第三章 空间向量与立体几何单元总结(解析版)

合集下载

必修2-1 第三章 空间向量与立体几何 知识点详解

必修2-1 第三章 空间向量与立体几何 知识点详解

必修2-1 第三章 空间向量与立体几何 知识点详解3.1 空间向量及其运算1.空间向量的概念空间向量的概念包括空间向量、相等向量、零向量、向量的长度(模)、共线向量等.2.空间向量的加法、减法和数乘运算平面向量中的三角形法则和平行四边形法则同样适用于空间向量的加(减)法运算.加法运算对于有限个向量求和,交换相加向量的顺序其和不变.三个不共面的向量的和等于以这三个向量为邻边的平行六面体的对角线所表示的向量.加法和数乘运算满足运算律:①交换律,即;②结合律,即;③分配律,即及(其中均为实数).3.空间向量的基本定理(1)共线向量定理:对空间向量的充要条件是存在实数,使.(2)共面向量定理:如果空间向量不共线,则向量c 与向量共面的充要条件是,存在惟一的一对实数,使.(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组x ,y ,z ,使.其中是空间的一个基底,a ,b ,c 都叫做基向量,该定理可简述为:空间任一向量p 都可以用一个基底惟一线性表示(线性组合).4.两个向量的数量积两个向量的数量积是,数量积有如下性质: ①(e 为单位向量);②; ③;④.数量积运算满足运算律:①交换律,即;②与数乘的结合律,即;③分配律,即. a +b =b+a (a ()()+=+a +b c a b+c ()λμλμ+a =a +a ()λλλ=+a +b a b λμ,,a b (0)≠,b a b ∥λλa =b ,a b a,b x y ,c =x y a +b x y z p =a +b +c {},,a b c {},,a b c cos <>,a b =a b a b cos <>,a e =a a e 0⇔a b a b =⊥2a a =a ab a b ≤a b =b a ()()λλa b =a b ()a +bc =a c +b c5.空间直角坐标系若一个基底的三个基向量是互相垂直的单位向量,叫单位正交基底,用表示;在空间选定一点O 和一个单位正交基底,可建立一个空间直角坐标系,作空间直角坐标系时,一般使∠xOy =135°(或45°),∠yOz =90°;在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,称这个坐标系为右手直角坐标系(立体几何中建立的均为右手系).6.空间直角坐标系中的坐标运算给定空间直角坐标系O -xyz 和向量a ,存在惟一的有序实数组使,则叫作向量a 在空间的坐标,记作.对空间任一点A ,存在惟一的,点A的坐标,记作分别叫A的横坐标、纵坐标、竖坐标.7.空间向量的直角坐标运算律(1)若,则 ,,, ,.(2)若,则.即一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.8.直线的方向向量与向量方程(1)位置向量:已知向量a ,在空间固定一个基点O ,作向量,则点A 在空间的位置被所惟一确定,称为位置向量.(2)方向向量与向量方程:给定一个定点A和一个向量,再任给一个实数t ,以A 为起点作向量,则此向量方程称为动点P 对应直线l 的参数方程,向量a 称为直线l 的方向向量.3.2 立体几何中的向量方法1、直线、平面的法向量及向量在平面内的射影如果表示向量a 的有向线段所在直线垂直于平面,则称这个向量垂直于平面(记作),向量a 叫做平面的法向量.法向量有两个相反的方向.法{},,i j k {},,i j k O xyz -O xyz -123a a a a =i +j +k 123()a a a ,,123()a a a ,,a =OA x y z =i +j +k ()A x y z x y z ,,,,,123123()()a a a b b b ,,,,,a =b =a +b 112233()a b a b a b =+++,,,-a b 112233()a b a b a b =---,,123()a a a λλλλ=,,a 112233()a b a b a b ,,a b =112233()a b a b a b λλλλ⇔===∈R ,,a b ∥1122330a b a b a b ⇔++=a b ⊥111222()()A x y z B x y z ,,,,,212121()AB x x y y z z =---,,OA =a a a a AP t =a αααa ⊥α向量的具体应用方法,可以归结为:2.空间的线线、线面、面面垂直关系,都可以转化为空间两个向量的垂直问题来解决(1)设a 、b 分别为直线的一个方向向量,那么; (2)设a 、b 分别为平面的一个法向量,那么; (3)设直线l 的方向向量为a ,平面的法向量为b ,那么.3.空间图形的平行关系包括直线与直线平行,直线与平面平行,平面与平面平行,都可以用向量方法来研究(1)设a 、b 是两条不重合的直线,它们的方向向量分别为a 、b ,那么.(2)直线与平面平行可转化为直线的方向向量与平面的法向量垂直,也可用共面向量定理来证明线面平行问题.(3)平面与平面平行可转化为两个平面的法向量平行.高.考-资.源-网4.在立体几何中,涉及的角有异面直线所成的角、直线与平面所成的角、二面角等.关于角的计算,均可归结为求两个向量的夹角空间角主要有:①线线角:异面直线所成角转化为两条直线所在向量的夹角;②线面角:直线AB 与平面所成角为,其中是平面的法向量;③面面角:二面角的大小为或,其中是两个半平面的法向量.斜线与平面所成角是斜线和这个平面内所有直线所成角中最小的角(最小角定理).与最小角定理联系密切的一个重要公式是,要注意其应用!5.立体几何中涉及的距离问题较多,如点与线的距离,点、线与面的距离,两异面直线的距离等,都是学习中的难点,若用向量来处理这类问题,则思路简单,解法固定 可利用实现距离与向量之间的转化.设e 是直线l 的一个单位方向向量,线段AB 在l 上的投影是,则有,由此可求点到线,点到面的距离问题.空间距离主要有:①点面距:设n 是平面的法向量,,则B 到的距离为;②线线距:设n 是两条异面直线的公垂线的向量,若A ,B分别是在上的任意一点,则的距离为;③线面距、面面距.与a b ,0a b ⇔⇔a b a b =⊥⊥αβ,0αβ⇔⇔⊥⊥a b a b =l α⇔⊥∥a b a b ⇔a b ∥∥αarcsinAB AB n n n αarccos m nm n arccosπ-m n m n ,m n 12cos cos cos θθθ=2AB AB AB =A B ''A B AB ''=e αA α∈αAB nn 12l l ,12l l ,12l l ,AB nn前面求法相同.。

