高一数学必修一函数图像知识点总结
高一数学必修一函数图像知识点总结
高一数学必修一函数图像知识点总结高一数学必修一函数图像知识点总结高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。
因此,经常性的复习是巩固数学知识点的很好的途径。
以下是小编为您整理的关于高一数学必修一函数图像知识点的相关资料,供您阅读。
高一数学必修一函数图像知识点总结 1知识点总结:本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。
选择题、填空题和解答题都有,并且题目难度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。
高一数学必修一函数图像知识点总结 2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高一数学必修一幂函数及其图象和性质知识点总结
1 3.3幂函数
一、幂函数定义及解析式特点
1.定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。
2.解析式特点:①系数为1;②底为自变量;③指数为常数。
3.幂函数的指数除了可以取整数外,还可以取其他实数。
二、幂函数的图象
1.幂函数主要以11,2,3,,12
α=-为代表,来研究掌握0α<,01α<<,1α>时的大致图象和图象的性质。
2.同一坐标系中画出1232
,,,y x y x y x y x ====和1y x -=的图象,如下图:
三、幂函数图象特点
1.根据幂函数y x α=的图象可得到以下结论: (1)幂函数在()0,+∞都有定义,且都过()1,1点,不一定过()0,0点。
(2)幂函数都过第一象限,不过第四象限;
(3)当0α>时,在第一象限都是增函数;当0α<时在第一象限都是减函数。
2.(1)当0α<时,幂函数在第一象限是减函数,且和1y x
=在第一象限的图象 大致相同;
(2)当0α>时,函数在第一象限是增函数,且在第一象限的大致图象的特点 可细分为两种情况:
①01α<<时,幂函数的图象在第一象限“趴着增”,且在()0,1内,图象在直 线y x =的上方增,在()1,+∞图象在直线y x =的下方增。
②1α>时,幂函数的图象在第一象限“竖着增”,且在()0,1内,图象在直线。
高一数学人必修件指数函数的图象和性质
在生物学领域,指数函数用于描述生物种群的繁殖速度。某 些生物种群的增长符合指数函数的规律,如细菌繁殖、昆虫 数量增长等。
其他领域应用案例
放射性衰变
在物理学中,指数函数用于描述放射性物质的衰变过程。放射性元 素的原子数量随时间呈指数减少。
化学反应速率
化学领域中,指数函数可用于描述某些化学反应的速率。反应速率 与反应物浓度的关系可以用指数函数表示。
同底数幂相乘
幂的乘方
底数不变,指数相加。即$a^m times a^n = a^{m+n}$。
底数不变,指数相乘。即$(a^m)^n = a^{m times n}$。
同底数幂相除
底数不变,指数相减。即$a^m div a^n = a^{m-n}$。
幂的乘方法则
1 2
正整数指数幂的乘法
$(a^m)^n = a^{m times n}$,其中$m, n$为 正整数。
指数函数图像与坐标轴交点
指数函数的图像与x轴没有交点,与y轴的交点是(0,1)。
指数函数性质总结
指数函数的单调性
当a>1时,指数函数在定义域 内单调递增;当0<a<1时,指 数函数在定义域内单调递减。
指数函数的奇偶性
指数函数既不是奇函数也不是 偶函数。
指数函数的值域
指数函数的值域是(0, +∞)。
形如y=a^x(a>0且a≠1)的函 数叫做指数函数。
指数函数表达式
y=a^x,其中a是自变量,x是指 数,y是因变量。
指数函数图像特征
指数函数图像形状
指数函数的图像是一条从坐标原点出发,向右上方或右下方无限 延伸的曲线。
指数函数图像位置
当a>1时,图像位于第一象限和第二象限;当0<a<1时,图像位于 第一象限和第四象限。
高一数学必修一函数知识点总结归纳
高一数学必修一函数知识点总结归纳1. 函数的奇偶性1若fx是偶函数,那么fx=f-x ;2若fx是奇函数,0在其定义域内,则 f0=0可用于求参数;3判断函数奇偶性可用定义的等价形式:fx±f-x=0或fx≠0;4若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;5奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题1复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[gx]的定义域由不等式a≤gx≤b解出即可;若已知f[gx]的定义域为[a,b],求 fx的定义域,相当于x∈[a,b]时,求gx的值域即 fx的定义域;研究函数的问题一定要注意定义域优先的原则。
