+A(B)
溶剂S
萃余液B+A(s)
Light phase(萃取相)
溶质 萃取剂
原溶剂 杂质 Heavy phase(萃余相)

生物工程下游技术-第五章_萃取技术

生物工程下游技术-第五章_萃取技术

1896年Beijerinck观察到当把明胶与琼脂 或把明胶和可溶性淀粉的水溶液混合时, 先得到一混浊不透明的溶液,随后分成 两相,上相含有大部分明胶,下相含有 大部分琼脂(或可溶性淀粉)。
2.2%的葡聚糖水溶液与等体积的0.72%甲基 纤维素钠的水溶液相混合并静置后,可得到两 个粘稠的液层。
多级逆流萃取图
L1
L2
S
L3
混 分混 分混 分 合 离合 离合 离 器 器器 器器 器
F
第一级
第二级
R3 第三级
青霉素的多级逆流萃
取 第一级
第二级
第三级
含青霉素乙酸戊酯
青霉素滤液
废液 乙酸戊脂
青(霉含素产发品酵青过霉在三滤素级液)逆进混流入合萃取第 萃装一取置级,中用萃然乙取后酸罐流戊,入酯从在第澄此一清与级的发从分酵第离液二器中级分分离分成青离上霉器下素来层的,萃取相
第一级的萃余液进入第二级作为料液,并加 入新鲜萃取剂进行萃取;第二级的萃余液再 作为第三级的料液,以此类推。
此法特点在于每级中都加溶剂,故溶剂消耗 量大,而得到的萃取剂平均浓度较稀,但萃 取较完全。
多级错流萃取示意
图 轻

相 入
液重相入Leabharlann 轻相入入口
轻相出
第一级
第二级
轻相出
第三级 萃余液出口
轻相出 重相出
图9-5 转筒式离心萃取器
5.2 双水相萃取
➢ 双水相萃取技术又称水溶液两相分配技术,是近 年来出现的引人注目的、极具前途的新型分离技 术。已被广泛的应用于生物化学、细胞生物学和 生物化工领域。
➢ 用此种方法已提取的酶已达数十种,其分离也达 到了相当的规模,如甲酸脱氢酶的分离已达到了 几十公斤的湿细胞规模,半乳糖苷酶的提取已进 行了中试规模实验,该法具有广阔的应用前景。

第三章 萃取分离法

第三章 萃取分离法

c( HL)o n D K ( ) c( H )w
*
1、配位萃取体系
萃取条件的选择
c( HL)o n 由 D K ( ) 可知: c( H )w
*
① 分配比与被萃取组分的浓度无关,与萃取剂 和萃取溶剂性质有关; ② 若有机相中萃取剂的浓度一定时,分配比由 溶液酸度决定;
萃取条件的选择
1、配位萃取体系
配位萃取平衡
C Ao c( MLn )o D C Aw c( M n )w c( MLn )w
忽略c(Mn+)w,代入上述平衡常数:
n K D n Ka c( HL)o n D ( ) 'n KD c( H )w
对于确定的萃取体系,同KD、n、Ka、KD'为常数。
三、萃取分离方法
萃取过程
选择适当的萃取剂改变样品的溶解性使其更容 易溶于萃取溶剂,然后进行萃取;
萃取体系分类
① 配位萃取体系:将样品转化为配合物而改变其
溶解性; ② 缔合物萃取体系:将样品转化为离子缔合物而 改变其溶解性;
1、配位萃ห้องสมุดไป่ตู้体系
常用配位萃取剂
① 8-羟基喹啉:萃取绝大部分二价、三价,少量
D1 1 E E 0.84 D 5.25 1 E 1 0.84
( 2)
E
D
Vw D 1 ( )n DVo Vw
n 1.9
二、萃取分离的基本原理
分离因数β——表征样品分离程度
同一萃取体系中相同萃取条件下两种组分分配 比的比值,即; DA DB β =1,DA=DB,表明两种组分不能萃取分离; β >1,DA>DB,表明两种组分可用油相萃取分离; β <1,DA<DB,表明两种组分可用水相萃取分离;

