层次分析法判断矩阵程序

合集下载

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策的数学模型和方法。

它是由美国管理学家托马斯·L·赛蒙在20世纪70年代提出的。

AHP方法能够帮助决策者在多个准则和多个选择之间进行有效的决策,通过定量和定性的方式来对选择进行评估和比较。

在AHP方法中,决策问题被分解成一个层次结构,其中包含目标层、准则层和选择层。

每个层次都有不同的准则和可能的选择。

决策者需要对每个层次中的准则和选择进行配对比较,从而确定它们之间的重要性和权重。

通过对一系列两两比较的判断矩阵求权值,最终得到每个准则和选择的权重,进而做出最终决策。

下面是一种求解AHP中矩阵权值和进行一致性检验的程序:1. 建立判断矩阵:根据决策问题的结构,建立一个判断矩阵。

判断矩阵的大小是n×n,其中n是比较对象的数量。

矩阵的每个元素(a_ij)表示第i个对象相对于第j个对象的重要性或影响程度。

2. 进行两两比较:对矩阵的每个元素(a_ij),决策者需要进行两两比较,确定它们之间的相对重要性。

比较的结果可以使用系数1-9进行量化,其中1表示相等重要性,9表示绝对重要性的差异。

3.归一化判断矩阵:将比较得到的判断矩阵归一化,使得每一列的元素之和等于1、这可以通过将每个元素除以其所在列的元素之和来实现。

4.求解权值:通过归一化后的判断矩阵,可以计算每个对象的权重。

权重可以通过计算每一行的元素之和来得到。

5.计算一致性指标:在AHP方法中,一致性是指判断矩阵中的数值是否在合理范围内。

为了检验一致性,需要计算一致性指标。

一致性指标的计算方法是通过求解最大特征值和一致性比率来得到。

6.进行一致性检验:计算一致性指标后,需要将其与预先给定的随机一致性指标进行比较。

如果计算得到的一致性指标小于预先给定的一致性指标,则认为判断矩阵中的数值具有一致性。

构造判断矩阵的讲解层次分析法

构造判断矩阵的讲解层次分析法
定义一致性指标: CI n
n 1
CI=0,有完全的一致性
CI接近于0,有满意的一致性
CI 越大,不一致越严重
为衡量CI 的大小,引入随机一致性指标 RI。方法为
随机构造500个成对比较矩阵 A1, A2 ,L, A500
则可得一致性指标 CI1,CI2 ,L,CI500
RI
CI1 + CI2
bij=bik/bjk
为了考察AHP决策分析方法得出的结果是否基本合理,需要对判断矩阵进行一 致性检验。
目标层
O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij A (aij )nn , aij 0, a ji
② 将归一化的判断矩阵按行相加:
n
wi bij.........( i 1,2,..., n) j1
③ 对向量wi (w1, w2,..., wn) T归一化:
n
wi wi / w j.........( i 1,2,..., n) j1
所得的 w (w1, w2,...,wn)T即为所求得特征向量,亦即
CR
CI RI
0.1
时,认为
A
的不一致程度在容许范围之内,有满意的一致性,通过 一致性检验。可用其归一化特征向量作为权向量,否则 要重新构造成对比较矩阵A,对 aij 加以调整。
一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对 A进行检验的过程。
“选择旅游地”中 准则层对目标的权 向量及一致性检验
对应于判断矩阵最大特征根λmax的特征向量, 经归一化(使向量中各元素之和等于1)后记为W。