2复合函数的单调性由“同增异减”判定;3.函数图像或方程曲线的对称性1证明函数图像的对称性,即证明图像上任意点关于对称中心对称轴的对称点仍在图像上;2证明图像C1与C2的对称性,即证明C1上任意点关于对称中心对称轴的对称点仍在C2上,反之亦然;3曲线C1:fx,y=0,关于y=x+ay=-x+a的对称曲线C2的方程为fy-a,x+a=0或f-y+a,-x+a=0;4曲线;5若函数y=fx对x∈R时,fa+x=fa-x恒成立,则y=fx图像关于直线x=a对称;6函数y=fx-a与y=fb-x的图像关于直线x= 对称;4.函数的周期性1y=fx对x∈R时,fx +a=fx-a 或fx-2a =fx a>0恒成立,则y=fx是周期为2a的周期函数;2若y=fx是偶函数,其图像又关于直线x=a对称,则fx是周期为2︱a︱的周期函数;3若y=fx奇函数,其图像又关于直线x=a对称,则fx是周期为4︱a︱的周期函数;4若y=fx关于点a,0,b,0对称,则fx是周期为2 的周期函数;5y=fx的图象关于直线x=a,x=ba≠b对称,则函数y=fx是周期为2 的周期函数;6y=fx对x∈R时,fx+a=-fx或fx+a= ,则y=fx是周期为2 的周期函数;5.方程k=fx有解k∈DD为fx的值域;6.a≥fx 恒成立a≥[fx]max,; a≤fx 恒成立a≤[fx]min;7.1 a>0,a≠1,b>0,n∈R+; 2 l og a N= a>0,a≠1,b>0,b≠1;3 l og a b的符号由口诀“同正异负”记忆;4 a log a N= N a>0,a≠1,N>0 ;8. 判断对应是否为映射时,抓住两点:1A中元素必须都有象且唯一;2B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
数学函数知识点归纳(高一)知识点总结
数学函数知识点归纳(高一)知识点总结数,其中为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1); (2)0时,幂函数的图象通过原点,并且在区间) ,0[上是增函数.特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸; (3)0时,幂函数的图象在区间),0(上是减函数.在第一象限内,当_从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当_趋于时,图象在_轴上方无限地逼近_轴正半轴方程的根与函数的零点1、函数零点的概念:对于函数))((D__fy,把使0)(_f成立的实数_叫做函数))((D__fy的零点。
2、函数零点的意义:函数)(_fy的零点就是方程0)(_f实数根,亦即函数)(_fy的图象与_轴交点的横坐标。
即:方程0)(_f有实数根函数)(_fy的图象与_轴有交点函数)(_fy有零点.3、函数零点的求法:○ 1 (代数法)求方程0)(_f的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数)(_fy的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2acb_a_y. (1)△0,方程02cb_a_有两不等实根,二次函数的图象与_轴有两个交点,二次函数有两个零点. (2)△=0,方程02cb_a_有两相等实根,二次函数的图象与_轴有一个交点,二次函数有一个二重零点或二阶零点. (3)△0,方程02cb_a_无实根,二次函数的图象与_轴无交点,二次函数无零点. 三、平面向量向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量向量的运算加法运算 AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
高一数学一次函数必修一知识点总结
1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b’2)/4a)当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b’2-4ac>0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=-b ±√b’2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 高一数学学习方法1.学习的心态。
多数中等生的数学成绩是很有希望提升。
一方面是目前具备了一定基础,加上努力认真,这种学生态度没有问题,只是缺少方向和适合的方法而已。
另一方面,备考时间还算充足,还有时间进行调整和优化。
所以平日里多给自己一些积极的心里暗示,坚持不断地实践合适自己的学习方法。
2.备考的方向。
什么是备考方向?所谓备考方向就是考试方向。
在平时做题的时候,要弄明白,你面前的题是哪个知识框架下,那种类型的题型,做这样类型的题有什么样的方法,这一类的题型有哪些?等等。
题型和知识点都是有限的,只要我们根据常考的题型,寻找解题思路并合理的训练,那么很容易提升自己的数学成绩。
3.训练的方式。
每个人实际的情况不一样,训练的方式也不不同,考试中取得的好成绩都是考前合理训练的结果。
很多学生抱怨时间不足,每天做完作业以后,身心疲惫。
高一数学必修一函数图像知识点总结
03
通过大量的练习和实践,提高对复杂函数图像的识别能力和分
析水平。
观看
REPORTING
复合函数性质
复合函数具有“同增异减”的性质,即内外函数的单调性相同时,复合函数为增函数;内外函数的单 调性不同时,复合函数为减函数。