化学:萃取与反萃取

化学:萃取与反萃取

化学:萃取与反萃取
萃取法;有些污染物,在水中溶解度小,而在某些有机溶剂中溶解度却非常大,而有些有机溶剂又不溶于水。

这样便可以让该溶剂与废水充分搅拌混合,使废水中的污染物都转移到该溶剂中。

停止搅拌之后,水与溶剂的密度不同,自动分为两层,水中的污染物便被去除了。

这种有机溶剂称之为萃取剂,可以从含酚废水中把苯酚完全萃取到萃取剂中,使废水中苯酚浓度低于排放标准( 1.0mg/l )。

然后,向萃取液中投加NaOH,使苯酚生成酚钠。

酚钠是盐,不溶于 N-503 溶液之中,以酚钠溶液的形态与萃取剂分离,从而使萃取剂得到再生,又可以重新使用。

此过程称之为反萃取。

得到需要收集的产品。

方法论的应用很广泛。

依此论,王水里的黄金提取就容易多了。

生物分离工程第四章萃取

生物分离工程第四章萃取

的物理量)
编辑课件
12
二、分配定律与分配平衡
化学势是活度的函数:
编辑课件
13
二、分配定律与分配平衡
所以,分配定律只有在较低浓度范围内成立。A是一个重要
的特征参数,与溶质浓度和两相性质有关。
• 分配系数:在多数情况下,溶质在各相中并非以一种分子
形态存在,特别是在化学萃取中,通常用溶质在两相中的 总浓度之比表示溶质的分配平衡,该比值称为分配系数。
到平衡时料液相和萃取相中溶质编的辑课浓件度。
17
三、液液萃取设备及其设计的理论基础
• 萃取因子或萃取因素E
溶质在萃取相和萃余相中数量(质量或物质的量)的比值
• 萃余分率( ):萃余相中溶质的数量与料液相中溶质的
初始数量之比。
• 收率或萃取分率:萃取相中溶质的数量与料液相中溶质
的初始数量之比。
编辑课件

编辑课件
14
二、分配定律与分配平衡
• 相比:指一个萃取体系中,一个液相和另一个液相的体积之
比。用R表示:
R = V1
V2
• 分离系数β(分离因子)
生物工程中料液一般含多种溶质,我们为了表示萃取剂对两 种溶质A和B的分离能力的大小,引入了分离系数:一定条件 下进行萃取分离时,被分离的两种组分的分配系数的比值。 是目标产物分离纯化程度的指标。
编辑课件
3
一、基本概念
②萃取依据:萃取原理
a.物理萃取 b.化学萃取 • 物理萃取:溶质根据相似相容原理在两相间达到分配平 衡,萃取剂与溶质不发生化学反应(物理因素)。
• 化学萃取:利用脂溶性萃取剂与溶质之间发生化学反应 (如离子交换和络合反应)生成脂溶性复合分子实现溶 质向有机相的分配。

微专题 反萃取--2024年高考化学实验新考法(解析版)

微专题 反萃取--2024年高考化学实验新考法(解析版)

微专题反萃取萃取指利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中。

反萃取与萃取过程相反,被萃取物从有机相返回水相的过程。

反萃取是用反萃取剂使被萃取物从负载有机相返回水相的过程,为萃取的逆过程。

反萃取过程具有简单、便于操作和周期短的特点,是溶剂萃取分离工艺流程中的一个重要环节。

反萃取可将有机相中各个被萃组分逐个反萃到水相,使被分离组分得到分离;也可一次将有机相中被萃组分反萃到水相。

经过反萃取及所得反萃液经过进一步处理后,便得到被分离物的成品。

反萃后经洗涤不含或少含萃合物的有机相称再生有机相,继续循环使用。

“反萃取”在命题中出现,可以考查“逆向思维和迁移能力,备受青睐。

1(2022·江苏卷,15)实验室以二氧化铈(CeO2)废渣为原料制备Cl-含量少的Ce2(CO3)3,其部分实验过程如下:(1)“酸浸”时CeO2与H2O2反应生成Ce3+并放出O2,该反应的离子方程式为。

