高速铁路隧道监控量测方案
高速铁路隧道监控量测新方法
高速铁路隧道监控量测新方法作者:徐其学来源:《城市建设理论研究》2013年第35期摘要:本文通过合肥至福州铁路客运专线(闽赣段)土建工程HFMG-1标段第四项目部施工隧道工程监控量测的实例,详细介绍了全站仪自由设站方式进行三维非接触量测的方法原理、技术要求、数据的采集及计算原理和处理分析,以此掌握围岩动态和支护工作状态,综合分析监控量测,从而及时调整隧道的支护方案,保证围岩稳定和施工安全,并指出了该方法的优越性和应用前景。
关键词: 非接触量测;监控量测;全站仪;新方法中图分类号:U238 文献标识码:A1概述合肥至福州铁路客运专线(闽赣段)土建工程HFMG-1标段第四项目部施工范围:DK376+759~DIK386+366(含断链61.949米),线路长9.669正线公里。
主要包括七座隧道,合计3043延米。
其中Ⅴ级围岩2028延米(含明洞),Ⅳ级围岩695延米,Ⅲ级围岩320延米。
线路所经地区地层岩性复杂,出露下元古界~第三系沉积岩及变质岩、各时期的岩浆岩和第四系松散地层。
多为偏压浅埋隧道,设计采用了复合式衬砌形式。
根据规范要求,设计的初期支护形式是否可以满足围岩的变形压力,模筑砼最佳浇注时间都是要通过监控量测来确定。
隧道开挖后,对已开挖裸露的围岩及时进行初期支护,对初期支护的受力进行监控量测。
通过观测拱顶沉降与周边位移变化情况,掌握围岩和支护的变化信息并对量测数据运用概率论与数理统计学原理,通过数学公式计算进行分析评估,并预测出围岩以后的发展趋势,以达到以下目的:(1)了解隧道围岩、支护变形情况,以便及时调整支护形式,保证开挖坑道的稳定。
(2)依据量测数据的分析资料采取相应的支护措施和应急措施,保证施工安全。
(3)为二次衬砌施工提供依据。
然而,传统的隧道监控量测方法,周边位移一般采用钢尺式收敛计进行观测,拱顶下沉一般采用水准仪、水平仪、钢尺或测杆进行观测。
虽然该方法具有成本低、操作简单和适应恶劣施工环境的优点,但在隧道现场实施过程中存在以下问题:(1)监控量测工作难度大,由于双线设计,隧道半径大,拱脚部位的收敛往往无法量测,拱顶挂尺也非常困难;(2)量测时间长,施工干扰大,虽然监控量测已作为一道工序被安排在施工组织设计中,但还是希望时间越短越好;(3)隧道进入中间段后,通风问题、照明问题、洞内不平整及积水问题往往成为制约监控量测工作的重要因素。
高速铁路隧道视频监控系统方案
高速铁路隧道视频监控系统方案1. 概述随着高速铁路的发展,对隧道的安全管理越来越重要。
为了有效监控隧道的情况,我们建议使用视频监控系统来提升隧道的安全性和管理效率。
2. 方案设计2.1 监控摄像头布置在隧道内部,我们建议安装高清晰度的监控摄像头。
根据隧道的长度和特点,我们建议每隔一定距离安装一个监控摄像头,确保对整个隧道的监控覆盖。
2.2 视频传输与存储为了实现实时监控,建议使用高带宽的网络进行视频传输。
视频可以传输到指挥中心或者相应的安全监控室,以便操作人员随时观看隧道内的情况。
同时,为了保证监控数据的安全性和完整性,我们建议将视频数据进行实时备份和存储。
这样可以在需要时方便地检索和回放,为事故调查和安全管理提供支持。
2.3 视频分析与报警视频监控系统应该具备智能分析和报警功能。
通过人脸识别、车辆识别等技术,可以准确判断隧道内的异常情况,并及时发出报警。
这有助于提高对隧道的监控效果并减少人工干预的工作量。
3. 系统架构视频监控系统的整体架构包括监控摄像头、视频传输设备、存储设备、指挥中心、安全监控室等组成部分。
各部分需要具备互联互通的能力,以实现系统的高效运转。
4. 项目进度与投资根据项目规模和要求,建议制定详细的项目进度计划,并确定适当的投资预算。
项目进度应考虑到设备采购、设备安装、系统调试等环节,并合理安排工作顺序和时间。
5. 结论通过使用高速铁路隧道视频监控系统,可以提升隧道的安全管理水平,减少事故风险,并提高应急处置能力。
在实施过程中需要注意系统的稳定性和可靠性,并定期进行维护和升级,以保证系统的长期运行效果。
以上是关于高速铁路隧道视频监控系统方案的概述。
详细的实施细节和技术要求可以根据具体情况进行进一步讨论和制定。
如何进行隧道工程施工测量与监控
如何进行隧道工程施工测量与监控隧道工程是一项复杂而关键的建筑工程,其施工测量与监控是确保项目质量和安全的重要环节。
本文将介绍如何进行隧道工程施工测量与监控,以帮助读者全面了解该过程。
1. 测量前的准备工作在开始施工测量之前,必须进行一系列准备工作。
首先,需要制定详细的施工测量方案,包括测量方法、仪器设备选择和布置等。
其次,需要确定测量控制的基准点,以确保测量结果的准确性和可靠性。
同时,还需要对测量现场进行调查和踏勘,了解地形地貌、地质构造等因素,以便合理确定测量方案。
2. 施工测量的内容和方法隧道工程施工测量包括纵向测量、横断面测量、隧道轴线测量和管片安装测量等。
其中,纵向测量主要是对隧道的纵向坡度、纵断面的几何尺寸进行测量;横断面测量主要是对隧道断面的几何形状进行测量;隧道轴线测量主要是测量隧道的轴线位置和曲线半径等参数;管片安装测量主要是对管片的安装位置、水平度和垂直度进行测量。
在进行测量时,可以采用传统的测量方法,如全站仪和测量尺等,也可以使用现代化的激光测量仪器、GNSS定位系统等。