分段函数表达式及性质
分段函数定义
在自变量的不同取值范围内,用不同的解析式来表示一个函 数,这样的函数叫做分段函数。
分段函数性质
分段函数的定义域是各段定义域的并集;分段函数的值域是 各段值域的并集;分段函数在定义域的不同子集上,具有不 同的对应关系。
坐标平面
由x轴和y轴组成的平面称为坐标 平面,其中x轴和y轴的交点称为 原点,坐标为(0,0)。
函数图像绘制方法
01
02
03
列表法
列出函数自变量与函数值 的对应表,然后在坐标系 中描出各点,最后用平滑 的曲线连接各点。
解析法
根据函数解析式,直接利 用函数的性质绘制出函数 的图像。
图象变换法
通过对基本初等函数的图 像进行平移、伸缩、对称 等变换,得到所求函数的 图像。
PART 02
一次函数图像知识点
一次函数表达式及性质
一次函数表达式
y = kx + b (k ≠ 0)
性质
当 k > 0 时,函数图像为增函数;当 k < 0 时,函数图像为减函数。
一次函数图像特征
直线性
一次函数的图像是一条直 线。
斜率
直线的斜率等于一次函数 表达式中的 k 值。
截距
直线在 y 轴上的截距等于 一次函数表达式中的 b 值 。
PART 05
三角函数图像知识点
三角函数基本概念及性质
高一数学函数图像知识点总结
高一数学函数图像知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换(1)平移变换(2)对称变换由对称变换可利用y=f(x)的图象得到y=|f(x)|与y=f(|x|)的图象.①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a<1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的倍,纵坐标不变.(4)翻折变换①作为y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作为y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f(|x|)的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。
高一必修一数学复习知识点梳理
高一必修一数学复习知识点梳理一、函数及其图像1.1 函数的概念函数是一种特殊的关系,它把一个数集映射到另一个数集。
在数学上,函数可以表示为 f(x),其中 x 是自变量,f(x) 是因变量。
1.2 常见的函数类型•幂函数:y = x^n•指数函数:y = a^x•对数函数:y = log_a(x)•三角函数:y = sin(x)、y = cos(x)、y = tan(x) 等1.3 函数的图像函数的图像是指将函数的自变量和因变量分别作为坐标轴的横纵坐标,在平面直角坐标系上绘制的图形。
函数的图像能够帮助我们更好地理解函数。
1.4 常见的函数图像•幂函数 y = x^n,当 n>1 时,图像是单调递增的并且过原点;当 n<1 时,图像是单调递减的并且过原点;当 n=1 时,图像是一次函数 y=x。
•指数函数 y = a^x,当 a>1 时,图像是单调递增的并且经过(0,1);当 0<a<1 时,图像是单调递减的并且经过 (0,1);当 a=1时,图像是一条水平直线 y=1。
•对数函数 y = log_a(x),当 a>1 时,图像是单调递增的并经过 (1,0);当 0<a<1 时,图像是单调递减的并过 (1,0);当 a=1 时,图像是一条垂直直线 x=1。
•三角函数 y=sin(x)、y=cos(x)、y=tan(x) 等。
二、二次函数2.1 二次函数的概念二次函数是一种标准形式为 f(x) = ax^2 + bx + c (其中a≠0) 的函数。
二次函数的图像为一个开口方向向上或向下的抛物线。
2.2 二次函数的性质•图像的开口方向:若 a>0,则开口向上;若 a<0,则开口向下。
•对称轴:过抛物线的顶点,是抛物线的对称轴,方程为 x = -b/2a。
•零点:指二次函数的图像与 x 轴交点的横坐标,可通过求解方程 ax^2+bx+c=0 来确定。
高一数学函数图像知识点总结
高一数学函数图像知识点总结一、函数图像知识点汇总1.函数图象的变换1平移变换①水平平移:y=fx±aa>0的图象,可由y=fx的图象向左+或向右-平移a个单位而得到.②竖直平移:y=fx±bb>0的图象,可由y=fx的图象向上+或向下-平移b个单位而得到.2对称变换①y=f-x与y=fx的图象关于y轴对称.②y=-fx与y=fx的图象关于x轴对称.③y=-f-x与y=fx的图象关于原点对称.由对称变换可利用y=fx的图象得到y=|fx|与y=f|x|的图象.①作出y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作出y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.3伸缩变换①y=afxa>0的图象,可将y=fx图象上每点的纵坐标伸a>1时或缩a<1时到原来的a倍,横坐标不变.