(2)pH约为7的CeCl3溶液与NH4HCO3溶液反应可生成Ce2(CO3)3沉淀,该沉淀中Cl-含量与加料方式有关。

得到含Cl-量较少的Ce2(CO3)3的加料方式为(填序号)。

A.将NH4HCO3溶液滴加到CeCl3溶液中B.将CeCl3溶液滴加到NH4HCO3溶液中(3)通过中和、萃取、反萃取、沉淀等过程,可制备Cl-含量少的Ce2(CO3)3。

已知Ce3+能被有机萃取剂(简称HA)萃取,其萃取原理可表示为(有机层)+3H+(水层)Ce3+(水层)+3HA(有机层)Ce(A)①加氨水“中和”去除过量盐酸,使溶液接近中性。

去除过量盐酸的目的是。

②反萃取的目的是将有机层Ce3+转移到水层。

使Ce3+尽可能多地发生上述转移,应选择的实验条件或采取的实验操作有(填两项)。

③与“反萃取”得到的水溶液比较,过滤Ce2(CO3)3溶液的滤液中,物质的量减小的离子有(填化学式)。

萃取反萃取的例子

萃取反萃取的例子

萃取反萃取的例子《关于萃取反萃取那些事儿》嘿,朋友们!今天咱们来唠唠“萃取反萃取”这个听起来有点高大上的话题。

想象一下哈,萃取就像是在一堆宝贝里精挑细选,把最值钱、最有用的那个给挑出来。

比如说,咱去果园摘果子,那肯定是挑最大最甜的摘呀,这就是一种萃取。

记得有一次,我跟朋友一起去挖野菜。

嘿,那野菜地子里可真是琳琅满目,但良莠不齐呀!于是我就开启了我的萃取模式,专找那叶子鲜嫩、看起来就好吃的挖。

朋友还笑话我太挑剔,说随便挖点不就行了。

但咱这是有追求的萃取呀!我要的就是那最精华的部分。

反萃取呢,就像是好不容易挑出来的宝贝,又得想办法给弄回去。

就好像我把好吃的野菜挖回家了,结果家里人说太多吃不完,得放回去一些。

这可不就像反萃取嘛。

我还想到了一个例子,就像是在一堆书里找有用的知识。

先把那些精华的知识点给萃取出来,记在脑子里。

但有时候吧,突然发现有些知识记错地方了,得给它再放回原来的书里去,这就是知识的反萃取呀!其实生活中到处都是萃取反萃取的例子。

比如找对象,先从茫茫人海里把那个对的人给萃取出来,谈了一阵不合适,好嘛,又得给人家还回去,这不是反萃取是啥呀。

再比如工作中,从各种任务里把最重要、最紧急的任务萃取出来先完成,等有变化了,又得调整顺序,把一些任务放回去或者换个位置,这不也是一种萃取反萃取嘛。

萃取反萃取虽然听起来有点专业,但其实就在我们身边,和我们的日常生活息息相关。

它让我们学会更精准地筛选和调整,让我们做事更有条理、更高效。

所以呀,下次再听到萃取反萃取这个词,可别觉得它遥不可及啦。

看看自己的生活,说不定你正在不知不觉地进行着一场又一场有趣的萃取反萃取呢!让我们开开心心地在这萃取反萃取的游戏里,把生活过得更加精彩吧!哈哈!。

萃取

萃取

多步萃取
细胞匀浆液中目标产物可经过多步萃取获得较高的纯化 倍数。
5.8 应用:胞内蛋白质的萃取
优势:可选择性地使细胞碎片分配于下相,目标产物分配于 上相,同时实现目标产物的部分纯化和细胞碎片的除去。 实际操作:
细胞匀浆液浓度选择: • 为降低成本,应尽量高,但过高会扰乱系统,降低分配系数, 系统粘度增高,相分离困难。 • 一般上限为200-400g湿细胞/Kg萃取系统。 相平衡与相分离: • 相平衡:将固状(或浓缩)聚合物和盐直接加入细胞匀浆液 中,同时搅拌使之溶解,形成双水相,同时由于双水相系统 表面张力很小,相分散容易,达到分配平衡时间很短,一般 只需几秒; • 相分离:利用离心沉降可大大加快相分离速度,并易于连续 化操作。对含细胞碎片的萃取系统,少于40秒
6.5 反胶团萃取原理