模糊层次分析法讲解

模糊层次分析法讲解

决策
根据总排序结果,进行决策分析,得出最优 方案。
04
模糊层次分析法的优缺点
优点
处理不确定性和模糊性
简化决策过程
模糊层次分析法能够处理传统层次分析法 无法处理的模糊性和不确定性,使决策过 程更加贴近实际情况。
通过将复杂的决策问题分解为多个层次和 因素,模糊层次分析法能够简化决策过程 ,提高决策效率。
案例二:企业战略决策制定
总结词
企业战略决策制定
详细描述
在企业战略决策制定中,模糊层次分析法可以用于评估 企业的竞争地位、市场机会和风险,以及制定相应的战 略措施,帮助企业做出科学合理的战略决策。
案例三:投资项目风险评估
总结词
投资项目风险评估
详细描述
模糊层次分析法在投资项目风险评估中,可以综合考虑 项目的各种风险因素,如市场风险、技术风险、财务风 险等,对投资项目进行风险评估,为投资者提供科学的 风险管理建议。
考虑因素间的相对重要性
易于理解和操作
模糊层次分析法能够考虑各因素间的相对 重要性,从而更准确地反映实际情况。
模糊层次分析法的原理和操作过程相对简 单,易于理解和掌握,降低了决策者的认 知负担。
缺点
主观性较强 模糊层次分析法在确定因素权重 和评价矩阵时具有较强的主观性, 不同决策者可能会得出不同的结 论。
模糊集合与隶属度函数
模糊集合
模糊集合是用来描述模糊性概念的集 合,其成员的隶属程度可以是介于0 和1之间的任意值。
隶属度函数
隶属度函数是用来确定某个元素属于 某个模糊集合的程度的函数,其值域 为[0,1]。
模糊关系与模糊矩阵
模糊关系
模糊关系描述了不同模糊集合之间的关联程度,可以用模糊矩阵来表示。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。

其中A为判断矩阵,不同的标度和评定A将不同。

m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。

当CR<0.1时符合一致性检验,判断矩阵构造合理。

下面是层次分析法的简介,以及判断矩阵构造方法。

一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。

层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

层次分析法实验报告

层次分析法实验报告

层次分析法实验报告层次分析法实验报告一、引言层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,由美国运筹学家托马斯·L·塞蒂(Thomas L. Saaty)于1970年提出。

该方法通过对决策问题进行层次结构分解,建立判断矩阵,计算权重,最终得出决策结果。

本实验旨在通过使用层次分析法解决一个实际问题,验证该方法在决策问题中的应用效果。

二、实验目的1. 了解层次分析法的基本原理和步骤;2. 掌握构建层次结构和判断矩阵的方法;3. 熟悉计算权重和一致性检验的过程;4. 验证层次分析法在决策问题中的实际应用效果。

三、实验过程1. 确定决策问题:选择一个实际的决策问题,例如购买一台新电脑;2. 构建层次结构:将决策问题分解为准则层、子准则层和方案层,形成层次结构;3. 制作判断矩阵:对每个层次的元素进行两两比较,根据重要性进行评分,构建判断矩阵;4. 计算权重:通过特征向量法计算每个层次的权重;5. 一致性检验:计算一致性指标,判断判断矩阵是否合理;6. 决策结果:根据权重计算得出最终的决策结果。