高中数学 第3章 空间向量与立体几何 章末总结 苏教版

高中数学 第3章 空间向量与立体几何 章末总结 苏教版

空间向量与立体几何章末总结知识点一 空间向量的计算空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础.例1沿着正四面体O-ABC 的三条棱OA →、OB →、OC→的方向有大小等于1、2和3的三个力f1,f2,f3.试求此三个力的合力f的大小以及此合力与三条棱夹角的余弦值.知识点二证明平行、垂直关系空间图形中的平行、垂直问题是立体几何当中最重要的问题之一,利用空间向量证明平行和垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行和垂直的定理,再通过向量运算来解决.例2如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1;(2)用向量法证明MN⊥面A1BD.例3如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m.试确定m使得直线AP与平面BDD1B1所成的角为60°.例4正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,求证:平面AED⊥平面A1FD1.知识点三空间向量与空间角求异面直线所成的角、直线与平面所成的角、二面角,一般有两种方法:即几何法和向量法,几何法求角时,需要先作出(或证出)所求空间角的平面角,费时费力,难度很大.而利用向量法,只需求出直线的方向向量与平面的法向量.即可求解,体现了向量法极大的优越性.例5如图所示,在长方体ABCD—A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN.(1)求cos 〈A 1D →,AM →〉;(2)求直线AD 与平面ANM 所成角的余弦值; (3)求平面ANM 与平面ABCD 所成角的余弦值.知识点四 空间向量与空间距离近年来,对距离的考查主要体现在两点间的距离和点到平面的距离,两点间的距离可以直接代入向量模的公式求解,点面距可以借助直线的方向向量与平面的法向量求解,或者利用等积求高的方法求解.例6如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点.(1)求二面角P—CD—B的大小;(2)求证:平面MND⊥平面PCD;(3)求点P到平面MND的距离.章末总结重点解读例1解如图所示,用a ,b ,c 分别代表棱OA →、OB →、OC →上的三个单位向量, 则f 1=a ,f 2=2b ,f 3=3c , 则f =f 1+f 2+f 3 =a +2b +3c ,∴|f |2=(a +2b +3c )(a +2b +3c )=|a |2+4|b |2+9|c |2+4a·b +6a·c +12b·c =14+4cos 60°+6cos 60°+12 cos 60° =14+2+3+6=25,∴|f |=5,即所求合力的大小为5.且cos 〈f ,a 〉=f·a |f |·|a |=|a |2+2a·b +3a·c5=1+1+325=710,同理可得:cos 〈f ,b 〉=45,cos 〈f ,c 〉=910.例2证明 (1)在正方体ABCD —A 1B 1C 1D 1中,BD →=AD →-AB →,B 1D 1→=A 1D 1→-A 1B 1→, 又∵AD →=A 1D 1→,AB →=A 1B 1→, ∴BD →=B 1D 1→.∴BD ∥B 1D 1. 同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1, 所以平面A 1BD ∥平面B 1CD 1. (2)MN →=MB →+BC →+CN → =12AB →+AD →+12(CB →+CC 1→) =12AB →+AD →+12(-AD →+AA 1→) =12AB →+12AD →+12AA 1→. 设AB →=a ,AD →=b ,AA 1→=c , 则MN →=12(a +b +c ).又BD →=AD →-AB →=b -a , ∴MN →·BD →=12(a +b +c )(b -a )=12(b 2-a 2+c·b -c·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB , ∴c·b =0,c·a =0.又|b |=|a |,∴b 2=a 2,∴b 2-a 2=0. ∴MN →·BD →=0,∴MN ⊥BD .