3. 测量数据的处理和分析在进行施工测量后,需要对测量数据进行处理和分析。
首先,需要对测量数据进行检查和校正,确保数据的准确性和可靠性。
其次,需要对测量数据进行处理,计算出相应的测量结果,如隧道的几何尺寸、轴线位置等。
最后,需要对测量结果进行分析,与设计要求进行比对,以确定施工的合格性和进展情况。
4. 施工监控的方法和技术为了保证隧道工程的安全和质量,需要进行施工监控。
施工监控主要包括沉降监测、应力监测和变形监测等。
沉降监测是通过测量隧道或周围地面的沉降量,来判断隧道开挖对地表的影响;应力监测是通过测量隧道内部的应力变化,来评估隧道结构的稳定性;变形监测是通过测量隧道断面的变形量,来确定隧道的形变情况。
为了实现施工监控,可以采用传统的监测方法,如人工测量和离散点监测等,也可以使用现代化的监测技术,如全站仪监测、激光扫描监测和遥感监测等。
京沪高速铁路隧道监控量测总结
京沪高速铁路隧道监控量测总结王洪义赵国超程安文(中国水电集团京沪高铁三标段三工区七局)摘要:目前铁路隧道的设计理念是:安全、环保,尽可能少的破坏原始地貌,隧道一般遵循“早进晚出”,所以隧道的进口和出口埋深都比较浅。
为保证工程的安全进行,质量可靠,监控量测是施工中重要的一个工作。
本文阐述了京沪高速铁路三标段金牛山隧道监控量测的施测方法,掌握围岩动态和支护工作状态,综合分析监控量测,从而及时调整隧道的支护方案,保证围岩稳定和施工安全。
关键词:监控量测、拱顶沉降、水平收敛、地表沉降、全站仪、电子水准仪、非接触测量1 工程概况金牛山隧道位于山东省泰安市境内,隧道长为1905m,隧道内为3‰和12‰的上坡。
隧道开挖半径为7.48m、净空高为11.91m,处于丘陵缓坡地带,地形起伏较大,围岩大部分为Ⅳ、Ⅴ类弱风化围岩。
隧道进口的最小埋深只有2.1m,由于隧道的进口和出口埋深较浅,所以在进口和出口45m 施工范围内采用双侧壁导坑法施工。
在隧道中部跨京福高速公路段,埋深只有9.28m,车流量大。
为保障高速公路安全畅通,对隧道下穿高速公路段的洞内和地表进行加密监控量测。
2 监控量测的目的由于金牛山隧道埋深很浅,为保证施工安全及结构的长期稳定性,监控量测工作非常必要。
在隧道施工过程中,用现场量测的数据对围岩支护体系的稳定状态进行检测,确认支护参数和施工方法的准确性,为初期支护和二次衬砌设计参数的调整提供依据,验证支护结构效果。
监控工程对周围环境的影响,积累量测数据,为信息化设计与施工提供依据,是确保施工及运营安全、指导施工程序、便利施工管理的重要手段,监控量测是施工过程中必不可少的施工工序。
通过量测了解该工程条件下所表现、反映出来的一些地下工程规律和特点,为今后类似工程或工法本身发展提供借鉴、依据和指导作用。
3 监控量测的项目(1)洞内观察(2)水平相对净空变化值的量测(3)拱顶下沉量测(4)地表下沉量测4 量测断面间距和量测频率(1)根据设计图纸确定拱顶下沉及周边收敛间距如下表(3)地表下沉量测断面间距如下表5 监控量测的方法和实施情况5.1、洞内监控量测的实施5.1.1监测点的布置根据相关图纸和相关技术要求,隧道有以下三种开挖方式,根据开挖方式的不同,有三种测点布置方式,其示意图如下:为能对围岩及支护结构的性态作较全面的分析,并且获得完整数据,同时又使各项数据间能相互比较、相互验证,因此,地表监测点与洞内拱顶沉降点及水平净空收敛点均布置在同一断面上。
高速铁路隧道施工中监控量测探析
高速铁路隧道施工中监控量测探析发表时间:2015-05-22T09:54:36.977Z 来源:《工程管理前沿》2015年第6期供稿作者:刘亮亮[导读] 在高速铁路施工的过程中面对的地形复杂多样,因此为了提高施工安全,保证施工质量,应该充分重视监控量测工作。
刘亮亮中铁二十局集团第二工程有限公司沪昆项目贵州省安顺市 561300【摘要】监控在隧道施工的过程中具有重要意义,通过进行监控量测可以对施工中的各项数据进行及时收集,对于施工中出现的问题能够及时反馈,提出解决措施,保证工程质量和进度。
【关键词】高速铁路隧道施工监控量测一、监控量测的目的在隧道施工的过程中进行现场监控量测主要是为了能够对围岩和支护系统的情况进行了解,能够为之后的调整工作提供数据支持,通过对检测数据的归纳、分析及时作出处理决策,使施工设计和施工方案更加优化,不断提高隧道施工的质量,保证施工进度。
围岩监控量测是在隧道施工中进行监控量测的一项重要内容,对于保障施工质量和施工安全具有重要的意义。
在隧道施工的过程中进行现场监控量测能够对施工情况进行实时了解,能够在保证施工安全和施工质量的情况下,根据实际的施工情况,调整施工进度,提高施工速度,同时也能够积累监控量测数据资料,不断改进隧道施工的技术。
在高速铁路施工的过程中面对的地形复杂多样,因此为了提高施工安全,保证施工质量,应该充分重视监控量测工作。
二、现场检测项目及要求现场检测项目根据其检测的必要性可以分为两类:必测项目(A类)、选测项目(B类)。
检测项目的确定使根据设计要求所制定的,并且在正是进行检测之前会制定详细的检测实施方案。
必测项目是隧道施工中重要的在整个施工过程中至关重要的项目,主要包括:洞内外观察、拱顶下沉量测等多个项目。
而选测项目是必测项目的辅助和不中项目,是要根据具体的施工情况进行判定的,为的是加强对整个施工过程的检测,提高施工质量。