四、实验结果在购买新电脑的决策问题中,我们构建了准则层、子准则层和方案层的层次结构。

准则层包括性能、价格和品牌三个元素;子准则层包括CPU、内存、硬盘、显卡和屏幕五个元素;方案层包括若干个不同品牌和型号的电脑。

通过对每个层次的元素进行两两比较,我们制作了判断矩阵。

以性能为例,我们对CPU、内存、硬盘、显卡和屏幕进行了两两比较,根据其重要性进行评分。

同样地,我们对价格和品牌也进行了两两比较,得到了相应的判断矩阵。

接下来,我们通过特征向量法计算了每个层次的权重。

将判断矩阵的列向量归一化后,求得特征向量,并计算了每个元素的权重。

通过一致性检验,我们发现判断矩阵的一致性指标在合理范围内,说明判断矩阵的构建是可靠的。

最终,根据权重计算得出了最佳决策结果。

Matlab求解层次分析法程序代码【求解步骤代码】

Matlab求解层次分析法程序代码【求解步骤代码】

性判断矩阵, 每一列归一化后近似其相应的权重, 在对这 n 个列向量求取算术平均值作为最
后的权重。具体的公式是:
a 1 n
ij
Wi
a n j 1 n kl
k1
需要注意的是,在层层排序中,要对判断矩阵进行一致性检验。 在特殊情况下, 判断矩阵可以具有传递性和一致性。 一般情况下, 并不要求判断矩阵 严格满足这一性质。 但从人类认识规律看, 一个正确的判断矩阵重要性排序是有一定逻辑规 律的,例如若 A 比 B 重要, B 又比 C重要,则从逻辑上讲, A 应该比 C 明显重要,若两两比 较时出现 A 比 C 重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。 因此在实际中要求判断矩阵满足大体上的一致性, 需进行一致性检验。 只有通过检验, 才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。
层排序, 其排序权重记为 b1 j , b2 j , ,bmj j 1,2, , n ,则方案层 P 中第 i 个方案 Pi 的总
n
排序权重为
a jbij ,见下表:
j1层Leabharlann CC1C2Cn
层次 P
a1
a2
an
P1
b11
b12
b1n
P2
b21
b22
b2n
P 层总排序权重
n
a j b1 j
j1
n
a jb2 j
设填写后的判断矩阵为 A=(aij ) n×n,判断矩阵具有如下性质:
网络
(1) a ij 〉0
(2) a ji =1/ a ji
(3) a ii =1
根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写
aii =1 部分,然后

层次分析法

层次分析法

阶数n 1 2 3 4 5 6 7 8 9 10 11 RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
CR CI 0.01825 0.016295 0.1 RI 1.12
同理,对于第二层次的景色、费用、居住、饮食、旅途五个 判断矩阵的一致性检验均通过。
选择旅游地
0.263 0.475 0.055 0.099
景费


色用


0.110 旅 途
P1
0.595 0.082

0.277


0.236

0.129 0.682
P2
0.429

0.429

0.142
P3
0.633
0.429
0.193
0.166

0.129 0.682 0.142 0.175 0.668
⑷ 层次(3)W (2)
0.595 0.082 0.277 0.236
0.129 0.682
0.429 0.429 0.142
0.633 0.193 0.175

0.193
0.175
0.166

0.166

0.668
以 Wk(3)为列向量构成矩阵
W (3)

(W1(3)
,W2(3)
,
W (3) 3
,W4(3)
,W5(3)
)
0.559 0.082 0.429 0.633 0.166


0.277
0.236

层次分析法-判断矩阵的构造-德尔菲法

层次分析法-判断矩阵的构造-德尔菲法

德尔菲法的具体实施步骤
1 组成专家小组。按照课题所需要的知识范围,确定专家。专家人数的多 少,可根据预测课题的大小和涉及面的宽窄而定,一般不超过20人。 2 向所有专家提出所要预测的问题及有关要求,并附上有关这个问题的所 有背景材料,同时请专家提出还需要什么材料。然后,由专家做书面答复 3 各个专家根据他们所收到的材料,提出自己的预测意见,并说明自己是 怎样利用这些材料并提出预测值的。 4 将各位专家第一次判断意见汇总,列成图表,进行对比,再分发给各位 专家,让专家比较自己同他人的不同意见,修改自己的意见和判断。也可 以把各位专家的意见加以整理,或请身份更高的其他专家加以评论,然后 把这些意见再分送给各位专家,以便他们参考后修改自己的意见。 5 将所有专家的修改意见收集起来,汇总,再次分发给各位专家,以便做 第二次修改。 逐轮收集意见并为专家反馈信息是德尔菲法的主要环节。 收集意见和信息反馈一般要经 过三、四轮。在向专家进行反馈的时候, 只给出各种意见,但并不说明发表各种意见的专家的具体姓名。这一过程 重复进行,直到每一个专家不再改变自己的意见为止。 6 对专家的意见进行综合处理。
中位数预测: 用中位数计算,可将第三次判断按预测值高低 排列如下: 最低销售量: 300 370 400 500 550 最可能销售量: 410 500 600 700 750 最高销售量: 600 610 650 750 800 900 1250 最高销售量的中位数为第四项的数字,即750。 将可最能销售量、最低销售量和最高销售量分 别按0.50、0.20和0.30的概率加权平均,则预测平 均销售量为: 600*0.5+400*0.2+750*0.3=695
德尔菲法与其他决策法相比较
效果标准/决策方法 体法 德尔菲法 观点的数量 低 观点的质量 低 社会压力 高 财务成本 低 互动群体法 电子会议法 中等 高 中等 高 低 中等 低 低 脑力激荡法 名义群 高 高 低 低 高 高 低 高

