学习课件高数导数的概念.ppt
合集下载
高等数学导数的概念教学ppt课件.ppt
h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
《高等数学导数概念》PPT课件
零点定理 yf(x(1) )
f
C[
a
f
,
(bb]);(2)f (a) f (b)0 ,
则至少 (a, b) ,使 f ( ) 0 .
o a c b x f (a)
o ac1 c2 c 3 b x
例 9 证明方程 x a sin x b ( a 0, b 0 ) 至少有一个实根.
例 10 证:实系数三次方程 x3 px2 qx r 0 必有实根.
若函数 f ( x) 在区间 I 上的每一点处都可导,则得到
一个新函数 f ( x) , 称之为 f ( x) 在 I 上的导函数,
简称为导数.记为 f ( x) 或 y 或 dy . dx
注意 导 函 数 f ( x ) 与 导 数 f ( x ) 的 区 别 和 联 系
例 2 求 y cos x 在 x0 (, ) 处的导数.
零点T定 hm理7((介1)值f定理C)[a, b] ; 设(f2) Cf[(aa, b)],f (mb)0m[a, ,ibn] f ( x),
则M至少max f ((xa),.b则) ,对使f()[m ,0 M.] ,至少存在 [a, b]
一点 [a, b] ,使 f ( ) .
y
y
yf(x)
f(
讨论 x0 )
f (x) lim
x 0
f
(s0xi,0nx,xxxx)00, f在( xx0
0处的可导性.
)
f (x) f (
lim
x x0
x x0
x0
)
f
( x0 )
lim
x 0
f
( x0 x) x
f
( x0 ) lim x x0
高中数学-导数的概念课件
15
(1)求函数 y= x在点 x=1 处的导数;
(2)求函数 y=x2+ax+b 在点 x=x0 处的导数. [解析] (1)Δy= 1+Δx-1,
ΔΔyx=
1+ΔΔxx-1=
1 1+Δx+1.
liΔmx→0 1+1Δx+1=12,所以 y′|x=1=12.
(2)y′|x=x0
=liΔmx→0
(x0+Δx)2+a(x0+Δx)+b-(x20+ax0+b) Δx
f[x0+(-k)]-f(x0) -k
=-12f′(x0)=-12×2=-1,故应选 A.
35
• 二、填空题 • 4. 自由 落体运 动在 t= 4s的 瞬 时速度 是
________. • [答案] 39.2m/s
[解析] s=12gt2
ΔΔst=12g(t+ΔΔt)t2-12gt2=gt+12g·Δt
16
=liΔmx→0
x20+2x0Δx+(Δx)2+ax0+aΔx+b-x20-ax0-b Δx
=liΔmx→0
2x0Δx+aΔx+(Δx)2 Δx
=liΔmx→0 (2x0+a+Δx)=2x0+a.
17
[例 3] 若函数 f(x)在 x=a 处的导数为 A,求:
(1)liΔmx→0 f(a+Δx)Δ-xf(a-Δx);
21
已知 f′(x0)=A,则 liΔmx→0 f(x0-2ΔΔxx)-f(x0)=____.
[解析]
liΔmx→0
f(x0-2Δx)-f(x0) Δx
=-2liΔmx→0 f[x0+(--22ΔΔxx)]-f(x0)=-2A.
• [答案] -2A
22
[例 4] 若一物体运动方程如下:(位移:m,时间:
(1)求函数 y= x在点 x=1 处的导数;
(2)求函数 y=x2+ax+b 在点 x=x0 处的导数. [解析] (1)Δy= 1+Δx-1,
ΔΔyx=
1+ΔΔxx-1=
1 1+Δx+1.
liΔmx→0 1+1Δx+1=12,所以 y′|x=1=12.
(2)y′|x=x0
=liΔmx→0
(x0+Δx)2+a(x0+Δx)+b-(x20+ax0+b) Δx
f[x0+(-k)]-f(x0) -k
=-12f′(x0)=-12×2=-1,故应选 A.