②y=faxa>0的图象,可将y=fx的图象上每点的横坐标伸a<1时或缩a>1时到原来的倍,纵坐标不变.4翻折变换①作为y=fx的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|fx|的图象;②作为y=fx在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y=f|x|的图象.2.等价变换可看出函数的图象为半圆.此过程可归纳为:1写出函数解析式的等价组;2化简等价组;3作图.3.描点法作图方法步骤:1确定函数的定义域;2化简函数的解析式;3讨论函数的性质即奇偶性、周期性、单调性、最值甚至变化趋势;4描点连线,画出函数的图象.注意:一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别1一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.2一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三种途径明确函数图象形状和位置的方法大致有以下三种途径.1图象变换:平移变换、伸缩变换、对称变换.2函数解析式的等价变换.3研究函数的性质.二、例题解析三、复习指导函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。
高一数学必修一函数知识点总结归纳
高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
高一上数学函数知识点总结
高一上数学函数知识点总结一、函数的定义与性质函数是一种特殊的关系,它将一个集合中的每一个元素都对应到另一个集合中的唯一元素。
函数可以用来描述事物之间的依赖关系。
函数的性质包括定义域、值域、单调性、奇偶性、周期性等。
1.1 定义域和值域- 定义域是函数中自变量的取值范围- 值域是函数中因变量的所有可能取值构成的集合1.2 单调性- 递增:在定义域上,函数值随自变量增大而增大- 递减:在定义域上,函数值随自变量增大而减小1.3 奇偶性- 奇函数:满足f(-x) = -f(x),函数图像关于原点对称- 偶函数:满足f(-x) = f(x),函数图像关于y轴对称1.4 周期性函数的周期性指的是函数在一个固定的区间内,以相同的规律进行重复二、常见的函数类型2.1一次函数一次函数的定义形式为f(x) = ax + b,其中a和b为常数,a不等于0。
一次函数的图像为一条直线,斜率为a,截距为b。
2.2二次函数二次函数的定义形式为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于0。
二次函数的图像为一条抛物线。
2.3指数函数指数函数的定义形式为f(x) = a^x,其中a为常数,且a大于0且不等于1。
指数函数的图像呈现逐渐增大或逐渐减小的特点。
2.4对数函数对数函数的定义形式为f(x) = loga(x),其中a为常数,且a大于0且不等于1,x大于0。
对数函数的图像为一条平滑的曲线。
2.5幂函数幂函数的定义形式为f(x) = x^a,其中a为常数。
幂函数的图像形状与指数函数相似,但变化较缓和。
三、函数的运算函数之间可以进行加减乘除的运算,得到的结果仍然是一个函数。
3.1和函数两个函数f(x)和g(x)的和函数是指h(x) = f(x) + g(x)3.2差函数两个函数f(x)和g(x)的差函数是指h(x) = f(x) - g(x)3.3积函数两个函数f(x)和g(x)的积函数是指h(x) = f(x) * g(x)3.4商函数两个函数f(x)和g(x)的商函数是指h(x) = f(x) / g(x),其中g(x)不等于0四、函数的图像与性质函数的图像可以通过绘制函数的关系表、绘制坐标点、利用平移、对称、伸缩等变换得到。
人教版高一数学必修一改版新教材重点知识总结——指数函数知识点总结
高中数学必修一重点知识总结指数函数部分1.指数函数和指数型函数的概念(1)函数x y a =(0a >且1a ≠)叫做指数函数。
其中,底数a 为常数,自变量x 在指数位置,定义域是R ,值域为()0,+∞。
【注意】幂函数:y x α=,自变量x 在底数位置,次数α为常数。
(2)形如x y ka b =+(0k ≠;0a >且1a ≠)的函数叫做指数型函数。
指数型函数是刻画指数增长或指数衰减变化规律的非常有用的函数模型。
2.指数函数图像3.指数函数图象的性质(1)图象都过()0,1点;定义域都为R ,值域都为()0,+∞。
(2)01a <<时在R 上单调递减;1a >时在R 上单调递增。
(3)当1a >时,底数越大,在y 轴右侧图象越靠近y 轴;当01a <<时,底数越小,在y 轴左侧图象越靠近y 轴。
4.指数函数的对称性(4)底数互为倒数的两个指数函数的图象关于y 轴对称。
即x y a =与1xy a ⎛⎫= ⎪⎝⎭图象关于于y 轴对称。
4.常见题型(1)根据指数函数解析式的特点(系数为1,次数只有一个x 等)求参数值。
(2)给几个指数函数的解析式找出它们分别对应的图象。
(3)根据几个指数函数的图象,判断它们底数的大小关系。
(4)根据指数函数恒过过定点(0,1)的性质,求指数型函数或相关复合函数中的参数值。
(5)构造指数函数后,利用指数函数的单调性比较两个形式复杂的实数的大小。