层次分析法程序代码

层次分析法程序代码

层次分析法1)建立层次结构模型:(2)构造判断矩阵判断矩阵()ij A a =应为正互反矩阵,而且ij a 的判断如下(1~9尺度法):(3)单层排序及一致性检验1、单层排序求解判断矩阵A 的最大特征值max λ,再由最大特征值求出对应的特征向量ω()max A ωλω=,并将ω标准化,即为同一层相对于上一层某一因素的权重,根据此权重的大小,便可确定该层因素的排序。

2、一致性检验取一致性指标max 1nCI n λ-=-,(n 为A 的阶数)令CICR RI=,若0.1CR <,则认为A 具有一致性。

否则,需要对A 进行调整,直到具有满意的一致性为止。

(4)层次总排序及一致性检验假定准则层12,,,n C C C 排序完成,其权重分别为12,,,n a a a ,方案层P 包含m 个方案:12,,,m P P P 。

其相对于上一层的()1,2,,j C j n =对方案层P 中的m 个方案进行单层排序,其排序权重记为12,,,j j mj b b b()1,2,,j n =,则方案层P 中第i 个方案Pi 的总排序权重为1nj ij j a b =∑,见下表:从而确定层的排序。

例:纯文本文件txt3.txt 中的数据格式如下:1 1 1 4 1 1/2 1 1 2 4 1 1/2 1 1/2 1 53 1/2 1/4 1/4 1/5 1 1/3 1/3 1 1 1/3 3 1 1 2 2 2 3 3 1 1 1/4 1/2 4 1 3 2 1/3 1 1 1/4 1/5 4 1 1/2 5 2 1 1 3 1/3 1/3 1 1/7 3 7 1 1 1/3 5 3 1 7 1/5 1/7 1 1 1 7 1 1 7 1/7 1/7 1 1 7 9 1/7 1 1 1/9 1 1 matlab 程序:>> fid=fopen('txt3.txt','r');n1=6;n2=3;a=[];for i=1:n1tmp=str2num(fgetl(fid));a=[a;tmp]; %读准则层判断矩阵endfor i=1:n1str1=char(['b',int2str(i),'=[];']);str2=char(['b',int2str(i),'=[b',int2str(i),';tmp];']); eval(str1);for j=1:n2tmp=str2num(fgetl(fid));eval(str2); %读方案层的判断矩阵endendri=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45]; %一致性指标[x,y]=eig(a);lamda=max(diag(y));num=find(diag(y)==lamda);w0=x(:,num)/sum(x(:,num));cr0=(lamda-n1)/(n1-1)/ri(n1)for i=1:n1[x,y]=eig(eval(char(['b',int2str(i)])));lamda=max(diag(y));num=find(diag(y)==lamda);w1(:,i)=x(:,num)/sum(x(:,num));cr1(i)=(lamda-n2)/(n2-1)/ri(n2);endcr1, ts=w1*w0, cr=cr1*w0。