其过程是: 水相中的溶质①通过表面液膜扩散从水相 到达相界面②在界膜处溶质与表面活性剂 作用进入到反胶团中③含有溶质的反胶团 扩散进入有机相,然后在有机相中,反胶 团中的溶质进一步进行萃取,反萃取,实 现进一步萃取、浓缩的目的
6.6 反胶团的溶解作用
反胶团溶解蛋白质的形式, 有人提出四种模型: 水壳模型; 蛋白质分子表面疏水区域 直接与有机相接触; 蛋白质吸附于反胶团内壁; 蛋白质疏水区与几个反胶 团的疏水尾相互作用,被 几个小反胶团“溶解”。 对亲水性蛋白质,普遍接 受水壳模型。
B 多级萃取
是工业生产最常用的萃取流程 分离效率高 产品回收率高 溶剂用量少
1)多级错流萃取
特点: 优点:由几个单级萃取单元串联组成,萃取剂分别加 入各萃取单元;萃取推动力较大,萃取效率较高; 缺点:仍需加入大量萃取剂,因而产品浓度稀,需消 耗较多能量回收萃取剂。
2)多级逆流萃取

第四章 萃取综合

第四章 萃取综合

第四章萃取一、名词解释萃取:是利用液体或超临界流体为溶剂提取原料中目标产物的分离纯化操作。

反萃取:通过调节水相条件,将目标产物从有机相转入水相的萃取操作成为反萃取。

分配系数:在恒温恒压条件下,溶质在互不相容的两相中达到分配平衡时,其在两相中的浓度之比为一常数,该常数称为分配系数。

即K=溶质在萃取相中的浓度/溶质在萃余相中的浓度=C2/C1。

分离因子:萃取剂对溶质A和B的选择或分离能力可以用分离因子表示。

即α=(C2A/CIA)/(C2B/C1B)=KA/KB(C:浓度;下标1,2分别表示萃余相和萃取相;A、B:溶质;α越大,A和B越容易分离,分离效果越好)超临界流体:物质均具有其固有的临界温度和临界压强,在P-T相图上称为临界点,在临界点以上物质处于即非液体也非气体的超临界状态,这时的物质称为超临界流体。

化学萃取:化学萃取是指利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合因子实现水溶性溶质向有机相的分配,主要用于一些氨基酸和极性较大的抗生素的萃取。

双水相体系:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相水分均占有很大比例,即形成双水相系统。

萃取因子:即萃取平衡后萃取相和萃余相中质量之比。

用E表示。

盐效应:由于同一双水相系统中添加不同的盐产生的相间电位不同,故分配系数与静电荷数的关系因无机盐而异,这称为盐效应。

二、选择1.萃取利用的是物质在两相之间的___B___不同来实现分离或纯化。

A.溶解度比B.分配系数C.分离系数D.稳定常数2.下列搭配中不适合双水相萃取的是____C__。

A.聚乙二醇/磷酸盐B.葡聚糖/甲基纤维素C.聚乙二醇/丙三醇D. 聚乙二醇/葡聚糖3.荷电溶质分配系数的对数与溶质的净电荷数成___A___关系,称为______。

A.正比/盐效应B.指数/塞曼效应C.非线性/道南效应D.反比/法拉第效应4.对于超临界流体萃取,溶解萃取物时通常__C____;分离萃取物时通常______。

萃取和反萃取概念

萃取和反萃取概念

萃取和反萃取概念一、萃取溶剂萃取简称萃取,它是利用溶质在两种不相混的液体之间的不同分配来达到分离和富集的目的。

比如:采用Acorga M5640(美国CYTEC公司生产)萃取剂从含铜的水溶液中回收铜。

萃取剂和料液是不相混溶的两种液体,在一定的条件下萃取剂可以将铜离子从水溶液中提取出来,这个过程可简单地用化学方程式表示:2RH+ Cu2+ ⇋R2Cu+2H+上式中,RH代表萃取剂。