(6)求与指数函数复合后的函数的定义域、值域、单调区间、最值、奇偶性等。
(7)画出指数函数整体加绝对值、或是次数加绝对值后的函数图象,并结合图象的性质做题。
高一数学函数知识点总结(五篇)
高一数学函数知识点总结函数的图象函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(四)函数的单调性1、单调函数对于函数f(____)定义在某区间[a,b]上任意两点____1,____2,当____1>____2时,都有不等式f(____1)>(或<)f(____2)成立,称f(____)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的____1,____具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设____1、____2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(____1,f(____1))、(____2,f(____2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(____)是增(减)函数,且(或____1>____2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(____)]的单调性若u=g(____)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(____)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。
完整版)高一数学必修一函数知识点总结
完整版)高一数学必修一函数知识点总结二、函数的概念和相关概念函数是从一个非空数集A到另一个非空数集B的一个确定的对应关系f,使得集合A中的每个数x都有唯一的数f(x)与之对应。
我们把f:A→B称为从集合A到集合B的一个函数,记作y=f(x),其中x是自变量,A是函数的定义域,而与x对应的y值是函数值,其集合{f(x)| x∈A }是函数的值域。
需要注意的是,在求函数的定义域时,我们需要注意分式的分母不等于零,偶次方根的被开方数不小于零,对数式的真数必须大于零,指数、对数式的底必须大于零且不等于1,以及函数是由一些基本函数通过四则运算结合而成的。
同时,指数为零底不可以等于零,实际问题中的函数的定义域还要保证实际问题有意义。
相同函数的判断方法有两种:表达式相同(与表示自变量和函数值的字母无关)和定义域一致。
在考虑函数的值域时,我们可以使用观察法、配方法或代换法。
函数图象是指在平面直角坐标系中,以函数y=f(x)。
(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C。
C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。
我们可以使用描点法或图象变换法来画函数图象,其中常用的变换方法有平移变换、伸缩变换和对称变换。
区间是指数轴上的一段连续的区域,可以分为开区间、闭区间和半开半闭区间。
同时,还有无穷区间。
我们可以使用数轴来表示区间。
映射是指两个非空集合A和B之间的确定对应关系f,使得集合A中的每个元素x都有唯一的元素y与之对应。
我们把对应f:A→B称为从集合A到集合B的一个映射,记作“f (对应关系):A(原象)→B(象)”。
对于映射f:A→B来说,应该满足集合A中的每一个元素,在集合B中都有象,并且象是唯一的;集合A中不同的元素,在集合B中对应的象可以是同一个。
3.分段函数分段函数是指在定义域的不同部分上有不同的解析表达式的函数。
高一数学必修一函数知识点总结
3. 函数值域(d e )求法:①配方法:转化为二次函数,利用二次函数(de)特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=(de)形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x (de)取值范围,通过解不等式,得出y (de)取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=;④换元法:通过变量代换转化为能求值域(de)函数,化归思想; 常针对根号,举例:y =√x 2−1+x 2+95令 √x 2−1=t,则x 2=x 2+1,原式转化为:y =t +(x 2+1)+95=x 25+x +2 ,再利用配方法.⑤利用函数有界法:转化为只含正弦、余弦(de)函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数(de)单调性求值域.⑧数形结合:根据函数(de)几何图形,利用数型结合(de)方法来求值域.二.函数(de)性质1.函数(de)单调性(局部性质) (1)增函数设函数y=f(x)(de)定义域为I,如果对于定义域I 内(de)某个区间D 内(de)任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)(de)单调增区间.