同理可证,MN ⊥A 1B ,又A 1B ∩BD =B , ∴MN ⊥平面A 1BD .例3解 建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),P (0,1,m ), C (0,1,0),D (0,0,0), B 1(1,1,1),D 1(0,0,1). 则BD →=(-1,-1,0),BB 1→=(0,0,1),AP →=(-1,1,m ), AC →=(-1,1,0).又由AC →·BD →=0,AC →·BB 1→=0知,AC →为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ, 则sin θ=|cos 〈AP →,AC →〉|=|AP →·AC →||AP →||AC →|=22+m 2·2. 依题意得22+2m 2·2=sin60°=32, 解得m =33. 故当m =33时,直线AP 与平面BDD 1B 1所成角为60°.例4证明如图,建立空间直角坐标系D —xyz . 设正方体棱长为1, 则E ⎝⎛⎭⎪⎫1,1,12、D 1(0,0,1)、 F ⎝⎛⎭⎪⎫0,12,0、A (1,0,0). ∴DA →=(1,0,0)=D 1A 1→,DE →=⎝ ⎛⎭⎪⎫1,1,12,D 1F →=⎝⎛⎭⎪⎫0,12,-1.设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面AED 和A 1FD 1的一个法向量. 由⎩⎪⎨⎪⎧m ·DA →=0m ·DE →=0⎩⎪⎨⎪⎧x 1=0x 1+y 1+12z 1=0.令y 1=1,得m =(0,1,-2). 又由⎩⎪⎨⎪⎧n ·D 1A 1→=0n ·D 1F →=0⎩⎪⎨⎪⎧x 2=012y 2-z 2=0,令z 2=1,得n =(0,2,1).∵m·n =(0,1,-2)·(0,2,1)=0, ∴m ⊥n ,故平面AED ⊥平面A 1FD 1.例5 解 (1)建立空间直角坐标系(如图).则A (0,0,0),A 1(0,0,4),D (0,8,0),M (5,2,4).∴AM →=(5,2,4),A 1D →=(0,8,-4).∴AM →·A 1D →=0+16-16=0, ∴AM →⊥A 1D →.∴cos 〈A 1D →,AM →〉=0.(2)∵A 1D ⊥AM ,A 1D ⊥AN ,且AM ∩AN =A , ∴A 1D →⊥平面ANM ,∴A 1D →=(0,8,-4)是平面ANM 的一个法向量.又AD →=(0,8,0),|A 1D →|=45,|AD →|=8,A 1D →·AD →=64, ∴cos 〈A 1D →,AD →〉=6445×8=25=255. ∴AD 与平面ANM 所成角的余弦值为55. (3)∵平面ANM 的法向量是A 1D →=(0,8,-4), 平面ABCD 的法向量是a =(0,0,1), ∴cos 〈A 1D →,a 〉=-445=-55.∴平面ANM 与平面ABCD 所成角的余弦值为55. 例6 (1)解 ∵PA ⊥平面ABCD ,由ABCD 是正方形知AD ⊥CD . ∴CD ⊥面PAD ,∴PD ⊥CD .∴∠PDA 是二面角P —CD —B 的平面角. ∵PA =AD ,∴∠PDA =45°,即二面角P —CD —B 的大小为45°. (2)如图,建立空间直角坐标系, 则P (0,0,2),D (0,2,0), C (2,2,0),M (1,0,0), ∵N 是PC 的中点, ∴N (1,1,1), ∴MN →=(0,1,1), ND →=(-1,1,-1), PD →=(0,2,-2).设平面MND 的一个法向量为m =(x 1,y 1,z 1),平面PCD 的一个法向量为n =(x 2,y 2,z 2). ∴m ·MN →=0,m ·ND →=0,即有⎩⎪⎨⎪⎧y 1+z 1=0,-x 1+y 1-z 1=0.令z 1=1,得x 1=-2,y 1=-1.∴m =(-2,-1,1). 同理,由n ·ND →=0,n ·PD →=0,即有⎩⎪⎨⎪⎧-x 2+y 2-z 2=0,2y 2-2z 2=0.令z 2=1,得x 2=0,y 2=1,∴n =(0,1,1).∵m·n =-2×0+(-1)×1+1×1=0, ∴m ⊥n .∴平面MND ⊥平面PCD . (3)设P 到平面MND 的距离为d .由(2)知平面MND 的法向量m =(-2,-1,1), ∵PD →·m =(0,2,-2)·(-2,-1,1)=-4, ∴|PD →·m |=4,又|m |=(-2)2+(-1)2+12=6, ∴d =|PD →·m ||m |=46=263.即点P 到平面MND 的距离为263.。