35
• 二、填空题 • 4. 自由 落体运 动在 t= 4s的 瞬 时速度 是
________. • [答案] 39.2m/s
[解析] s=12gt2
ΔΔst=12g(t+ΔΔt)t2-12gt2=gt+12g·Δt
16
=liΔmx→0
x20+2x0Δx+(Δx)2+ax0+aΔx+b-x20-ax0-b Δx
=liΔmx→0
2x0Δx+aΔx+(Δx)2 Δx
=liΔmx→0 (2x0+a+Δx)=2x0+a.
17
[例 3] 若函数 f(x)在 x=a 处的导数为 A,求:
(1)liΔmx→0 f(a+Δx)Δ-xf(a-Δx);
21
已知 f′(x0)=A,则 liΔmx→0 f(x0-2ΔΔxx)-f(x0)=____.
[解析]
liΔmx→0
f(x0-2Δx)-f(x0) Δx
=-2liΔmx→0 f[x0+(--22ΔΔxx)]-f(x0)=-2A.
• [答案] -2A
22
[例 4] 若一物体运动方程如下:(位移:m,时间:
《高等数学教学课件》04导数
2 变化率
导数可以表示物理量的变化率,如颜色的变化率、温度的变化率等。
3 斜率
导数还可以表示曲线的斜率,用于研究物理问题中的质点运动轨迹。
利用定义求导数的导数可以通过定义求导数的极
限计算得到。
3
直线函数
对于直线函数,根据导数的定义可以直 接求得导数为常数值。
三角函数
三角函数的导数可以利用导数的基本运 算法则和公式进行推导。
《高等数学教学课件》 04导数
数学导数是高等数学重要的概念之一,本课件将介绍导数的基本概念、数学 定义、几何意义、物理意义以及导数的运算法则等内容,展示导数在各领域 的应用。
导数的基本概念简介
1 定义
导数是函数对自变量变化的敏感程度,表示了函数在某一点的瞬时变化率。
2 重要性
导数是研究函数性质与变化规律的基础,广泛应用于数学、物理、工程、经济等领域。
高阶导数可以与曲率半径 相关联,描述了曲线在某 一点的弯曲程度。
2 性态判断
3 局部特征
高阶导数可以判断函数的 拐点、极值点,以及函数 在不同区间上的具体性态。
高阶导数揭示了函数在局 部区间上的更加细致的特 征,如凸性、凹性。
利用高阶导数判断函数的性态
1 单调性判断
利用高阶导数可以判断函数在不同区间上的单调性,找到函数的自增区间和自减区间。
高阶导数的数学定义
1 迭代求导
高阶导数可以通过重复利 用导数的定义进行迭代求 导。
2 表示法
高阶导数通常用Leibniz记 号或Euler记号表示,如 d^ n(f)/dx^ n或f(n)(x)。
3 计算技巧
高阶导数的计算可以利用 运算法则和已知函数的高 阶导数进行简化。
高阶导数的几何意义
导数可以表示物理量的变化率,如颜色的变化率、温度的变化率等。
3 斜率
导数还可以表示曲线的斜率,用于研究物理问题中的质点运动轨迹。
利用定义求导数的导数可以通过定义求导数的极
限计算得到。
3
直线函数
对于直线函数,根据导数的定义可以直 接求得导数为常数值。
三角函数
三角函数的导数可以利用导数的基本运 算法则和公式进行推导。
《高等数学教学课件》 04导数
数学导数是高等数学重要的概念之一,本课件将介绍导数的基本概念、数学 定义、几何意义、物理意义以及导数的运算法则等内容,展示导数在各领域 的应用。
导数的基本概念简介
1 定义
导数是函数对自变量变化的敏感程度,表示了函数在某一点的瞬时变化率。