层次分析法判断矩阵

层次分析法判断矩阵

层次分析法判断矩阵层次分析法判断矩阵程序先确定判断矩阵;然后用以下程序就好了:%层次分析法的matlab程序%%%%diertimoxingyiclc,cleardisp(输入判断矩阵);% 在屏幕显示这句话A=input(A=);% 从屏幕接收判断矩阵[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好x=ones(n,100);% x为n行100列全1的矩阵y=ones(n,100);% y同xm=zeros(1,100);% m为1行100列全0的向量m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量y(:,1)=x(:,1);% x的第一列赋予y 的第一列x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)m(2)=max(x(:,2));% x 第二列中最大的值赋给m的第二个分量y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值while k>p% 当k>p是执行循环体i=i+1;% i 自加1x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值enda=sum(y(:,i));% y的第i列的和赋予aw=y(:,i)/a;% y的第i 列除以at=m(i);% m的第i个分量赋给tdisp(权向量:);disp(w);% 显示权向量wdisp(最大特征值:);disp(t);% 显示最大特征值t %以下是一致性检验CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CIRI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准CR=CI/RI(n);% 计算一致性if CR摘要在定性问题的决策中,AHP是一种优秀的方法,其基础是对评价对象的两两比较,并用比较结果构造判断矩阵,而这些都依赖于决策者选用的偏好关系。

层次分析法中判断矩阵的一致性研究_杨海涛

层次分析法中判断矩阵的一致性研究_杨海涛

层次分析法中判断矩阵的一致性研究杨海涛,马东堂(国防科技大学 湖南长沙 400073)摘 要:对层次分析法中判断矩阵的一致性问题进行了研究,分析了影响判断矩阵一致性的主要因素,为改进判断矩阵的一致性提供了依据。

提出了利用一致性检验结果对专家判断信息进行筛选的方法,并利用工程实际问题进行了验证。

结果表明,经过专家判断信息筛选后构造的判断矩阵的一致性明显得到了改善。

探讨了区间判断矩阵最优化处理的方法,并给出了具体步骤。

关键词:层次分析法;判断矩阵;一致性;数字标度;最优化中图分类号:T J928.6 文献标识码:A 文章编号:1004-373X (2007)19-046-03Study on the Consistence of Judgement Matrix in AHPYA N G H aitao ,M A Do ng tang(Na tional University of De fence Te c hnolog y ,Changsha ,400073,China )Abstract :T his paper mainly focuses on the problems of co nsistence o f judg ment matrix in A naly tic H iera rchy P rocess .In the paper ,the primary facto rs affect the co nsistence of judgment matrix are enumer ated ,and this is useful fo r the improvement on the co nsiste ncy of judgment ma trix .A new mea n that makes use o f the results o f co nsistency test is addre ssed and validated by an enginee ring applica tion .T he result sho w the consistency of judgement mat rix is markedly im pr oved af te r filtering the ex -per ts ′judgement info rmatio n .T he optimizatio n me tho d o f Inte rval -ba sed co mpa rison matrices is discussed and the basic steps are pro vided in the end .Keywords :A naly tic Hie rarchy P ro cess (A H P );judgment matrix ;consistency ;nume ral scale ;optimizatio n收稿日期:2007-01-16基金项目:国防科技重点实验室基金(51435050105KG0102)1 引 言层次分析法(AH P )把人的思维过程层次化、数量化,并用数学方法为分析决策、预报或控制提供定量依据,是一种定性分析与定量分析相结合的数学方法。

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序

层次分析法判断矩阵求权值以及一致性检验程序以下是一种基于层次分析法的判断矩阵求权值以及一致性检验的程序:第一步:确定目标和准则层首先,明确分析的目标以及需要进行比较和排序的准则。