这个化学反应式是可逆的,萃取剂RH 可以与溶液中的铜离子Cu2+作用生成R2Cu,这是正反应,称为萃取过程;当用硫酸与R2Cu作用又可以将铜离子释放出来,萃取剂获得再生,可以复用,这是逆反应,称为反萃取过程。

二、有机相和水相有机相通常是由萃取剂和稀释剂组成的,萃取剂能够选择性地与被萃取的金属离子相结合。

稀释剂一般都用煤油,比重较小,属于惰性溶剂与金属离子不发生化学作用,其目的只是用来调节萃取剂的浓度,降低有机相的黏度和比重,这样有利于分相。

此处说明一下,一般萃取剂工厂用的煤油不是普通灯用煤油,而是磺化煤油。

磺化是用硫酸除掉煤油中的芳烃或不饱和烃的化合物。

因为这些不饱和烃的化合物在萃取时容易氧化,破坏萃取平衡及分相。

目前这种煤油是在石油裂化分馏时截取一定馏份而产生出的,如上海炼油厂所产的260#煤油含的芳烃小于10%,闪点70℃。

水相即为含金属离子的水溶液,比如含铜的矿坑废水或含铜的各类浸出液,当水相与有机相在一定条件下混合时,水相中的铜离子即被萃入有机相中。

当水相和有机相混合一定的时间后,静置、分相,此时的水相称为萃余液,含硫酸的水溶液与含铜的负载有机相混合一定时间后,静置分相,此时的水溶液称作反萃液。

三、相比与流比在萃取过程或反萃取过程中,有机相体积与水相体积之比例称为相比,通常用O/A表示。

O代表有机相的体积,A代表水相体积,在生产中有机相和水相都是连续给入的,此时有机相的流量与水相的流量(或反萃液)的比例称为流比,流量的单位是m3/h或L/min。

反萃取名词解释

反萃取名词解释

反萃取名词解释
反萃取是一种技术,是以一种新的思维方式去思考、探究和解决问题的一种思维技巧。

它是将经典问题反转,在一个新的角度看待问题,从而推动新技术的发展,探讨出一种新的来源,以此来解决可能难以解决的问题。

例如,在生物学的研究中,研究人员把“萃取”定义为从一个物质中提取出其中的某种成分,而“反萃取”则是把某种成分添加回去。

在药物研发中,研究人员可以通过制造新型药物,利用“反萃取”的技术,将药物中的有效成分添加回去,从而提高药物的疗效。

事实上,反萃取的技术已经被广泛应用于日常生活中的各个领域,从通信技术到数据库管理等。

数据库系统的反萃取技术可以将数据库中的已存在数据重新组合成新的信息,而网络技术的反萃取技术可以12将信息从网络上萃取出来,从而改变信息的形式和范围。

此外,反萃取技术也可以应用于思维方式,可以培养学生深入思考,更加深刻地理解知识,促进思维能力的发展。

比如,在学习数学时,教师可以从已有知识中反推出新的知识,有助于学生理解知识点。

不仅能帮助学生理解关系,还可以帮助他们掌握新的知识,提高学习效率。

反萃取的技术可以有效的提升技术的发展,更实用的解决问题,这也是反萃取成为常用技术的原因。

反萃取的技术不仅可以在技术研究的领域得以广泛使用,还可以应用于思维方式中,以培养学生的思维能力,促进学习效率。

尽管反萃取的技术还处于早期发展阶段,但
随着技术发展,未来将会发挥更大的作用,帮助社会推动发展,解决各种困难和桎梏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

萃取和反萃取概念
一、萃取
溶剂萃取简称萃取,它是利用溶质在两种不相混的液体之间的不同分配来达到分离和富集的目的。

比如:采用Acorga M5640(美国CYTEC公司生产)萃取剂从含铜的水溶液中回收铜。

萃取剂和料液是不相混溶的两种液体,在一定的条件下萃取剂可以将铜离子从水溶液中提取出来,这个过程可简单地用化学方程式表示:
2RH+ Cu2+ ⇋R2Cu+2H+
上式中,RH代表萃取剂。