2 重要性
导数是研究函数性质与变化规律的基础,广泛应用于数学、物理、工程、经济等领域。
高阶导数可以与曲率半径 相关联,描述了曲线在某 一点的弯曲程度。
2 性态判断
3 局部特征
高阶导数可以判断函数的 拐点、极值点,以及函数 在不同区间上的具体性态。
高阶导数揭示了函数在局 部区间上的更加细致的特 征,如凸性、凹性。
利用高阶导数判断函数的性态
1 单调性判断
利用高阶导数可以判断函数在不同区间上的单调性,找到函数的自增区间和自减区间。
高阶导数的数学定义
1 迭代求导
高阶导数可以通过重复利 用导数的定义进行迭代求 导。
2 表示法
高阶导数通常用Leibniz记 号或Euler记号表示,如 d^ n(f)/dx^ n或f(n)(x)。
3 计算技巧
高阶导数的计算可以利用 运算法则和已知函数的高 阶导数进行简化。
高阶导数的几何意义
《高数导数公式》课件
振动与波动
导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
导数可以用来描述振动和波动问题中的物理量,例如振幅、频率等 。
导数的扩展知识
05
高阶导数
高阶导数的定义
高阶导数是函数导数的连续求导过程,表示 函数在某点的变化率随阶数的增加而增加。
高阶导数的计算
高阶导数的计算需要使用到前一阶的导数,通过连 续求导来得到。
高阶导数的应用
高阶导数在数学、物理和工程等领域中有广 泛的应用,例如在研究函数的极值、拐点、 曲线的弯曲程度等方面。
描述物体运动的方向。
03
导数与切线斜率、运动方向的关系
导数可以表示曲线在某一点的切线斜率,进而可以判断物体的运动方向
。
导数在物理问题中的应用
瞬时速度
导数可以用来计算瞬时速度,例如在匀变速直线运动中,物体的瞬 时速度等于其位移的导数。
极值问题
导数可以用来求解函数的极值问题,例如在物理学中,最小作用量 原理就是利用导数求解极值问题的典型例子。
《高数导数公式》ppt 课件
目录
• 导数的定义与几何意义 • 导数的计算 • 导数的应用 • 导数的物理意义 • 导数的扩展知识
01
导数的定义与几何
意义
导数的定义
导数的定义
导数是函数在某一点的变化率,表示函数在该 点附近的小范围内变化的情况。
导数的计算方法
通过极限来计算函数在某一点的导数,即求函 数在该点的切线斜率。
THANKS.
利用导数研究曲线的凹凸性
总结词
通过求二阶导数判断函数的凹凸性,有 助于了解函数图像的弯曲趋势和变化规 律。
VS
详细描述
二阶导数大于零表示函数图像向下凸出, 二阶导数小于零表示函数图像向上凸出。 通过分析二阶导数的符号变化,可以确定 函数的凹凸区间和弯曲趋势。
《高等数学导数》课件
答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。
高中数学导数的概念 PPT课件 图文
导数的定义:
从函数lyim=f(xf )(在x0x=x0x处) 的f瞬( x时0 )变化lim率是f: ,
x0
x
x0 x
我们称它为函数 y f ( x)在x x0
处的导数 , 记作 f ( x0 )或y xx0 ,即 :
f (x0 )
lim
x0
f
( x0
数值的改变量与自变的量改变量之比,即:
y f (x2) f (x1) .
x
x2 x1
我们用它来刻画函数在值区间[x1, x2]上变化的快慢.