如果对于区间D 上(de)任意两个自变量(de)值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)(de)单调减区间.注意:函数(de)单调性是函数(de)局部性质; ⑴单调性:定义(注意定义是相对与某个具体(de)区间而言)增函数:)()(],,[,x 212121x f x f x x b a x <⇒<∈对任意的 减函数:)()(],,[,x 212121x f x f x x b a x >⇒<∈对任意的注:① 函数上(de)区间I 且x 1,x 2∈I.若2121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数;若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数.② 用定义证明单调性(de)步骤:<1>设x1,x2∈M,且21x x <;则<2> )()(21x f x f -作差整理;<3>判断差(de)符号;③ 增+增=增 减+减=减④ 复合函数y=f[g(x)]单调性:同增异减[](内层)(外层))(,则)(,)((x f y x u u f y ϕϕ===(2) 图象(de)特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格(de))单调性,在单调区间上增函数(de)图象从左到右是上升(de),减函数(de)图象从左到右是下降(de).(3).函数单调区间与单调性(de)判定方法 (A) 定义法:○1 任取x 1,x 2∈D,且x 1<x 2; ○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)(de)正负); ○5 下结论(指出函数f(x)在给定(de)区间D 上(de)单调性). (B)图象法(从图象上看升降) (C)复合函数(de)单调性复合函数f [g(x)](de)单调性与构成它(de)函数u=g(x),y=f(u)(de)单调性密切相关,其规律:“同增异减” 注意:函数(de)单调区间只能是其定义域(de)子区间 ,不能把单调性相同(de)区间和在一起写成其并集.8.函数(de)奇偶性(整体性质) (1)偶函数一般地,对于函数f(x)(de)定义域内(de)任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数一般地,对于函数f(x)(de)定义域内(de)任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性(de)函数(de)图象(de)特征偶函数(de)图象关于y 轴对称;奇函数(de)图象关于原点对称.利用定义判断函数奇偶性(de)步骤:○1首先确定函数(de)定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)(de)关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性(de)必要条件.首先看函数(de)定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数(de)图象判定 .⑵奇偶性:定义(注意区间是否关于原点对称,比较f(x) 与f(-x)(de)关系)f(x) -f(-x)=0⇔ f(x) =f(-x) ⇔f(x)为偶函数; f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数.注:①若f(x)为偶函数,则f(x) =f(-x)= f(|x |);②若f(x)为奇函数且定义域中含0,则f(0)=0.如:若·为奇函数,则实数f x a a a x x ()=+-+=2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000 即·,∴)a a a 22210100+-+==⑶周期性: ①若f(x+T)=f(x)且T ≠0(de)常数,则T 是函数f(x)(de)周期;②若f(x+a)=f(x+b) ,a 、b 为常数且a ≠b,则b- a 是函数f(x)(de)周期.1.定义 函数(de)周期性(de)定义及常用结论一般地,对于函数f(x),如果对于定义域中(de)任意一个x(de)值.若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它(de)一个周期;若f(x+a)=f(x+b)(a≠b),则f(x)是周期函数,|b-a|是它(de)一个周期;2.函数(de)周期性(de)定义及常用结论一般地,对于函数f(x),如果对于定义域中(de)任意一个x(de)值.若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它(de)一个周期;若f(x+a)=f(x+b)(a≠b),则f(x)是周期函数,|b-a|是它(de)一个周期;3.有关对称性(de)几个重要结论一般地,对于函数f(x),如果对于定义域内(de)任意一个x(de)值.若f(x+a)=f(b-x),则函数f(x)(de)图象关于直线x=a+b2对称.特别地,若f(a+x)=f(a-x),则函数f(x)(de)图象关于直线x=a对称;若f(a+x)=-f(b-x),则函数f(x)(de)图象关于点(0, a+b2)中心对称.