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.1 空间向量及其运算一、学习任务1. 了解空间向量与平面向量的联系与区别;了解向量及其运算由平面向空间推广的过程.2. 了解空间向量、共线向量、共面向量等概念;理解空间向量共线、共面的充要条件;了解空间向量的基本定理及其意义;理解空间向量的正交分解及其坐标表示.3. 理解空间向量的线性运算及其性质;理解空间向量的坐标运算.4. 理解空间向量的夹角的概念;理解空间向量的数量积的概念、性质和运算律;掌握空间向量的数量积的坐标形式;能用向量的数量积判断两非零向量是否垂直.二、知识清单空间向量的概念与表示空间向量的坐标运算三、知识讲解1.空间向量的概念与表示空间向量的概念及表示方法与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量(space vector),向量的大小叫做向量的长度或模(modulus).向量可以用有向线段来表示,也可用 , 等表示,还可以用有向线段的起点与终点字母表示,如 .长度为 的向量叫做零向量(zero vector),记为 .模为 的向量称为单位向量(unitvector).与向量 长度相等而方向相反的向量,称为 的相反向量,记为 .方向相同且模相等的向量称为相等向量(equal vector).空间向量的加减运算①空间向量的加减运算满足三角形法则和平行四边形法则;②空间向量的加 减运算满足交换律及结合律:,.空间向量的数乘运算与平面向量一样,实数 与空间向量 的乘积 仍然是一个向量,称为向量的数乘(multiplication of vector by scalar).当 时, 与向量 方向相同;当 时, 与向量 方向相反; 的长度是 的长度的 倍.空间向量的数乘运算满足分配律及结合律:分配律:,结合律:.空间向量基本定理(1)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量(colliner vectors)或平行向量(parallel vectors).a →b →AB −→−00→1a →a →−a →+=+a →b →b →a →(+)+=+(+)a →b →c →a →b →c →λa →λa →λ>0λa →a →λ<0λa →a →λa →a →|λ|λ(+)=λ+λa →b→a →b →λ(μ)=(λμ)a →a →vector).(1);(2);(3)AP N A 1,则 ∠BA =∠DA =A 1A 16013−−√23−−√高考不提分,赔付1万元,关注快乐学了解详情。

(完整版)空间向量与立体几何知识点归纳总结(2),推荐文档

(完整版)空间向量与立体几何知识点归纳总结(2),推荐文档

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

;;OB OA AB a b =+=+ BA OA OB a b =-=- ()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:ba b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。

ab b a//(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λa bb 0 a b a。

b (3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与共线的单位向量为a a 4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实,a b p ,a b数使。

,x y p xa yb =+(3)四点共面:若A 、B 、C 、P 四点共面<=>ACy AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在,,a b cp 一个唯一的有序实数组,使。

,,x y z p xa yb zc =++若三向量不共面,我们把叫做空间的一个基底,叫做基向量,,,a b c {,,}a b c,,a b c 空间任意三个不共面的向量都可以构成空间的一个基底。

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结

空间向量与立体几何例题和知识点总结一、空间向量的基本知识点在立体几何中,空间向量是一个非常有力的工具。

首先,我们来了解一下空间向量的一些基本概念。

空间向量是具有大小和方向的量,它可以用有向线段来表示。

如果两个空间向量的大小和方向都相同,那么这两个向量就是相等的。

向量的加法和减法遵循三角形法则和平行四边形法则。

例如,对于向量\(\overrightarrow{a}\)和\(\overrightarrow{b}\),它们的和\(\overrightarrow{a} +\overrightarrow{b}\)可以通过将两个向量首尾相连得到,而差\(\overrightarrow{a} \overrightarrow{b}\)则是\(\overrightarrow{a}\)加上\(\overrightarrow{b}\)的相反向量。

空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b}\)等于\(\vert\overrightarrow{a}\vert \vert\overrightarrow{b}\vert \cos\theta\),其中\(\theta\)是\(\overrightarrow{a}\)和\(\overrightarrow{b}\)之间的夹角。

数量积的结果是一个标量。

空间向量的坐标表示:在空间直角坐标系中,向量\(\overrightarrow{a} =(x, y, z)\),其中\(x\)、\(y\)、\(z\)分别是向量在\(x\)轴、\(y\)轴、\(z\)轴上的分量。

二、空间向量在立体几何中的应用接下来,通过一些具体的例题来看看空间向量是如何解决立体几何问题的。

例 1:证明线线平行已知直线\(l_1\)和\(l_2\)的方向向量分别为\(\overrightarrow{v_1} =(2, -1, 3)\)和\(\overrightarrow{v_2} =(4, -2, 6)\),证明\(l_1 \parallel l_2\)。

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

高考数学(理)之立体几何与空间向量 专题03 空间点、线、面的位置关系(解析版)