例如,在选择旅游目的地的决策中,目标可以是选择最适合个人喜好的目的地,而准则可以包括交通便利性、旅游景点的丰富程度、美食水平等。

第二步:构建判断矩阵根据目标和准则,构建判断矩阵,矩阵的大小为n*n,其中n是准则的个数。

判断矩阵中的元素对应于两两准则之间的比较结果。

例如,对于两个准则i和j,可以使用1-9的尺度来表示它们之间的重要程度,其中1表示相同重要,9表示极端重要。

如果准则i相对于准则j更重要,则在判断矩阵的(i,j)位置上填写9、判断矩阵的对角线元素全为1,因为每个准则相对于自身的重要性是相同的。

第三步:求判断矩阵的权值利用判断矩阵求解初始权值的过程主要分为两个步骤:特征根法和一致性检验。

1.特征根法求解判断矩阵的特征值和对应的特征向量,通过特征向量的归一化,得到各个准则的权重。

2.一致性检验判断矩阵是否具有一致性,即各个准则的权重是否合理。

这里使用一致性指标CI(Consistency Index)和一致性比例CR(Consistency Ratio)来进行检验。

CR的计算公式为CR = CI/RI,其中RI是一个随着准则个数n而变化的随机一致性指数,可以在AHP的标准表格中查找。

第四步:一致性检验与调整如果CR小于一些事先设定的阈值(通常为0.1),则认为判断矩阵通过一致性检验,各个准则的权重是合理的;否则,需要对判断矩阵进行调整。

判断矩阵的调整可以通过以下步骤进行:1.计算判断矩阵的平均列向量2.计算平均列向量的加权平均向量3.计算调整后的判断矩阵4.重复进行一致性检验和调整,直至通过一致性检验为止第五步:权值的应用经过一致性检验和调整后,各个准则的权重即为最终结果。

可以将权重应用于具体的决策问题中,进行多个准则的比较和排序。

层次分析法

层次分析法

1层次分析法首先建立了层次结构模型后,其上下层之间元素的隶属关系就被确定了。

最后需要对每一个层级的所有指标进行两两对比,确定其相对的重要性。

而层次分析通常采用Saaty 标度法来给判断矩阵的元素赋值。

如表1-1所示:表1-1 1~9标度及其含义1.1层次分析法计算步骤依据表1-1我们可以得到要素层与各方案层的两两判断矩阵()ij n nA a ´=,其次通过下列步骤进行权重的计算以及一致性检验。

(1)我们利用方根法求评价因素的权重向量近似值,其计算公式如下:11,(1,2,...,)nni ij j w a i n =⎛⎫== ⎪⎝⎭∏(2)对上述利用方根法求解的权重向量按照下列公式做归一化处理,得到最终的权重为:'1,(1,2,...,)ii nik w w i n w===∑(3)计算判断矩阵的最大特征值m ax λ。

()max 1=nii iAw nw λ=∑(4)一致性检验,由一致性指标:max 1nCI n λ-=-RICI CR =其中,一致性指标CI 越大,这就意味着矩阵的偏离一致性就越大。

反之一致性指标CI 越小,则这就意味着矩阵的偏离一致性就越小。

并且当矩阵的阶数n 越大时,其最大特征值max λ也就会越大,这就可能会导致CI 变得更大,也就意味着矩阵的偏离一致性就越大。

反之,阶数n 越小,最大特征值max λ就会越小,其一致性指标CI 也就越小,则这就意味着矩阵的偏离一致性就越小。

这样的模型并不具有科学性。

因此,矩阵的判断过程便釆用了随机一致性指标,即RI 。

RI 的大小与判断矩阵的阶数n 有关,具体数据如下表1-2所示:表1-2 RI 随机一致性指标若CR<0.1则说明一次性检验通过,则其对应的特征向量可作为权向量。