对于一般函y数 f (x),在自变量 x从x0变到x1的
过程中,若设x x1 x0,则函数的平均变化:率是
y f (x1) f (x0) f (x0 x) f (x0).
x) x
f
(x0 )
例题讲解
例 1一条水管中流 y(单 过位 :m 的 3)时 水间 x(量 单位 :s) 的函y数 f(x)3x.求函y数 f(x)在x2处的导数 f(2)并 , 解释它的. 实际意义
解:当x从2变到2x时,函数值3从2变
到3(2x),函数值 y关于x的平均变化率 : 为
例2一名食品加工厂的上工班人后开始连续, 工作 生产的食品数 y(单 量位:kg)是其工作时x(间 单位:h) 的函数 y f (x).假设函y数 f (x)在x1和x3处 的导数分别: f为(1) 4和f (3) 3.5,试解释它们 的实际意. 义
如 其 解 4kg:果 生 的 f (保 产 1食) 持 速 品.4(表 这 度 即示 一 工该 生 作工 产 效,人 速 )那 率 为上 4度 么kg班 他/h后 .每 也1工 h时 就的作 可 是时以 说 ,候, 生一 其 产 f(3生 生 )3产 产 .5表 速 速 ,那 示 3.度 度 5么 k该 g为 /他 h工 .也每 人 就时 上 是可 ,如 班 说 33h.以 5的 果 k后g的 生 时 保 工食 产 ,候 持 作 .品 这
高等数学导数的概念ppt课件.ppt
x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时
在
都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且
求
解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束
导数的概念 课件
A.物体5 s内共走过42 m B.物体每5 s钟运动42 m C.物体开始运动到第5 s运动的平均速度是42 m/s D.物体以t=5 s时的瞬时速度运动的话,每经过一秒, 物体运动的路程为42 m
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt
(2)若极限 点 处的右导数,记作
,即:
存在,则称其为函数 在
定理1 函数
在点 处可导的充分必要条件是
在点 处的左导数和右导数都存在且相等,即
.
例1 讨论函数
在 处的连续性和可导性.
解:因为
又
,所以函数
在 处的连续.
由于
,所以函数
在 处不可导.
例2 讨论函数
解:因为 连续.
又因为 处不可导.
在 处的连续性和可导性.
在点
分析:设函数
在点 处可导,则
故函数
在点 处一定连续.
随堂练习
1、设 解:
,判断 在点 函数
处的连续性与可导性. 在 处连续.
函数 在 处不可导.
2、若函数
处处可导,求 的值.
解: 函数 在 处可导,则在
处处可导.由于函数
可导必连续.得
再根据函数在 处可导,
则左右导数存在且相等.
故
时,
函数 在点
或 ,即
函数
在点 处的导数就是导函数 在点 处的函数值
,即
注:若函数
在区间
在区间 上不可导.
内有一点处不可导,则称函数
由导数的定义可知,求函数
个步骤:
(1)求增量
;
(2)算比值
;
(3)取极限
例1 求函数
的导数.
解:
常量函数的导数为
的导数可分为以下三 .
例6 求函数 解:
的导数.
例7 求函数 解:
,所以函数
在 处的
,所以函数
在
从图形上看,曲线 线.这也说明函数 原点外,处处可导.因 连续.
在原点O处具有垂直于 轴的切
《高中数学导数讲解》课件
积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。
高中数学导数的概念课件
优化问题求解
总结词
导数在数学优化中常用于求解最值问题,通过求导可以 找到函数的极值点。
详细描述
在数学优化中,最值问题是最常见的一类问题,导数可 以用来求解这类问题。通过对函数求导,可以找到函数 的极值点,从而确定函数的最值。例如,一个企业要制 定一个营销策略,目标是最大化利润,利润函数为P(x) ,对其求导得到利润函数的导数P'(x),通过求解P'(x)=0 ,可以找到使利润最大的最优策略。
导数在科学计算中的应用
数值分析
导数可以用于数值分析中,如求 解微分方程、积分方程等,通过 求导数可以得到数值解的近似值
。
图像处理
导数可以用于图像处理中,如边 缘检测、图像滤波等,通过求图 像函数的导数可以得到图像的边
缘信息。
信号处理
导数可以用于信号处理中,如滤 波器设计、信号降噪等,通过求 信号函数的导数可以得到信号的
高中数学导数的概念课件
汇报人:
202X-01-05
CATALOGUE
目 录
• 导数的定义 • 导数的性质 • 导数的应用 • 导数的计算 • 导数在实际问题中的应用案例
01
CATALOGUE
导数的定义
导数的起源
01
导数起源于微积分,最初由牛顿 和莱布尼茨等数学家提出,用于 描述函数在某一点的变化率。
导数与函数极值
总结词
导数等于0的点可能是极值点
详细描述
函数在极值点的一阶导数等于0,但一阶导数为0的点不一定是极值点,需要进一 步判断二阶导数的正负。
导数与函数最值
总结词
导数可以帮助寻找函数最值
详细描述
通过求导数并令其为0,可以找到可能的极值点,再结合一阶或二阶导数的符号变化,判断是极大值还是极小值 ,从而确定函数的最值。
高三数学导数概念PPT课件
事实上,导数也可以用下式表示:
f
( x0 )
lim
x x0
f ( x) f ( x0 ) x x0
如果函数y=f(x)在点x=x0存在导数,就说函数y=f(x)
在点x0处可导,如果极限不存在,就说函数 f(x)在点x0处
不可导.