立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。

人教B版高中数学选修第三章空间向量与立体几何章归纳总结张课件

人教B版高中数学选修第三章空间向量与立体几何章归纳总结张课件

• (3)求二面角
• 用向量法求二面角也有两种方法:一种方
法是利用平面角的定义,在两个面内先求 出与棱垂直的两条直线对应的方向向量, 然后求出这两个方向向量的夹角,由此可 求出二面角的大小;另一种方法是转化为 求二面角的两个面的法向量的夹角,它与 二面角的大小相等或互补.
• 7.运用空间向量求空间距离
设平面 CDE 的法向量为 n2=(1,y2,z2),
则 n2·C→D=0,y2=0,
n2·C→E=0,1-y2+z2=0,z2=-1,
故 n2=(1,0,-1),
cos〈n1,n2〉=|nn11|·|nn22|=
1 2·
2=12,
∴〈n1,n2〉=60°,即二面角 B—DE—C 为 60°.
• [点评] 综合法更注重推理,方法巧妙,
①若A→B=C→D,则必有 A 与 C 重合,B 与 D 重合,AB
与 CD 为同一线段;
• ②若a·b<0,则〈a,b〉是钝角;
• ③若a是直线l的方向向量,则λa(λ∈R)也
是l的方向向量;
• ④非零向量a,b,c满足a与b,b与c,c与a
都是共面向量,则a,b,c必共面.
• 其中错误命题的个数是
∵CD⊥PD,∴C→D·P→D=0,
即 3(3-a)+9=0,∴a=6.
∵A→E=12E→P=13A→P, ∴B→E-B→A=13(B→P-B→A), ∴B→E=23B→A+13B→P=23(0,3,0)+13(0,0,3)=(0,2,1). 设平面 EBD 的法向量 a=(x,y,1), ∵B→E⊥a,∴2y+1=0,∴y=-12. ∵B→D⊥a,∴3x+3y=0,∴x=-y, ∴a=12,-12,1.
利用公式 cos〈a,b〉=|aa|·|bb|,

高中数学《第三章空间向量与立体几何小结》40PPT课件

高中数学《第三章空间向量与立体几何小结》40PPT课件
向量,若 cos〈 m, n〉=-12,则 l 与 α 所成的角为___3_0__°__.
解析:设
l

α
所成角为
θ,因为
cos〈
m,
n
〉=-12,所
以 sinθ=|cos〈 m, n〉|=12,因为 0°≤θ≤90°,所以 θ=30°.
答案:30°
3.(选修 2-1P104 练习 2 改编)已知两平面的法向量分别为
y
D
BxC
(一)用向量法求二面角余弦值的一般步骤: (1)选择三条两两垂直的直线建立空间直角坐标系; (2)分别求出两个半平面的法向量 ; (3)两半平面所成角的余弦值的绝对值等于两向量夹角余 弦值的绝对值. (4)结合实际图形判断所求角的大小,从而得出所求二面 角余弦值的符号. (二)求法向量的方法主要有: (1)求平面垂线的方向向量;(2)利用法向量与平面内两不 共线向量的数量积为零列方程组求解。
(2017·全国卷改编) 如图,四棱锥P-ABCD中, 侧面PAD为等边三角形且垂直于底面ABCD,
AB=BC= 1AD,∠BAD=∠ABC=90°.
2
z
(1)求异面直线PA与CD所成的角的余弦值; P
A
o
y
D
BxC
用向量法求异面直线所成角余弦值的一般步骤:
(1)选择三条两两垂直的直线建立空间直角坐标系;
M
A
o
y
D
BxC
设面MAB的一个法向量为 n ( x, y, z)
x 0

1 2
x
y
3 z 0 2
令z 2,则y
3,
n
(0,-
3,2)
变式探究:线段PC上是否存 在点M,使得直线BM与底面

空间向量与立体几何章末小结 课件

空间向量与立体几何章末小结 课件

(2)求线面角 求直线与平面所成的角时,一种方法是先求出直线及 此直线在平面内的投影直线的方向向量,通过数量积求出 直线与平面所成角;另一种方法是借助平面的法向量,先 求出直线方向向量与平面法向量的夹角φ,即可求出直线与 平面所成的角θ,其关系是sin θ=|cos φ|.
(3)求二面角 基向量法:利用定义分别在两个面内找到两个夹角等于 二面角的向量,将其用一组基底表示,再做向量运算. 坐标法:建立空间直角坐标系,求得两个半平面的法向 量 n1,n2,利用 cos〈n1,n2〉=|nn11|·|nn22|结合图形求解.
三、空间向量与平行和垂直 空间图形中的平行与垂直问题是立体几何中最重要的 问题之一,主要是运用直线的方向向量和平面的法向量解 决. 利用空间向量解决空间中的位置关系的常用方法: (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共 线向量.
(2)线线垂直 证明两条直线垂直,只需证明两直线的方向向量垂直, 则a⊥b⇔a·b=0. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线的方向向量是 共线向量; ③利用共面向量定理,即证明可在平面内找到两不共 线向量把直线的方向向量线性表示出来.
一、空间向量的线性运算 空间向量的线性运算包括:加、减及数乘运算,选定 空间不共面的向量作为基向量,并用它们表示出目标向量, 这是用向量法解决立体几何问题的基本要求.解题时,可结 合已知和所求,根据图形,利用向量运算法则表示所需向 量. 二、空间向量的数量积 由a·b=|a||b|cos〈a,b〉可知,利用该公式可求夹角、 距离.还可由a·b=0来判定垂直问题,要注意数量积是一个 数,其符号由〈a,b〉的范围确定.