特别地,若f(a+x)=-f(a-x),则函数f(x)(de)图象关于点(a,0)中心对称.4.对称性与周期性之间(de)关系周期性与对称性是相互联系、紧密相关(de).一般地,若f(x)(de)图象有两条对称轴x=a和x=b(a≠b),则f(x)必为周期函数,且2|b-a|是它(de)一个周期;若f(x)(de)图象有两个对称中心(a,0)和(b,0)(a≠b),则f(x)必为周期函数,且2|b-a|为它(de)一个周期;若f(x)(de)图象有一条对称轴x=a和一个对称中心(b,0)(a≠b),则f(x)为周期函数,且4|b-a|是它(de)一个周期.⑷对称性:①若f(x+a)=f(b-x),则函数f(x)关于直线x=2ba+对称;( 即:‘一均二等’(de)原则)②若函数y=f(x+a)和函数y=f(b-x),则函数y=f(x+a)和函数y=f(b-x)关于直线x=2ab-对称.③你还知道函数y=f(x)关于直线x=0(即y轴),直线y=0(即x轴),原点.9、函数(de)解析表达式(1).函数(de)解析式是函数(de)一种表示方法,要求两个变量之间(de)函数关系时,一是要求出它们之间(de)对应法则,二是要求出函数(de)定义域.(2)求函数(de)解析式(de)主要方法有: 1) 凑配法2) 待定系数法 3) 换元法 4) 消参法10.函数最大(小)值(定义见课本p36页)○1 利用二次函数(de)性质(配方法)求函数(de)最大(小)值 ○2 利用图象求函数(de)最大(小)值 ○3 利用函数单调性(de)判断函数(de)最大(小)值: 如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 例题:1.求下列函数(de)定义域:⑴y =⑵y =2.设函数f x ()(de)定义域为[]01,,则函数f x ()2(de)定义域为_ _3.若函数(1)f x +(de)定义域为[]-23,,则函数(21)f x -(de)定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数(de)值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +(de)解析式 7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = .8.设()f x 是R 上(de)奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上(de)解析式为9.求下列函数(de)单调区间:⑴ 223y x x =++ ⑵y ⑶ 261y x x =--10.判断函数13+-=x y (de)单调性并证明你(de)结论.11.设函数2211)(xx x f -+=判断它(de)奇偶性并且求证:)()1(x f xf -=.。
高一数学必修一 - 函数图像知识点总结
高一数学必修一 - 函数图像知识点总结函数图像是数学中的重要概念,它能帮助我们更直观地理解数学函数的特点和行为。
以下是高一数学必修一中与函数图像相关的知识点总结。
1. 函数的定义函数是一种特殊的数学关系,它将一个集合的元素映射到另一个集合的元素上。
函数通常用符号表示为“y = f(x)”,其中x是自变量,y是因变量。
函数图像是函数在平面直角坐标系上的图形表示。
2. 函数图像的基本性质函数图像的基本性质包括定义域、值域、奇偶性和周期性。
- 定义域:函数的自变量取值范围。
- 值域:函数的因变量取值范围。
- 奇偶性:函数关于y轴对称或关于原点对称。
- 周期性:函数图像在横轴方向上的重复性。
3. 常见函数图像高一数学必修一中常见的函数图像有直线、二次函数、指数函数和对数函数。
- 直线:线性函数图像为一条直线,表达式一般为“y = kx + b”,其中k为斜率,b为截距。
- 二次函数:二次函数图像为抛物线,表达式一般为“y = ax^2+ bx + c”,其中a、b、c为常数。
- 指数函数:指数函数图像是以底数大于1的指数为自变量的函数图像。
- 对数函数:对数函数图像是指数函数的反函数,用于解指数方程和指数不等式。
4. 函数图像的变换函数图像可以通过平移、伸缩和翻转等变换得到新的函数图像。
- 平移:将函数图像沿着横轴或纵轴平行地移动。
- 伸缩:将函数图像在横轴或纵轴上进行拉伸或压缩。
- 翻转:将函数图像关于横轴或纵轴进行翻转。
5. 函数图像的应用函数图像在实际应用中有广泛的应用,例如经济学中的需求曲线、物理学中的运动曲线等。
以上是高一数学必修一中与函数图像相关的知识点总结。
希望这份总结能够帮助你更好地理解和应用函数图像。
高一数学函数图像专题(含详解)
高一数学函数图像专题(含详解)一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
在数学中,我们用函数来描述数量之间的关系。
二、函数图像的绘制为了更好地理解函数的性质和规律,我们可以通过绘制函数图像来进行观察和分析。
绘制函数图像时,我们需要确定函数的定义域和值域,并选取一些代表性的输入值,计算出对应的输出值,然后将这些点连接起来,即可得到函数图像。