选测项目包括:地表下沉量测、支护和衬砌应力量测、围岩弹性波速度测试等。
下穿高速铁路监测方案范文
宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监控方案上海先科桥梁隧道加固检测工程技术有限公司二0一四年元月宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监测方案编写:审核:批准:上海先科桥梁隧道加固检测工程技术有限公司2014年1月目录1. 工程概况 (2)2. 监测意义和目的 (3)3. 作业依据和原则 (4)3.1 作业依据 (4)3.2 编制原则 (4)4. 变形监测内容 (5)5. 监测方法技术 (5)5.1 起算数据系统 (5)5.2 监测等级 (6)5.3 平面基准点 (6)5.3.1 基准点布设 (6)5.3.2 平面基准点观测 (7)5.4 沉降基准点 (7)5.4.1 沉降基准点布设 (7)5.4.2 沉降基准点测量 (8)5.5 平面监测点 (9)5.5.1 平面监测点布设 (9)5.5.2 平面监测点测量 (10)5.6 沉降监测点 (10)5.6.1 沉降监测点布设 (10)5.6.2 沉降监测点测量 (10)6. 监测计划及频率 (11)7. 监测报警值 (12)8. 监控工期 (12)9. 资料整理与成果提交 (13)9.1 资料整理 (13)9.2 信息传递 (13)9.3 成果提交 (13)10. 人员组织及设备投入 (13)10.1 人员配置 (13)10.2 仪器配备 (14)11. 质量保证体系 (16)11.1 项目组织机构 (16)11.2 质量保证措施 (16)11.3 服务与承诺 (17)宁波市高速公路江北连接线(污水管道)工程下穿杭甬高铁监测方案1. 工程概况本工程位于宁波市江北区慈城镇民丰村附近,南侧寺慈线乡道,北侧为S61省道,西侧为G15沈海高速公路.本工程下穿杭甬高铁宁西特大桥里程为K291+384处,位于369#和370#桥墩之间。
详见图1-1、图1-2 工程位置关系图。
图1-1 工程位置关系图图1-2 公路与杭甬高铁位置关系图污水管道外径120cm,壁厚21cm,内径80cm,埋设深度6米,(管顶距地面距离),总长为60米。
隧道工程技术知识培训之隧道监控量测
拱顶测点和1条水平测线
拱顶测点和2条水平测线、 2条斜测线
CD或CRD法拱顶测点和 测线
四、监控量测作业及方法
必测工程
3、地表沉降监测 可采用水准仪或全站进行测量
地表沉降点的埋设断面间距要根据隧道埋深而设置〔表1〕,在洞口开挖影响范 围之外设置基准点,至少设置两个,以便相互验证基准点的稳定性。
表1 地表沉降测点纵向间距
洞外观察重点在洞口段和洞身浅埋段,记录地表开裂、地形变形、边坡 及仰坡稳定状态、地表渗水等情况,假设有地表构筑物,也应进行观察。
四、监控量测作业及方法
必测工程
2、拱顶下沉、净空变化
可采用接触式或非接触式量测。 接触式:拱顶下沉使用精密水准仪搭配铟钢尺进行量测,净空变化使用 收敛计。 拱顶下沉量测时,使用水准仪测量拱顶测点的高程。前次高程与本次量 测高程进行比较,高差即 为下沉值 净空变化量测,使用收敛计测量两测点之间的距离。前次数据与本次数 据进行比较,差值即为收敛值
U>2U2B/3
U>36.7mm
U>11.6mm
在隧道开挖过程中,当实测最大位移值超过极限相对位移值, 隧道可能发生失稳破坏。事实上,由于隧道及地下工程地质 条件、环境条件、开挖方式、支护形式复杂多变,极限位移 的精确确定是十分困难的,因此采用实测最大位移和极限位 移比较难以操作,一般情况下,设计图纸给出了隧道初期支 护的预留变形量,为了确保围岩和初期支护不侵入二次衬砌 空间,并保证二次衬砌后,建筑界限准确,可将隧道的设计 预留变形量作为极限相对位移进行控制。本工程设计单位明 确给出了设计预留变形量,因此我们采取设计预留变形量作 为极限相对位移作为控制基准。
最好量测
B<H0<2B
重要
必须量测
H0<B 非常重要 必须列为主要量测项目
隧道监控测量方案
隧道监控测量方案1. 引言隧道是一个封闭的道路系统,通常位于地下或山脉中,连接两个地点。
由于隧道的特殊性,其监控和测量是非常重要的。
监控隧道可以帮助确保隧道的安全性和可靠性,并提供实时的数据以便进行维护和改进。
本文档提出了一个隧道监控测量方案,旨在提供一种有效的方法来监控和测量隧道的关键参数。
2. 监控设备2.1 摄像头为了实现对隧道的实时监控,我们建议安装摄像头。
摄像头可以用于监测隧道的交通状况和行人活动。
建议在出入口和重要位置安装摄像头以获得最佳监控效果。
摄像头应具备高分辨率和低光照下的良好表现,以确保清晰的图像质量。
2.2 温度传感器温度是隧道内部环境的一个重要参数。
安装温度传感器可以实时监测隧道内的温度变化。
这对于检测火灾或其他温度异常非常有用。
温度传感器应该具有高精度和可靠性,并能够与监控系统实时通信。
2.3 烟雾传感器烟雾是隧道内部可能发生的火灾的一个重要指标。
安装烟雾传感器可以及时检测到隧道内的烟雾,并发出警报。
烟雾传感器应具有高度敏感性和可靠性,以确保在火灾发生之前及时发出警报。
2.4 气体传感器隧道中的气体浓度是另一个需要监控的重要参数。
高浓度的有害气体会对隧道使用者的健康产生危害。