空间向量与立体几何的知识点总结

空间向量与立体几何的知识点总结

空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。

新教材北师大版高中数学选择性必修第一册第三章空间向量与立体几何 知识点考点重点难点解题规律归纳总结

新教材北师大版高中数学选择性必修第一册第三章空间向量与立体几何 知识点考点重点难点解题规律归纳总结

第三章空间向量与立体几何1空间直角坐标系........................................................................................................ - 1 -1.1点在空间直角坐标系中的坐标..................................................................... - 1 -1.2空间两点间的距离公式................................................................................. - 6 -2空间向量与向量运算.............................................................................................. - 10 -2.1从平面向量到空间向量............................................................................... - 10 -2.2空间向量的运算(一) .................................................................................... - 10 -2.2空间向量的运算(二) .................................................................................... - 14 -2.2空间向量的运算(三) .................................................................................... - 18 -3空间向量基本定理及向量的直角坐标运算.......................................................... - 23 -3.1空间向量基本定理....................................................................................... - 23 -3.2空间向量运算的坐标表示及应用............................................................... - 26 -4向量在立体几何中的应用...................................................................................... - 31 -4.1直线的方向向量与平面的法向量............................................................... - 31 -4.2用向量方法研究立体几何中的位置关系................................................... - 34 -4.3用向量方法研究立体几何中的度量关系................................................... - 42 -第1课时空间中的角................................................................................ - 42 -第2课时空间中的距离问题.................................................................... - 47 - 5数学探究活动(一):正方体截面探究 ................................................................... - 52 -1空间直角坐标系1.1点在空间直角坐标系中的坐标1.空间直角坐标系的建立(1)空间直角坐标系:过空间任意一点O,作三条两两垂直的直线,并以点O为原点,在三条直线上分别建立数轴:x轴、y轴和z轴,这样就建立了一个空间直角坐标系O-xyz.(2)空间直角坐标系的建系原则——右手螺旋法则:①伸出右手,让四指与大拇指垂直.②四指先指向x轴正方向.③让四指沿握拳方向旋转90°指向y轴正方向.④大拇指的指向即为z轴正方向.(3)有关名称如图所示,①O叫作原点.②x,y,z轴统称为坐标轴.③由坐标轴确定的平面叫作坐标平面.x,y轴确定的平面记作xOy平面,y,z轴确定的平面记作yOz平面,x,z轴确定的平面记作xOz平面.2.空间直角坐标系中点的坐标(1)空间直角坐标系中任意一点P的位置,可用唯一的一个三元有序实数组来刻画.(2)三元有序实数组(x,y,z)叫作点P在此空间直角坐标系中的坐标,记作P(x,y,z).x叫作点P的横坐标,y叫作点P的纵坐标,z叫作点P的竖坐标.(3)空间直角坐标系中:点与三元有序实数组一一对应.如何确定空间中点P坐标?[提示]过点P分别向坐标轴作垂面,与三条坐标轴分别交于A、B、C,若点A、B、C的坐标分别为(x,0,0)、(0,y,0)、(0,0,z),则点P的坐标为(x,y,z).疑难问题类型1根据点的坐标确定点的位置【例1】在空间直角坐标系中,作出点M(2,-6,4).[思路点拨]可以先确定点(2,-6,0)在xOy平面的位置,再由竖坐标确定在空间直角坐标系中的位置.[解]法一:先确定点M′(2,-6,0)在xOy平面上的位置,因为点M的竖坐标为4,则|MM′|=4,且点M和z轴的正半轴在xOy平面的同侧,这样就可确定点M 的位置了(如图所示).法二:以O为一个顶点,构造三条棱长分别为2,6,4的长方体,使此长方体在点O处的三条棱分别在x轴正半轴、y轴负半轴、z轴正半轴上,则长方体中与顶点O相对的顶点即为所求的点(图略).1.先确定点(x0,y0,0)在xOy平面上的位置,再由竖坐标确定点(x0,y0,z0)在空间直角坐标系中的位置.2.以原点O为一个顶点,构造棱长分别为|x0|、|y0|、|z0|的长方体(三条棱的位置要与x0、y0、z0的符号一致),则长方体中与O相对的顶点即为所求的点.类型2已知点的位置写出点的坐标【例2】已知棱长为1的正方体ABCD-A′B′C′D′,建立如图所示的不同空间直角坐标系.试分别写出正方体各顶点的坐标.(1)(2)[思路点拨](1)可先写出A,B,C,D的坐标,再结合正方体的性质得出A′,B′,C′,D′的坐标;(2)可先写出A′,B′,C′,D′的坐标,再结合正方体的性质得出A,B,C,D 的坐标.[解](1)因为D是坐标原点,A,C,D′分别在x轴,y轴,z轴的正半轴上,正方体的棱长为1,所以D(0,0,0),A(1,0,0),C(0,1,0),D′(0,0,1).因为B点在xDy平面上,所以B(1,1,0).