1.2指标权重的确定依据前面介绍的层次分析法,对所建立的指标体系中准则层和指标层权重进行计算。

1.2.1准则层指标权重确定收集专家对评价目标下的准则层指标的基础性的数据,汇总如下表1-3所示,该数据也就是准则层七个指标的判断矩阵。

层次分析法步骤介绍

层次分析法步骤介绍

层次分析法步骤介绍层次分析法是一种用于多因素决策分析的常用方法,可以帮助我们更好地处理决策问题。

下面,我们将介绍层次分析法的步骤。

步骤一:构建指标体系题目所涉及的各种因素需要先确定一个指标体系。

指标体系就是一些可以考核、量化和评分的指标,它可以用于衡量问题的不同方面。

例如,如果你要进行人才选拔的决策,可以设置以下几个指标:知识技能水平、工作态度、适应能力等。

步骤二:建立判断矩阵在确定好指标体系后,我们需要通过对指标两两之间的比较,建立一个判断矩阵。

这个矩阵表示各因素之间的重要性关系。

每一列都代表一个指标,每一行则代表这个指标相对于其他指标的权重值。

在这一步骤中,我们需要根据经验、专业知识或实测数据来确定各项因素之间的权重。

步骤三:计算加权平均值一旦确定了判断矩阵,接下来我们需要将判断矩阵中的值代入计算公式。

这一步需要计算每一列的加权平均值,加权平均值是指在各指标权重下,各行的值的加权总和。

步骤四:计算一致性检验指标在计算加权平均值后,我们还需要计算一致性检验指标。

一致性检验指标代表了矩阵的整体一致性程度。

如果一致性检验指标达到一定要求,则认为该判断矩阵具有较高的精度。

否则需要重新调整判断矩阵。

步骤五:反复调整以获取最优矩阵如果一致性检验指标低于要求,我们需要反复调整权重值和比较两两指标,直到一致性检验指标达到要求为止。

当然,这个过程需要基于专业知识和经验,并且需要经过多次计算和比较。

步骤六:应用结果最后,我们需要应用层次分析法计算得出的结果,进行决策分析。

根据得出的本质指标,我们可以比较各选项的差异,以选择最佳的因素组合或最优的决策方案。

层次分析法是一种较为常用的决策分析方法,可以帮助我们更好地理解和处理决策问题。

当然,该方法的应用需要基于相关的专业知识和经验,并且需要注意判断矩阵的一致性问题。

层次分析法模糊综合评价法操作流程

层次分析法模糊综合评价法操作流程

层次分析法模糊综合评价法操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!层次分析法与模糊综合评价法的操作流程详解在决策分析领域,层次分析法(Analytic Hierarchy Process,AHP)和模糊综合评价法(Fuzzy Comprehensive Evaluation,FCE)是两种常用且有效的工具。

构造判断矩阵的讲解(层次分析法)课件

构造判断矩阵的讲解(层次分析法)课件

根据对两两比较结果,参 照相对重要程度,对每一 层次各元素的相对重要性 进行评估,构造两两比较 判断矩阵。
根据判断矩阵计算对于上 一层某元素而言,本层次 有关元素的重要性次序的 权值,即层次单排序。然 后进行一致性检验。
计算某一层次所有元素对 最高层(总目标)的相对 重要性权值,即层次总排 序。
根据层次总排序进行决策 。
02
构造判断矩阵
判断矩阵的定义与元素取值
定义
判断矩阵是层次分析法中,将决策问题分解成不同的组成因 素,并根据因素间的相互关联影响以及隶属关系将因素按不 同的层次聚集组合,形成一个多层次的分析结构模型。
元素取值
判断矩阵的元素$a_{ij}$表示对于上一层元素$U$,下层元素 $u_{i}$与$u_{ j}$之间的相对重要性。通常采用1-9标度法或 其倒数(1-9的倒数)进行赋值,表示两元素间相对重要性的 比例。
判断矩阵
通过比较因素之间的相对 重要性,构造出判断矩阵

特征向量
计算判断矩阵的特征向量 ,得到各因素相对于上层
因素的权重。
一致性检验
对判断矩阵进行一致性检 验,确保权重分配合理。
层次总排序的计算步骤
层次单排序
对每个判断矩阵进行单排序,得 到各因素相对于上层因素的权重 。
层次总排序
将各层单排序的结果逐层汇总, 得到最底层因素相对于目标层的 权重。
对判断矩阵的权重分配主观性较大
02
层次分析法的权重分配主要依赖于专家的主观判断,因此有时
候会存在较大的主观性。
对复杂问题的处理能力有限
03
对于一些特别复杂的问题,层次分析法的处理能力可能有限,
需要结合其他方法进行解决。
未来研究方向与应用前景