安装气体传感器可以实时监测隧道中气体浓度的变化,并及时采取措施。
气体传感器应具有高灵敏度和稳定性,能够准确地测量各种气体。
3. 数据采集和存储为了实现对隧道的监控和测量,采集和存储数据是至关重要的。
采集传感器数据可以通过有线或无线方式进行。
建议使用无线传感器网络来收集传感器数据,并配备数据收集节点。
数据收集节点可以将采集到的数据传输到中央服务器进行存储和分析。
4. 数据分析和展示隧道监控数据的分析和展示对于及时发现问题和做出决策非常重要。
建议使用数据分析和可视化工具来对采集到的传感器数据进行处理。
通过分析数据,可以识别出潜在的问题和异常,并通过可视化界面向用户呈现。
5. 报警系统隧道监控中的报警系统是一项关键功能。
高速铁路隧道施工监控量测技术
高速铁路隧道施工监控量测技术摘要:高速铁路隧道施工环境较为复杂恶劣,在实际施工作业中,隐藏着较多的安全隐患。
通过先进的测量工艺,全面系统地对隧道进行实时监测,是确保隧道施工的安全运行的重要保障。
本文针对铁路隧道的监控量测进行了较为系统的论述,对于相关的铁路隧道的监控量测设计及应用具有一定的指导意义。
关键词:高速铁路隧道工程监控量测隧道工程是高速铁路的重要组成,尤其是在西南地区,如西成高铁隧道占比高达55%。
高速铁路隧道工程施工工艺复杂,施工环境恶劣,受地质情况影响,存在很多不可预知的因素。
在隧道施工中,开挖、支护等作业都会对隧道围岩的稳定性产生影响,监控量测就是监视围岩稳定,检验设计与施工是否合理及安全的重要手段,是新奥法进行施工的重要组成部分。
借助有效的监控量测技术,施工单位能够获取准确的围岩及支护结构受力情况,对围岩在施工中的动态变化进行分析,评价其稳定性,进而对隧道支护体系进行相应的调整优化,切实保障隧道工程的施工安全。
1.监控量测的目的现场监控量测是在隧道施工过程中,用各种类型的仪器,对围岩和支护系统的力学行为以及它们之间的力学关系进行监控量测。
通过现场监控量测把量测信息及时反馈到设计和施工中去,对初期支护,二次衬砌的施工方法做出修正,可以达到安全、经济、快速的施工目的。
通过现场监控量测,能够验证支护结构效果,确认支护参数和施工方法的准确性,并为调整支护参数和施工方法提供依据;确定二次衬砌施作时间;监控工程对周围环境的影响;积累量测数据,为信息化设计与施工提供依据;能够确保施工安全及结构的长期稳定性。
监控量测也是施工管理中的一个重要环节,是施工安全和质量的保障。
2.监控量测项目监控量测项目根据隧道的特点和难点可分为必测项目和选测项目两大类。
2.1必测项目必测项目主要包括:洞内外观察、拱顶下沉、净空变化、地表沉降、拱脚下沉、拱脚位移等。
必测项目是高速铁路隧道施工中必须进行的常规量测项目,是为了在设计、施工中确保围岩稳定,并通过判断围岩的稳定性和支护结构工作状态来指导设计、施工的经常性量测。
高速铁路隧道监控量测实施细则
隧道监控量测实施细则编制:审核:审批:二零一二年八月目录第一章总则 (1)第二章工程概况 (1)第三章监控量测技术方案制定依据 (1)第四章编制监控量测实施细则的目的 (2)第五章监控量测管理体系及作业程序 (2)一、组织机构及职责范围 (3)三、保证措施 (5)四、作业程序 (5)第六章监控量测仪器配置 (5)第七章监控量测技术要求 (6)一、监控量测项目 (6)二、监控量测断面及测点布置 (8)三、监控量测手段及频率 (16)四、监控量测控制基准 (18)五、监控量测的方法 (18)六、监控量测数据的分析 (21)七、二次衬砌施做作时机 (25)第八章工程安全性评价 (26)一、工程安全分级及应对措施 (26)二、工程安全性评价流程 (27)第九章监控量测的数据采集、反馈与工程对策 (27)一、数据采集、上传 (27)二、信息反馈 (28)三、工程对策 (32)第十章量测现场实施要点 (33)第十一章监控量测数据提交方式 (34)第十二章监控量测验收资料 (34)隧道监控量测实施细则第一章总则1、为规范隧道施工的监控量测,把监控量测作为关键工序列入现场施工组织,并在施工中严格实施,确保隧道施工安全,特制定本细则。
2、本细则适用于修建的新建XX铁路XX标段隧道监控量测。
第二章工程概况新建XX铁路站前工程XX标起止里程为:本标段共有隧道:双线19115延长米/10座,占线路长50.68%;其中L>4km的隧道有4.615/1公里/座,2km<L≤3km隧道有4.72/2公里/座,1km<L≤2km隧道有1.767/1公里/座,L<1km隧道有3.02/6公里/座。
第三章监控量测技术方案制定依据1、《铁路隧道监控量测技术规程》(Q/CR9 218-2015);2、《高速铁路隧道工程施工技术规程》(Q/CR 9604-2015);3、《铁路隧道工程施工安全技术规程》(TB10304-2009、J947-2009);4、《高速铁路隧道工程施工质量验收标准》(TB 10753-2010);5、铁总《铁路隧道监控量测数据接口暂行规定》(工管办函﹝2014﹞75号);6、铁总《关于铁路隧道监控量测标准化管理实施意见的通知》(工管办函﹝2014﹞92号);7、铁总《关于开展铁路隧道监控量测信息系统推广应用的通知》(工管办函﹝2014﹞98号);8、《江黑铁路EPC总承包隧道施工监控量测管理办法》(江黑建设安函﹝2018﹞63号);9、监控量测设计、施工图纸、设计要求和环境、地质条件;第四章编制监控量测实施细则的目的监控量测是新奥法施工重要内容之一,应达到下列目的:1、确保施工安全及结构的长期稳定性;2、验证支护结构效果,确认支护参数和施工方法的准确性或为调整支护参数和施工方法提供依据;3、及时掌握支护施工后的变形,对围岩位移速度提供准确的预报,确定二次衬砌施作时间,同时指导下一步的开挖工序;4、监控工程对周围环境的影响;5、积累量测数据,为施工中调整围岩级别、完善设计方案及支护参数、优化施工方案及施工工艺提供依据。