第11页/共30页
由导数的意义可知,求函数y=f(x)在点x0处的导数 的基本方法是:
O
x
x
表明:y 就是割线的斜率. x
第1页/共30页
请看当 点Q沿 着曲线 逐渐向 点P接 近时,割 线PQ 绕着点 P逐渐 转动的 情况.
y
y=f(x)
割
线 Q
T 切线
P
o
x
第2页/共30页
我们发现,当点Q沿着曲线无限接近点P即Δx→0 时,割线PQ有一个极限位置PT.则我们把直线PT称为曲 线在点P处的切线.
x
x
x
y lim y lim x x x lim
1
x x0
x0
x
x0 x x x
1. 2x
第16页/共30页
例2:利用导数的定义求函数y | x | ( x 0)的导数.
解 : y | x |,当x 0时, y x,则 y ( x x) x
x
x
y 1, lim 1;
2)要根据割线是否有极限位置来判断与求解.如有极限,
则在此点有切线,且切线是唯一的;如不存在,则在此点处
无切线;3)曲线的切线,并不一定与曲线只有一个交点,
可以有多个,甚至可以无第穷3页多/共个30页.
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
解 : k lim f (x0 x) f (x0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
导数思想最早由法国
导数与微分 数学家 Ferma 在研究 极值问题中提出.
微积分学的创始人: 英国数学家 Newton 德国数学家 Leibniz
导数 微分学 微分
描述函数变化快慢 描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
;.;
1
在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即 导数。
(e x ) e x .
;.;
17
例5 求函数 y log a x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
h0
h
lim
log a
(1
h) x
1
h0
h
x
x
1 x
时)
切线 MT 的斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 的斜率 tan
f (x) f (x0 ) x x0
k lim
x x0
f (x) f (x0 ) x x0
;.;
6
瞬时速度 切线斜率
f (t0 )
o y
t0
f (t)
t
s
y f (x)
N
CM
(sin x) x cos x x
4
4
2. 2
;.;
15
例3 求函数 y xn (n为正整数)的导数.
解 ( x n ) lim ( x h)n x n
h0
h
lim[nx n1 n(n 1) x n2h hn1 ] nx n1
h0
2!
即 ( x n ) nx n1 .
更一般地 ( x ) x1 . ( R)
例如,
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x 11
1 x2
.
;.;
16
例4 求函数 f ( x) a x (a 0, a 1)的导数.
解 (a x ) lim a xh a x
h0
h
a x lim a h 1 h0 h
a x ln a.
即 (a x ) a x ln a.