这个化学反应式是可逆的,萃取剂RH 可以与溶液中的铜离子Cu2+作用生成R2Cu,这是正反应,称为萃取过程;当用硫酸与R2Cu作用又可以将铜离子释放出来,萃取剂获得再生,可以复用,这是逆反应,称为反萃取过程。

二、有机相和水相
有机相通常是由萃取剂和稀释剂组成的,萃取剂能够选择性地与被萃取的金属离子相结合。

稀释剂一般都用煤油,比重较小,属于惰性溶剂与金属离子不发生化学作用,其目的只是用来调节萃取剂的浓度,降低有机相的黏度和比重,这样有利于分相。

此处说明一下,一般萃取剂工厂用的煤油不是普通灯用煤油,而是磺化煤油。

磺化是用硫酸除掉煤油中的芳烃或不饱和烃的化合物。

因为这些不饱和烃的化合物在萃取时容易氧化,破坏萃取平衡及分相。

目前这种煤油是在石油裂化分馏时截取一定馏份而产生出的,如上海炼油厂所产的
260#煤油含的芳烃小于10%,闪点70℃。

水相即为含金属离子的水溶液,比如含铜的矿坑废水或含铜的各类浸出液,当水相与有机相在一定条件下混合时,水相中的铜离子即被萃入有机相中。

当水相和有机相混合一定的时间后,静置、分相,此时的水相称为萃余液,含硫酸的水溶液与含铜的负载有机相混合一定时间后,静置分相,此时的水溶液称作反萃液。

三、相比与流比
在萃取过程或反萃取过程中,有机相体积与水相体积之比例称为相比,通常用O/A表示。

O代表有机相的体积,A代表水相体积,在生产中有机相和水相都是连续给入的,此时有机相的流量与水相的流量(或反萃液)的比例称为流比,流量的单位是m3/h或L/min。

四、分配系数与分离系数
在萃取或反萃取的过程中,在某一条件下达到“平衡”之后,金属在有机相和水相中有一定的分配比例,我们把某种被萃取的物质在有机相中的浓度与在水相中的浓度之比称作该物质的分配系数,严格来说应叫分配比,通常用D表示,简言之,分配比表示一个萃取体系达到平衡后,被萃取物质在两相中的分配情况。

如用M5640萃取铜,达到平衡后铜的分配比为:
DCu=有机相中铜的浓度/水相中铜的浓度,分离系数则是表示两种金属分离的难易程度,通常用β表示,种金属在同样萃取条件下分配比的比值,如铜和铁的分离系数:βCu/Fe=DCu/DFe,β值越大(或越小)说明这两种金属越容易分离,当β=1时两种金属就分不开
了。

分配比和分离系数都不是一个定值,当温度、萃取剂的组成和浓度、水相的成份和酸度、相比等条件发生变化时,分配比和分离系数都将随之变化。

在萃取工艺中希望有较大的分配比和分离系数,分配比高意味着有较高的萃取率;分离系数大,意味着两种金属分离彻底。

五、饱和容量与操作容量
一定浓度的有机相萃取某种金属有一个限度,达到这个限度就不能再萃取,这时的有机相的金属浓度称为饱和容量,也叫最大负荷量。

如10%的M5640 对铜的饱和容量为5.3%g/l,10%Ne对铜的饱和容量为4.8g/l。

在生产中有机相的实际能力不会达到饱和,通常只有饱和容量的60~80%,此时有机相金属浓度称为操作容量。

六、萃取率
萃取率表示在萃取过程中金属被萃取到有机相中的总量占原液中金属总量的百分数,通常用η表示。

如铜的萃取率:η=(被萃到有机相中的铜金属总量/料液中铜的总量)×100%,萃取率与分配比的关系是:
η=×100%,此处,1/R即为相比O/A的倒数,计算出一个体系的萃取率就可以看出萃取的完全程度。

相关文档
最新文档