同理,A ′(1,0,1),C ′(0,1,1).因为B ′B 垂直于xDy 平面且与z 轴正半轴在xDy 平面同侧,且|B ′B |=1,所以B ′(1,1,1).(2)因为D ′是坐标原点,A ′,C ′分别在x 轴, y 轴的正半轴上,D 在z 轴的负半轴上,且正方体的棱长为1,所以A ′(1,0,0),C ′(0,1,0),D (0,0,-1),D ′(0,0,0).同(1)得B ′(1,1,0),A (1,0,-1),C (0,1,-1),B (1,1,-1).1.已知点M 的位置,求其坐标的方法作MM ′垂直平面xOy ,垂足为M ′,求M ′的x 轴坐标,y 轴坐标,即点M 的x 轴坐标,y 轴坐标,再求M 点在z 轴上射影的z 轴坐标,即点M 的z 轴坐标,于是得到M 点坐标(x ,y ,z ).2.在空间直角坐标系中,三条坐标轴和三个坐标平面上的点的坐标形式如下表所示.其中x ,y ,z ∈R . 分类坐标轴 坐标平面 x 轴 y 轴 z 轴 xOy 平面 yOz 平面 xOz 平面 坐标形式 (x ,0,0) (0,y ,0) (0,0,z )(x ,y ,0) (0,y ,z ) (x ,0,z )类型3 空间中点的对称问题[探究问题]1.类比平面直角坐标系中,线段的中点坐标公式,空间直角坐标系中,线段的中点坐标公式是什么?[提示] 若A ()x 1,y 1,z 1,B ()x 2,y 2,z 2,则线段AB 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,z 1+z 22. 2.类比平面直角坐标系中,三角形的重心坐标公式,空间直角坐标系中,三角形的重心坐标公式是什么?[提示] 若A (x 1,y 1,z 1),B (x 2,y 2,z 2),C (x 3,y 3,z 3),则△ABC 的重心坐标为⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33,z 1+z 2+z 33. 关于点对称【例3】 点M ()x 0,y 0,z 0关于点(a ,b ,c )的对称点的坐标为________.[思路点拨] 类比平面直角坐标系中点的对称问题来求解,其中线段的对称中心是线段的中点.(2a -x 0,2b -y 0,2c -z 0) [由中点坐标公式得,点M (x 0,y 0,z 0)关于点(a ,b ,c )的对称点的坐标为M ′(2a -x 0,2b -y 0,2c -z 0).]关于坐标轴对称【例4】 求点M (a ,b ,c )关于坐标轴的对称点的坐标.[思路点拨] 从分析对称点的性质入手.[解] 关于x 轴的对称点M 0的坐标为(a ,-b ,-c ),关于y 轴的对称点M 1的坐标为(-a ,b ,-c ),关于z 轴的对称点M 2的坐标为(-a ,-b ,c ).关于坐标平面对称【例5】 求点M (a ,b ,c )关于坐标平面的对称点的坐标.[思路点拨] 从分析对称点的性质入手.[解] 点M 关于xOy 平面的对称点M 1的坐标为(a ,b ,-c ),关于xOz 平面的对称点M 2的坐标为(a ,-b ,c ),关于yOz 平面的对称点M 3的坐标为(-a ,b ,c ).1.关于坐标平面、坐标轴及坐标原点对称的点有以下特点:2.点的对称可简单记为“关于谁对称,谁不变,其他的变为相反数;关于原点对称,都变”.归纳总结1.确定空间定点M的坐标的步骤(1)过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于P、Q和R.(2)确定P、Q和R在x轴、y轴和z轴上的坐标x,y和z.(3)得出点M的坐标为(x,y,z).2.已知M点坐标为(x,y,z)确定点M位置的步骤(1)在x轴、y轴和z轴上依次取坐标为x,y和z的点P、Q、R.(2)过P、Q、R分别作垂直于x轴、y轴和z轴的平面.(3)三个平面的唯一交点就是M.3.建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是①要根据图形对称性建立空间直角坐标系;②要使尽量多的点落在坐标轴上.1.2空间两点间的距离公式空间两点间的距离公式(1)在空间直角坐标系中,任意一点P(x,y,z)与原点间的距离|OP|=x2+y2+z2.(2)空间中P(x1,y1,z1),Q(x2,y2,z2)之间的距离|PQ|=(x2-x1)2+(y2-y1)2+(z2-z1)2.方程x2+y2+z2=1表示什么图形?[提示]以坐标原点为圆心,1为半径的球面.疑难问题类型1求空间中两点间的距离【例1】如图所示,在直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.[解]以点C为坐标原点,CA、CB、CC1所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系.∵|C1C|=|CB|=|CA|=2,∴C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),由中点坐标公式,可得D(1,1,0),E(0,1,2),F(1,0,0),∴|DE|=(1-0)2+(1-1)2+(0-2)2=5,|EF|=(0-1)2+(1-0)2+(2-0)2=6.利用空间两点间的距离公式求线段长度问题的一般步骤为:类型2由距离公式求空间点的坐标【例2】已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|P A|=|PB|,则点P的坐标为________.(0,0,6)[设P(0,0,z),由|P A|=|PB|,得(4-0)2+(5-0)2+(6-z )2=(-5-0)2+(0-0)2+(10-z )2,解得z =6.∴点P 的坐标为(0,0,6).]1.若本例中“在z 轴上”改为“在y 轴上”,其他条件不变,结论又如何?[解] 设P (0,y ,0),由|P A |=|PB |,得(4-0)2+(5-y )2+(6-0)2=(-5-0)2+(0-y )2+(10-0)2,解得y =-245.∴点P 的坐标为⎝ ⎛⎭⎪⎫0,-245,0. 2.求到A ,B 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解] 因为点P (x ,y ,z ) 到A ,B 的距离相等,所以(x -4)2+(y -5)2+(z -6)2=(x +5)2+(y -0)2+(z -10)2.化简得9x +5y -4z +24=0,因此,到A ,B 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是9x +5y -4z +24=0.1.空间两点间的距离公式是平面上两点间的距离公式的推广,而平面上两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.2.到A ,B 两点的距离相等的点P (x ,y ,z )构成的集合就是线段AB 的中垂面,P 是线段AB 的中垂面与z 轴的交点.类型3 距离公式的应用【例3】 如图所示,正方体棱长为1,以正方体的同一顶点上的三条棱所在的直线为坐标轴,建立空间直角坐标系,点P 在正方体的体对角线AB 上,点Q 在正方体的棱CD 上.当点P 为体对角线AB 的中点,点Q 在棱CD 上运动时,求|PQ |的最小值.。