重点 导数与微分的定义及几何解释
导数与微分基本公式 四则运算法则 复合函数求导的链式法则 高阶导数 隐函数和参量函数求导
难点 导数的实质,用定义求导,链式法则
;.;
3
第一节 导数的概念
问题的提出 导数的定义 利用导数定义求导数 左、右导数
导数的几何意义与物理意义
可导与连续的关系
小结
;.;
4
一、引出导数概念的两个实例
即
y
x x0
f
(x0 )
lim y x0 x
;.;
8
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) f (x0 ) . x x0
说明: 在经济学中, 边际成本率, 边际劳动生产率和边际税率等从数学角度看就是导数.
;.;
9
y f (x) f (x0) x x x0
在点 的某邻域内有定义 ,
若
lim f (x) f (x0 ) lim y
xx0 x x0
x0 x
y f (x) f (x0) x x x0
存在, 则称函数
在点 处可导, 并称此极限为
在点 的导数. 记作:
y xx0 ;
f (x0 ) ;
dy dx
x
x0
;
d f (x) dx x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
;.;
10
关于导数的说明:
★ 点导数是因变量在点x0处的变化率,它 反映了因变量随自变量的变化而变化的快 慢程度.
★ 如果函数 y f ( x)在开区间I内的每点 处都可导, 就称函数 f ( x)在开区间I内可导.
;.;
11
★ 对于任一 x I,都对应着 f (x)的一个确定的 导数值.这个函数叫做原来函数 f ( x) 的导函数.
本章将通过对实际问题的分析,引出微分学中 两个最重要的基本概念——导数与微分,然后再 建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题。
;.;
2
导数和微分是继连续性之后,函数研究的进一步
深化。导数反映的是因变量相对于自变量变化的快 慢程度和增减情况,而微分则是指明当自变量有微 小变化时,函数大体上变化多少。
★ 导数定义式中的△x必修连续地趋于零。
;.;
13
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
解 f ( x) lim f ( x h) f ( x) lim C C 0.
h0
h
h0 h
即 (C ) 0.
;.;
14
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) c 到 的平均速度为
v f (t) f (t0 ) t t0
而在 时刻的瞬时速度为
v lim
t t0
f (t) f (t0 ) t t0
;.;
f (t0 )
o t0
f (t)
t
s
5
2. 曲线的切线斜率
y
曲线
在 M 点处的切线
割线 M N 的极限位置 M T
(当
记作 y, f ( x), dy 或 df ( x) . dx dx
即 y lim f ( x x) f ( x)
x 0
x
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: f ( x0 ) f ( x) . xx0
;.;
12
★ 函数在一点的导数是一个局部性概念,它反映 了函数在该点处的变化快慢,而与临近点是否可导 无关。存在仅在某一点可导,而在其余点不可导的 函数。
T
两个问题的共性:
o x0 x x
所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度 是速度增量与时间增量之比的极限 变
角速度 是转角增量与时间增量之比的极限 化
线密度 是质量增量与长度增量之比的极限
率 问
电流强度 是电量增量与时间增量之比的极限 题
;.;
7
二、导数的定义
定义1 . 设函数
导数思想最早由法国
导数与微分 数学家 Ferma 在研究 极值问题中提出.
微积分学的创始人: 英国数学家 Newton 德国数学家 Leibniz
导数 微分学 微分
描述函数变化快慢 描述函数变化程度
都是描述物质运动的工具 (从微观上研究函数)
;.;
1
在许多实际问题中,需要从数量上研究变量的 变化速度。如物体的运动速度,电流强度,线密 度,比热,化学反应速度及生物繁殖率等,所有 这些在数学上都可归结为函数的变化率问题,即 导数。
(e x ) e x .
;.;
17
例5 求函数 y log a x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
h0
h
lim
log a
(1
h) x
1
h0
h
x
x
1 x
时)
切线 MT 的斜率
o
y f (x)
N
CM
T
x0 x x
lim tan
割线 M N 的斜率 tan
f (x) f (x0 ) x x0
k lim
x x0
f (x) f (x0 ) x x0
;.;
6
瞬时速度 切线斜率
f (t0 )
o y
t0
f (t)
t
s
y f (x)
N
CM
(sin x) x cos x x
4
4
2. 2
;.;
15
例3 求函数 y xn (n为正整数)的导数.