谈高速铁路隧道监控量测方案设计
D K 4 6 6+ 6 6 0段 下 穿 京 福 高 速公 路 正 线 , 其 中高 速 公 路 宽度 为 3 6 m, 其 中隧道与公路匝道和正线的交角分别为 1 4 . 5 7 。 和3 6 . 7 。 , 属于斜交 。隧道 的工程地 质情况为风 化花 岗片麻 岩, 局部夹杂 角 闪岩和部分石英 , 其 中围岩 已经风化 , 尤其接 近地表埋深较浅处 节 理裂 隙较发育 , 岩石 比较破碎并有地下裂 隙水 发育 , 属Ⅳ级围岩 。
谈 高 速 铁 路 隧 道 监 控 量 测 方 案 设 计
赵
摘
君
3 0 0 2 2 2 )
( 中铁十八局集团有限公司, 天津
要: 就京沪高铁 金牛 山隧道下穿既有公路 的综合施 工技术作 为研究 内容 , 综合金 牛 山隧道 的特点 , 通过 合理 的监控 量测技术
指导施 工, 从而有效的控 制路 面沉降 , 使其满足下穿段 的沉降控制标准 , 为今 后同类工程提供 了参考 。 关键词 : 隧道 , 下穿 , 控制标准 , 监控量测
地表沉 降 水准仪 、 铟钢尺或全 站仪 隧道浅埋段或环控 要求段
率及 支护受力 可以通 过监控 量测直 观 、 快捷 的来显 示 , 可 以通 过 研究监控数据来反 映 围岩位移及 支护 受力合 理性 和可控 性 。通
本文研究之金牛山隧道位于山东省泰安市岱 岳区六郎坟村与 高新区小官庄村 之间 , 隧道进 口里程为 D K 4 6 5+3 3 5 , 出 口里 程为 D K 4 6 7+ 2 4 0 , 隧道全长 1 9 0 5 m, 隧道 内为单 面坡, 坡度 3 % 0 和1 2 % o
的上坡 , 隧道所处地形起伏较大 , 其 中隧道最大埋深为 3 5 . 3 7 m, 隧 道在里程为 D K , 1 6 6+ 2 3 0~D K 4 6 6+ 3 3 0区段下 穿京福高速公路 C匝 道, 此 区段 内埋深仅为 9 . 8 m, 属 于超浅埋 隧道 , 在D K 4 6 6+5 6 0一
隧道监控量测方案
一、工程概况1.隧道概况本标段共有隧道10座,总长度11.017Km。
隧道全部位于山东省烟台市境内,地貌形态为剥蚀丘陵,地形高低起伏,部分地段冲沟发育,基岩大部分裸露。
隧道穿越的地层岩性多为片岩、花岗岩、变质岩等,岩性变化较大。
隧道概况表见下页。
2.施工存在的风险根据设计图纸提供的地质资料,不难发现,本标段隧道施工中存在坍塌、冒顶、突水、突泥等风险。
二、监控量测目的(1)通过监控量测了解各施工阶段地层与支护结构的动态变化,把握施工过程中结构所处的安全状态,判断围岩稳定性,支护、衬砌可靠性。
(2)用现场实测的结果弥补理论分析过程中存在的不足,并把监测结果反馈设计、指导施工,为修改施工方法、调整围岩级别、变更支护设计参数提供依据。
(3)通过监控量测对施工可能产生的环境影响进行全面监控。
(4)通过监控量测进行隧道日常的施工管理,确保施工安全和施工质量。
(5)通过施工现场的监控量测,确定二次衬砌合理施作时间。
(6)通过监控量测了解该工程条件下所表现、反映出来的一些地下工程规律和特点,为今后类似工程或该工法本身的发展提供借鉴、依据和指导作用。
三、编制依据1.青荣城际铁路招标文件及新建青岛至荣城铁路工程施工图;2.青荣城际铁路Ⅳ标段指导性施工组织设计;3.铁道部颁发的规范、规程、标准:(1)《铁路隧道工程施工技术指南》(TZ204-2008);(2)《国家一、二等水准测量规范》(GB12897—2006);(3)《高速铁路工程测量规范》(TB10601-2009);(4)《工程测量规范》(GB50026-2007);(4)《铁路工程设计防火规范》(TB10063-2007 J774-2008);(5)《铁路隧道超前地质预报技术指南》(铁建设[2008]105号)。
4.青荣城际铁路建设指挥部有关要求。
四、监控量测点布置及方法根据设计提供地勘资料,本标段隧道进出口偏压、浅埋较多,部分地段线路地表有水塘,隧址区域节理裂隙发育,部分隧道内有断层、岩溶,部分地段有突水突泥隐患。
工程控制测量方案设计
工程控制测量方案设计1.背景介绍工程控制测量是指对工程项目进行测量并监控的过程。
在工程项目中,控制测量是至关重要的,它能够确保工程项目的准确性、安全性和高效性。
本文将结合某高速铁路工程项目的实际情况,设计一套完善的工程控制测量方案。
2.工程项目概况该高速铁路工程项目位于某国的东部地区,是一项重大的基础设施建设项目。
工程涉及线路长度约200公里,主要包括路基、桥梁、隧道等工程。
项目的建设对于该地区的交通发展和经济建设具有重要意义。
3.控制测量的重要性在工程项目中,控制测量是至关重要的,它能够确保工程项目的准确性、安全性和高效性。