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。

2020_2021学年高中数学第三章空间向量与立体几何本章总结课件新人教A版选修2_1

2020_2021学年高中数学第三章空间向量与立体几何本章总结课件新人教A版选修2_1
(1)求 cos〈A→1D,A→M〉; (2)求直线 AD 与平面 ANM 所成角的正弦值.
【解】 (1)建立空间直角坐标系(如图).∵A→M=(5,2,4),A→1D =(0,8,-4).
∴A→M·A→1D=0+16-16=0=0.
(2)∵A1D⊥AM,A1D⊥AN,∴A1D⊥平面 AMN, ∴A→1D=(0,8,-4)是平面 ANM 的一个法向量.
专题二 空间向量与线面位置关系 证明平行问题,除了应用传统的线面平行的判定定理外,还 可以利用向量共线及平面的法向量进行证明. 证明垂直问题,除了应用传统的垂直问题的判定定理外,还 可利用向量数量积进行判断,是非常有效的方法.
【例 2】 如图,在矩形 ABCD 中 AB=2BC,P、Q 分别为 线段 AB、CD 的中点,EP⊥平面 ABCD.
【证法二】 传统法.
(1)在矩形 ABCD 中,AP=PB,DQ=QC,∴AP 綊 QC,
∴四边形 AQCP 为平行四边形,∴CP∥AQ. ∵CP⊂平面 CEP,AQ⊄平面 CEP,∴AQ∥平面 CEP. (2)∵EP⊥平面 ABCD,AQ⊂平面 ABCD,∴AQ⊥EP. ∵AB=2BC,P 为 AB 中点,∴AP=AD. 连接 PQ,则 ADQP 为正方形,∴AQ⊥DP. ∵EP∩DP=P,∴AQ⊥平面 DEP. ∵AQ⊂平面 AEQ,∴平面 AEQ⊥平面 DEP.
故A→C=A→B+A→D=a+b,又M→A=-13A→C=-13(a+b). 由已知,N 分A→1D成的比为 2,故A→N=A→D+D→N =A→D-N→D=A→D-13A→1D=13(c+2b). 于是M→N=M→A+A→N=-13(a+b)+13(c+2b) =13(-a+b+c).
【点评】 用已知向量表示未知向量,一定要结合图形,以 图形为指导是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3), λa =(λa 1,λa 2,λa 3), a ·b =a 1b 1+a 2b 2+a 3b 3. (2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b|a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则 l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ; α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3-1①,AB ,CD 是二面角α-l -β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3-1(ⅱ)如图3-1②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3-2,在四棱锥S -ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3-2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos ∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.1.如图3-3,已知ABCD -A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3-3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→. ∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c , ∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P -ABCD 中,AB ⊥AD ,CD ⊥AD ,P A ⊥底面ABCD ,P A =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面P AD ;(2)平面P AD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面P AD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面P AD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面P AD ,∴BM ∥平面P AD . (2)BD →=(-1,2,0),PB →=(1,0,-2),假设平面P AD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB ,∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎨⎧y =12,z =12,∴N ⎝⎛⎭⎫0,12,12,∴在平面P AD 内存在一点N ⎝⎛⎭⎫0,12,12,使MN ⊥平面PBD .3.如图3-4,长方体ABCD-A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3-4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C为原点,CD所在直线为x轴,CB所在直线为y轴,CC1所在直线为z轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎫2,2,13, 所以线段AA 1上存在一点P ⎝⎛⎭⎫2,2,13,使得C 1P ∥平面AMN . 类型四、利用空间向量求空间角例4、如图3-5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3-5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD -B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得 OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD -B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155.所以二面角A ′­CD -B 的平面角的余弦值为155. 图3-64.在如图3-7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.图3-7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量. 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=011 可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎫-1,1,33. 因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n |m |·|n |=77, 所以二面角F -BC -A 的余弦值为77.。

相关文档
最新文档