解 ( x n ) lim ( x h)n x n
h0
h
lim[nx n1 n(n 1) x n2h hn1 ] nx n1
h0
2!
即 ( x n ) nx n1 .
更一般地 ( x ) x1 . ( R)
例如,
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x 11
1 x2
.
;.;
16
例4 求函数 f ( x) a x (a 0, a 1)的导数.
解 (a x ) lim a xh a x
h0
h
a x lim a h 1 h0 h
a x ln a.
即 (a x ) a x ln a.
重点 导数与微分的定义及几何解释
导数与微分基本公式 四则运算法则 复合函数求导的链式法则 高阶导数 隐函数和参量函数求导
难点 导数的实质,用定义求导,链式法则
;.;
3
第一节 导数的概念
问题的提出 导数的定义 利用导数定义求导数 左、右导数
导数的几何意义与物理意义
可导与连续的关系
小结
;.;
4
一、引出导数概念的两个实例
即
y
x x0
f
(x0 )
lim y x0 x
;.;
8
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) f (x0 ) . x x0
说明: 在经济学中, 边际成本率, 边际劳动生产率和边际税率等从数学角度看就是导数.
;.;
9
y f (x) f (x0) x x x0
在点 的某邻域内有定义 ,
若
lim f (x) f (x0 ) lim y
xx0 x x0
x0 x
y f (x) f (x0) x x x0
存在, 则称函数
在点 处可导, 并称此极限为
在点 的导数. 记作:
y xx0 ;
f (x0 ) ;
dy dx
x
x0
;
d f (x) dx x x0
若上述极限不存在 , 就说函数 在点 x0不可导.
;.;
10
关于导数的说明:
★ 点导数是因变量在点x0处的变化率,它 反映了因变量随自变量的变化而变化的快 慢程度.
★ 如果函数 y f ( x)在开区间I内的每点 处都可导, 就称函数 f ( x)在开区间I内可导.
;.;
11
★ 对于任一 x I,都对应着 f (x)的一个确定的 导数值.这个函数叫做原来函数 f ( x) 的导函数.
本章将通过对实际问题的分析,引出微分学中 两个最重要的基本概念——导数与微分,然后再 建立求导数与微分的运算公式和法则,从而解决 有关变化率的计算问题。
;.;
2
导数和微分是继连续性之后,函数研究的进一步
深化。导数反映的是因变量相对于自变量变化的快 慢程度和增减情况,而微分则是指明当自变量有微 小变化时,函数大体上变化多少。
★ 导数定义式中的△x必修连续地趋于零。
;.;
13
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
解 f ( x) lim f ( x h) f ( x) lim C C 0.
h0
h
h0 h
即 (C ) 0.
;.;
14
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) c 到 的平均速度为
v f (t) f (t0 ) t t0
而在 时刻的瞬时速度为
v lim
t t0
f (t) f (t0 ) t t0
;.;
f (t0 )
o t0
f (t)
t
s
5
2. 曲线的切线斜率
y
曲线
在 M 点处的切线
割线 M N 的极限位置 M T
(当
记作 y, f ( x), dy 或 df ( x) . dx dx
即 y lim f ( x x) f ( x)
x 0
x
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: f ( x0 ) f ( x) . xx0
;.;
12
★ 函数在一点的导数是一个局部性概念,它反映 了函数在该点处的变化快慢,而与临近点是否可导 无关。存在仅在某一点可导,而在其余点不可导的 函数。
T
两个问题的共性:
o x0 x x
所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度 是速度增量与时间增量之比的极限 变
角速度 是转角增量与时间增量之比的极限 化
线密度 是质量增量与长度增量之比的极限
率 问
电流强度 是电量增量与时间增量之比的极限 题
;.;
7
二、导数的定义
定义1 . 设函数