控制测量可以用于监测施工过程中的变形、沉降、开挖等情况,进而确保工程的稳定性和安全性;同时,控制测量也可以用于监测工程质量,确保工程的施工质量符合设计要求;此外,控制测量还能够用于规划施工进度,确保工程的按时高效完成。
4.控制测量方案设计4.1控制测量目标设定针对该高速铁路工程项目,控制测量的目标包括:(1)监测路基、桥梁、隧道的变形情况,确保工程的稳定性和安全性;(2)监测工程质量,确保工程的施工质量符合设计要求;(3)规划施工进度,确保工程的按时高效完成。
4.2控制测量方案制定控制测量方案的制定包括以下几个步骤:(1)测量方法的选择:根据工程的具体情况,选择合适的测量方法,包括传统测量方法和先进的测量技术。
例如,对于路基的测量,可以采用GPS测量技术;对于桥梁的测量,可以采用激光测距仪等先进的测量设备。
(2)测量点的选取:确定测量点的位置和数量,确保可以全面、准确地监测工程的变形情况和质量情况。
(3)测量频次的确定:确定测量的频次,通常可以根据工程的重要性和施工进度的需要来确定。
(4)数据处理和分析:对于测量得到的数据进行处理和分析,根据测量结果对工程进行评价和调整。
4.3控制测量设备配置针对该高速铁路工程项目,需要配备相应的控制测量设备,包括GPS测量设备、激光测距仪、测量仪器等。
高速铁路隧道监控量测新方法
高速铁路隧道监控量测新方法高速铁路隧道监控量测新方法
随着高速铁路的不断发展,越来越多的高速铁路隧道建设投入
使用。
隧道建设的整个过程中,隧道的监控量测是一个技术难点。
因此,需要发展新的高速铁路隧道监控量测方法,以保证隧道的
安全运营。
传统的高速铁路隧道监控量测方法主要包括现场监控和定期检测。
现场监控需要专业人员定期进入隧道内进行监控,这不仅费
时费力,而且存在安全隐患。
同时,定期检测又需要使用一系列
昂贵的仪器设备,增加了建设成本。
为了解决上述问题,近年来,一些研究者开始尝试新的高速铁
路隧道监控量测方法。
其中,无人机监控是一个十分有潜力的新
方法。
无人机可以通过航拍技术进行隧道内部的监控,避免了人工进
入隧道的风险。
同时,无人机可以搭载各种传感器,比如激光雷达、红外相机、声纳等,对隧道内的物理信息进行采集,实现全
方位、多角度的监测。
通过云计算平台,无人机采集到的信息可以实时处理,提高监控效率,降低运营成本。
此外,还可以使用物联网技术对高速铁路隧道进行监控量测。
将物联网技术应用于隧道建设中,可以实时监测隧道内的温度、湿度、气压等物理信息和隧道内部的压力、形变等结构信息。
利用机器学习算法,物联网平台可以对隧道运营过程中发生的问题进行自动诊断和预警,有效减少隧道运营中的运营风险。
总之,随着技术不断进步,高速铁路隧道监控量测技术也在不断创新与升级,无人机和物联网技术的应用将为高速铁路隧道的安全运营提供更好的保障。
未来,还需不断探索和研发新的技术方法,全力保障高速铁路的建设和运营。
隧道监控量实施方案
隧道监控量实施方案隧道监控是隧道运营管理中的重要环节,对于隧道的安全运行和紧急事件的处理起着至关重要的作用。
为了有效监控隧道运行情况,提高隧道运行的安全性和效率,制定和实施科学的隧道监控量实施方案至关重要。
一、隧道监控量实施的目的。
隧道监控量实施的目的是为了全面了解隧道内部的运行情况,及时发现和处理隧道内部的异常情况,保障隧道的安全运行。
通过监控隧道的交通流量、气象情况、视频监控等手段,及时掌握隧道内部的运行情况,确保隧道的安全畅通。
二、隧道监控量实施的内容。
1.交通流量监控,通过安装车辆检测器和车牌识别设备,实时监测隧道内的车辆流量情况,及时掌握隧道的交通流量情况,为隧道的交通管理提供数据支持。
2.气象监控,安装气象监测设备,实时监测隧道内的气象情况,包括温度、湿度、风速等情况,及时预警并采取相应措施,确保隧道内部的气象环境符合安全要求。
3.视频监控,设置视频监控设备,全天候对隧道内部进行监控,及时发现隧道内部的异常情况,如车辆故障、交通事故等,为紧急事件的处理提供重要的信息支持。
4.火灾监控,安装火灾监测设备,实时监测隧道内部的火灾情况,及时报警并采取相应措施,确保隧道内部的火灾安全。
三、隧道监控量实施的要求。
1.科学性,隧道监控量实施方案应当科学合理,充分考虑隧道的实际情况和需求,确保监控手段和设备的选择和布局科学有效。
2.全面性,隧道监控量实施方案应当全面覆盖隧道内部的各个方面,包括交通流量、气象情况、视频监控、火灾监控等多个方面,确保对隧道的全面监控。
3.实时性,隧道监控量实施方案应当具有实时监控和数据传输的能力,能够及时获取隧道内部的运行情况,并能够迅速响应和处理紧急事件。
四、隧道监控量实施的建议。
1.合理布局,根据隧道的实际情况和特点,合理布局监控设备,确保监控范围全面覆盖,监控效果良好。