三、常见函数图像1.直线函数图像:直线函数的图像通常是一条直线,可以通过确定直线的斜率和截距来确定。
2.平方函数图像:平方函数的图像是一条抛物线,开口的方向由平方项的系数决定,开口向上为正,开口向下为负。
3.正弦函数图像:正弦函数的图像是一条波浪形曲线,表现周期性的特点。
4.指数函数图像:指数函数的图像呈现出递增或递减的趋势,斜率随着自变量的增大而增大或减小。
5.对数函数图像:对数函数的图像通常是一条曲线,呈现出随着自变量的增大,函数值增长趋缓的特点。
四、函数图像的性质1.奇偶性:函数图像关于原点对称的称为奇函数,图像关于y轴对称的称为偶函数。
2.单调性:函数图像上的点随着自变量的增大或减小而具有递增或递减的趋势。
3.零点与极值点:函数图像与x轴相交的点称为零点,图像上的极值点包括最大值和最小值。
五、总结函数图像是研究函数性质和规律的重要工具。
通过绘制函数图像,我们可以直观地了解函数的特点,并进行更深入的分析和推理。
在研究函数图像时,需要注意函数的定义域、值域以及一些常见函数的特点和性质。
这对于理解和应用函数概念都非常重要。
以上是关于高一数学函数图像专题的详细解释和内容总结,希望对你有所帮助。
高一数学必修一函数图像知识点总结
高一数学必修一函数图像知识点总结函数图像是高中数学中的重要内容之一,它是数学与实际问题相结合的桥梁。
在高一数学必修一中,我们学习了函数图像的基本概念、性质和绘制方法。
下面将对这些知识点进行总结。
一、函数图像的基本概念函数是一种特殊的关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数图像是函数在坐标系中的表示,横坐标表示自变量,纵坐标表示因变量。
函数图像可以用来描述实际问题中的变化规律,比如温度随时间的变化、销售额随月份的变化等。
二、函数图像的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
通过观察函数图像可以确定函数的定义域和值域。
2. 奇偶性:如果函数满足$f(x) = f(-x)$,则称该函数为偶函数;如果函数满足$f(x) = -f(-x)$,则称该函数为奇函数。
通过观察函数图像可以确定函数的奇偶性。
3. 单调性:如果函数在定义域上递增,那么称该函数为递增函数;如果函数在定义域上递减,那么称该函数为递减函数。
通过观察函数图像可以确定函数的单调性。
4. 最值和极值:函数的最大值和最小值称为最值,函数的极大值和极小值称为极值。
通过观察函数图像可以确定函数的最值和极值。
三、函数图像的绘制方法1. 函数关系式法:如果已知函数的关系式,可以根据关系式中的变量值来绘制函数图像。
比如,已知函数$y = 2x + 1$,可以取不同的$x$值计算对应的$y$值,然后将这些点连成一条直线。
2. 函数性质法:如果已知函数的性质,可以根据性质来绘制函数图像。
比如,已知函数是偶函数,且在定义域上递增,可以根据这些性质来确定函数的图像形状。
3. 函数变换法:通过对已知函数进行平移、伸缩、翻转等变换,可以得到新的函数图像。
比如,对函数$y = x^2$进行平移变换,可以得到函数$y = (x-2)^2$的图像,它在$x$轴上向右平移了2个单位。
四、常见函数图像1. 一次函数:一次函数的图像是一条直线,可以表示为$y = kx + b$,其中$k$为斜率,$b$为截距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一函数图像知识点总结
>
高一数学必修一函数图像知识点
知识点总结
本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。
函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。
所以理解了前面的几个知识点,函数的图象就迎刃而解了。
一、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法
二、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明方法
3、函数的周期性的判定方法
三、函数的图象
1、函数图象的作法(1)描点法(2)图象变换法
2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法
本节是段考和高考必不可少的考查内容,是段考和高考考查
的重点和难点。
选择题、填空题和解答题都有,并且题目难
度较大。
在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。
多考查函数的单调性、最值和图象等。
误区提醒
1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必须用区间来表示,不能用集合或不等式,单
调区间一般写成开区间,不必考虑端点问题。
3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。
4、判断函数的奇偶性,首先必须考虑函数的定义域,如果
函数的定义域不关于原点对称,则函数一定是非奇非偶函数。
5、作函数的图象,一般是首先化简解析式,然后确定用描
点法或图象变换法作函数的图象。