层次分析法判断矩阵求权值和一致性查验程序

层次分析法判断矩阵求权值和一致性查验程序

function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性查验。

其中A为判断矩阵,不同的标度和评定A将不同。

m为A的维数RI为判断矩阵的平均随机一致性指标:按照m的不同值不同。

当CR<时符合一致性查验,判断矩阵构造合理。

下面是层次分析法的简介,和判断矩阵构造方式。

一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家()正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方式。

由于它在处置复杂的问题上的实用性和有效性,专门快活着界范围取得重视。

它的应用已遍及经济和、能源政策和分派、行为科学、军事指挥、运输、农业、教育、人材、医疗和环境等领域。

二.层次分析法的大体思路与人对一个复杂的决策问题的思维、判断进程大体上是一样的。

(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方式递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,和各子目标对上一层目标而言重要程度的相对量度。

层次分析法比较适合于具有分层交织评价指标的目标系统,而且目标值又难于定量描述的决策问题。

其用法是构造判断矩阵,求出其最大特征值。

层次分析法

层次分析法

层次分析法的基本步骤层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法是一种定性与定量分析相结合的多因素决策分析方法。

这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。

1、建立层次结构模型。

在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9个)应进一步分解出子准则层。

2、构造成对比较阵。

从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。

3、计算权向量并做一致性检验。

对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

4、计算组合权向量并做组合一致性检验。

计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

层次分析法应用的程序运用AHP法进行决策时,需要经历以下4个步骤:1、建立系统的递阶层次结构;2、构造两两比较判断矩阵;(正互反矩阵)3、针对某一个标准,计算各备选元素的权重;4、计算当前一层元素关于总目标的排序权重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先确定判断矩阵;
然后用以下程序就好了:
%层次分析法的matlab程序%%%%diertimoxingyi
clc,clear
disp('输入判断矩阵');% 在屏幕显示这句话
A=input('A=');% 从屏幕接收判断矩阵
[n,n]=size(A);% 计算A的维度,这里是方阵,这么写不太好
x=ones(n,100);% x为n行100列全1的矩阵
y=ones(n,100);% y同x
m=zeros(1,100);% m为1行100列全0的向量
m(1)=max(x(:,1));% x第一列中最大的值赋给m的第一个分量
y(:,1)=x(:,1);% x的第一列赋予y的第一列
x(:,2)=A*y(:,1);% x的第二列为矩阵A*y(:,1)
m(2)=max(x(:,2));% x第二列中最大的值赋给m的第二个分量
y(:,2)=x(:,2)/m(2);% x的第二列除以m(2)后赋给y的第二列
p=0.0001;i=2;k=abs(m(2)-m(1));% 初始化p,i,k为m(2)-m(1)的绝对值
while k>p% 当k>p是执行循环体
i=i+1;% i自加1
x(:,i)=A*y(:,i-1);% x的第i列等于A*y的第i-1列
m(i)=max(x(:,i));% m的第i个分量等于x第i列中最大的值
y(:,i)=x(:,i)/m(i);% y的第i列等于x的第i列除以m的第i个分量
k=abs(m(i)-m(i-1));% k等于m(i)-m(i-1)的绝对值
end
a=sum(y(:,i));% y的第i列的和赋予a
w=y(:,i)/a;% y的第i列除以a
t=m(i);% m的第i个分量赋给t
disp('权向量:');disp(w);% 显示权向量w
disp('最大特征值:');disp(t);% 显示最大特征值t
%以下是一致性检验
CI=(t-n)/(n-1);% t-维度再除以维度-1的值赋给CI
RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];% 计算的标准
CR=CI/RI(n);% 计算一致性
if CR<0.10
disp('此矩阵的一致性可以接受!');
disp('CI=');disp(CI);
disp('CR=');disp(CR);
else
disp('此矩阵的一致性不可以接受!'); end。

相关文档
最新文档