2.设备选型,选择性能稳定、可靠性高的监控设备,确保监控设备的稳定性和可靠性,减少监控设备的故障率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新建铁路成都至贵阳线乐山至贵阳段CGZQSG-7标段隧道监控量测方案编制:审核:批准:中铁二十局集团成贵铁路项目经理部二〇一四年三月目录一、工程概况 (1)二、编制依据 (3)三、监控量测目的 (3)四、监控量测组织机构 (4)五、监控量测组织机构 (4)六、信息化基础建设及人员仪器配备 (4)七、监控量测技术要求 (7)7.1 监控量测断面及测点布置原则 (9)7.2 隧道施工过程中洞内外观察 (10)7.3 拱顶下沉及周边收敛 (11)7.4 浅埋隧道地表沉降 (12)7.5 必测项目量测频率 (12)八、监控量测的具体方法 (13)九、围岩稳定性的综合判别及管理等级要求 (13)十、量测数据整理、分析及信息化应用 (15)十一、监控量测信息反馈及工程对策 (16)十二、质量安全保证措施 (18)一、工程概况我标段处于四川省宜宾市长宁县、江安县和兴文县境内,自D2K176+315~DK217+684.586,线路全长41.37km,管段内包含隧道10座,共计18.447km,其中猫鲁寺出口有一段2102米的平导,概括如下:黄陵坡隧道:总长1560米。
隧道位于宜宾市长宁县黄陵坡,为川南红层丘陵地貌,黄陵坡隧道岩性主要是泥岩和砂岩,属于低瓦斯隧道;测段地震动峰值加速度为0.10g,地震动反应谱特征周期为0.40S。
围岩砂岩泥岩较软弱,岩层产状较平缓,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌、冒顶现象,最大埋深127m,地下水中等发育。
洞身多处浅埋,尤其DK181+700沟槽内,厚0-14米,该处设计标高至地表仅11米,为VI级围岩。
隧道洞身泥岩所占比例很大,且局部弱膨胀性,遇水易软化。
为VII 度地震区,工程地质条件较差。
杨家咀隧道:总长310米。
隧道位于宜宾市长宁镇、老翁镇分界处杨家咀,为川南红层丘陵地貌。
测段地震动峰值加速度为0.10g。
地震动反应谱特征周期为0.40S。
隧道最大埋深25米,基岩为软质岩且节理裂隙发育,施工中支护不及时可能引起洞内坍方、冒顶。
兴隆坪隧道:总长2803米。
隧道位于宜宾市老翁镇百香坡村至学堂湾,为川南红层丘陵地貌,测段地震动峰值加速度为0.10g,地震动反应谱特征周期为0.40S。
兴隆坪隧道属于高瓦斯隧道。
,围岩砂岩泥岩较软弱,岩层产状较平缓,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌现象。
进口仰坡顺层。
洞身最大埋深60米,D2K185+340-D2K185+540为隧道浅埋段,埋深1-18米,D2K187+390-D2K187+440为隧道浅埋段,埋深8-20米,且沟槽内多为水田,岩层裂隙发育,隧道涌水量较大,VII度地震区。
总体来说,隧道工程地质条件差。
玛瑙山隧道:总长3010米。
位于宜宾市江安县底蓬镇柏杨坪村至大井镇黄桷湾,为低山—丘陵地貌,测段地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35S。
属于低瓦斯隧道。
DK194+900—DK195+100,坡面上分布有大块砂岩,砂岩夹泥岩砖红色,块体大小以1-2米为主。
隧道最大埋深250米。
隧道岩层产状较平缓,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌、冒顶现象。
黄桷湾:总长550米。
隧道位于宜宾市江安县底蓬镇推推湾,为川南红层丘陵地貌。
隧道进出口岩层缓倾角,节理裂隙发育,地下水较发育,隧道顶板稳定性差。
隧道大部分浅埋,最大埋深35米,最新埋深0米,岩层层理产状较平缓,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌、变形。
隧道洞身工程地质条件较差。
马家沟隧道:总长390米。
隧道位于宜宾市江安县大井镇马家沟村,为川南红层丘陵地貌。
测段地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35S,沿线场地土类型为中硬土,场地类别为II类,设计地震分组为第一组。
隧道岩层层理产状较平缓,节理裂隙发育,地下水较发育,隧道顶板稳定性差,隧道大部分浅埋,最大埋深55m。
银盘坡隧道:总长1739米。
隧道位于宜宾市江安县大井镇银盘坡,为川南红层丘陵地貌,测段地震动峰值加速度为0.05g。
地震动反应谱特征周期为0.35S。
隧道岩层层理产状较平缓,节理裂隙发育,地下水发育,隧道顶板稳定性差,可能发生掉块、坍塌、变形问题,出口右侧开挖顺层,为低瓦斯隧道。
DK201+880-DK202+000最小埋深约14米,DK202+490-DK202+540最小埋深约为16米。
中项山隧道:总长3632米。
隧道位于江安县仁和乡中项山,为低山,丘陵地貌,测段地震动峰值加速度为0.05g。
地震动反应谱特征周期为0.35S。
属于低瓦斯隧道。
围岩泥质砂岩夹泥岩,岩层缓倾,岩质较软弱,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌,冒顶现象。
洞身最大埋深约395米,工程地质条件一般。
赶场坝隧道:总长148米。
隧道位于宜宾市五星乡赶场坝,为川南红层丘陵地貌,测段地震动峰值加速度为0.05g。
地震动反应谱特征周期为0.35S。
围岩泥质砂岩夹泥岩,岩层缓倾,岩质较软弱,节理裂隙发育,隧道开挖后,拱顶围岩稳定性差,易发生掉块、坍塌,冒顶现象。
洞身最大埋深22米,右侧开挖顺层,工程地质条件较差。
猫鲁寺隧道:总长4295米。
隧道位于宜宾市兴文县莲花镇水栏村至麒麟坡,为低山、丘陵地貌。
测段地震动峰值加速度为0.05g。
地震动反应谱特征周期为0.35S。
根据测气结果,结合隧道深埋和岩性综合分析,隧道里程D1K215+100—D1K216+900(对应平导里程D1K215+000-D1K216+910)段为高瓦斯,其余段综合判定为低瓦斯;隧道最大埋深192米;出口平导里程PD1K217+672—PD1K215+570,长2102米。
猫鲁寺隧道在D1K213+720—D1K213+758段下穿公路,加强地面沉降观测。
二、编制依据(1)《铁路瓦斯隧道技术规范》(TB10120-2002);(2)《高速铁路隧道工程施工技术指南》(铁建设[2010]241号);(3)《铁路隧道工程施工安全技术规程》(TB10304-2009);(4)《铁路隧道监控量测技术规程》TB10121-2007(5)《关于进一步明确软弱围岩及不良地质铁路隧道设计施工有关技术规定的通知》(铁建设(2010)120号)(6)《新建成都至贵阳铁路乐山至贵阳段站前工程指导性施工组织设计》;(7)《高速铁路隧道工程施工质量验收标准》TB10753-2010;(8)各隧道相关设计文件。
三、监控量测目的通过隧道监控量测信息化管理,有效指导隧道施工,确保隧道施工安全,杜绝因监控量测管理不到位而造成人员伤亡的安全事故,尤其要杜绝施作初期支护后因监控量测不到位而造成的“关门”事故。
杜绝因管理不到位造成工程周边影响,保证监测数据的真实性和及时性。
四、 监控量测组织机构项目部组建由项目经理、总工、安全总监、生产副经理牵头,项目工程部长、安质部长、隧道工程师、测量队长和各分部经理、总工负责,监控测量小组具体实施数据的采集和上传,各隧道作业班组配合点位的埋设和保护。
监控量测小组人员由各分部组建,每个分部成立一个专业化强,业务熟悉,责任心强的专职监控量测小组,每小组编制3-4人,经过培训合格后方可上岗。
配备专用车辆进行人员接送。
人员不得随意更换以确保监控量测工作和数据资料的连续性。
图1 监控量测组织机构图五、 信息化基础建设及人员仪器配备1.与通信运营单位达成协议,在每个隧道作业面安装远端机,保证各隧道工点网络的畅通。
2.人员的配置项目经理现场监控量测组生产副经理安全总监精测队工程部 安质部 各分部 经理 总工 作业工班 负责人监控量测小组分部测量班 工程、安质部 现场监控量布点人员隧道工程师现场管理、安全、技术人员 总工程师表1 人员配置表小组人数负责范围人员第一量测小组 4 负责黄陵坡,杨家咀,兴隆坪隧道陈青松、王巍巍、邓泽忠、穆久庆第二量测小组 4 负责玛瑙山,黄桷湾,马家沟,银盘坡进口卫闯、江春旭、甘继蓬、冯楷第三量测小组 4 负责银盘坡出口,中项山高泽清、何杰、朱先沛、张恒第四量测小组 4 负责赶场坝,猫鲁寺,平导杨斌、李志成、赵世辉、郝燚飞本标段有隧道11座,其中包含2座高瓦斯隧道。
仪器的配备严格按照《铁路瓦斯隧道技术规范》及相关设计文件进行配备。
使用的全站仪(标称精度不得低于2″,2mm+2ppm)状态良好,经鉴定合格后方可使用,不定期对仪器进行自检。
表2 设备配置表序号设备名称规格型号数量用途1 全站仪2〞徕卡TS062 数据的采集2 防爆型全站仪1〞徕卡TS11,TS15 2 数据的采集3 防暴手机4 数据的上传4 防暴手电125 车辆 4 人员的接送4.项目经理部及各分部总工、施工技术部、安质环保部、各隧道工点配备专用电脑,安装围岩数据处理PC客户端;主要管理人员配备手机并安装手机客户端。
六、监控量测信息化施作流程图隧道工班现场布点 网络平台点位布设现场测量数据复核数据上传数据查阅数据分析异常处理处理结果跟踪点位破坏网络平台的点位布设根据监控量测日志表,由监控量测小组完成,与现场保持一致洞内埋点要求:采用直径22mm 的螺纹钢埋设到拱架连接板以上0.5-1m 及拱顶中心位置保证同面等高;深入围岩0.3-0.5m 外露5cm ,朝向洞口切斜面贴反射片。
间距围岩Ⅲ级30m Ⅳ级10m Ⅴ级5m ,误差<1榀拱架间距。
督促责任人:现场管理人员,测点保护人员:现场施工人员,标识牌填写:分部测量人员同标准补设浅埋地表观测点埋设与洞内同步每断面7-11个点。
洞内外围岩观察:现场安全员,观察地表、初支有无裂缝、脱落现象。
监控量测小组现场测量,测量仪器徕卡TS06,蓝牙连接平板电脑。
测量频率:位移速度:≥5mm ,2次/d; 1-5mm ,1次/d; 0.5-1mm ,1次/2d-3d; 0.2-0.5mm ,1次/3d;<0.2 mm ,1次/7d 。
初始读数开挖后12h 内完成,最迟不得大于24h 。
对量测小组的测量数据的真实性、准确性进行复核。
由项目精测队(每月不少于1次)及工程队测量班(每月不少于2次)两级复核,测量时必须重新架设仪器。
发现数据错误归零重新上传正确数据。
数据上传首先保证隧道工点网络畅通,如有问题及时联系办公室。
现场复核数据无误及时上传网络服务器,时间间隔不得超过3小时。
破坏重设的点位上传数据时归零。
数据查阅通过电脑、手机客户端、网络平台3种途径查询,项目经理、总工9点前掌握前一天平台上的预警信息及处理措施,18点前掌握当天的信息。
分部经理、总工对管段内的隧道围岩变化随时掌握。
查阅后各单位对各自管段内的数据变化结合地质进行分析。
测点位移速率≥5mm/d 时,技术员与现场负责人、监理工程师在现场进行原因分析和措施处理。