《统计学》第七章(抽样调查)

合集下载

统计学课件-第七章抽样调查

统计学课件-第七章抽样调查

分层抽样特点
03
04
05
适用于总体内部差异较 大的情况,能够提高样 本的代表性。
可以根据各层的具体情 分层抽样能够降低抽样 况采用不同的抽样方法, 误差,提高估计的精度。 灵活性强。
分层标准选择与确定
选择分层标准的原则
各层之间具有明显的 区分度,避免出现重 复或遗漏。
与调查目的密切相关, 能够反映总体内部差 异的标志。
3
灵活性高,可以在不同阶段采用不同的抽样方法 和技术。
多阶段抽样优缺点分析
• 节约成本,减少调查人员和资源的需求。
多阶段抽样优缺点分析
抽样误差可能增加
01
由于多阶段抽样的复杂性,可能导致抽样误差的增加。
对抽样设计的要求较高
02
需要仔细设计和规划每个阶段的抽样方法和样本量分配,以确
保抽样的有效性和代表性。
抽样调查作用
抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料, 因而,也可起到全面调查的作用。
抽样方法与类型
抽样方法
简单随机抽样、系统抽样、分层抽样和整群抽样。
抽样类型
概率抽样和非概率抽样。
抽样误差与置信水平
抽样误差
是指由于随机抽样的偶然因素使样本各单位的结构不足以代 表总体各单位的结构,而引起抽样指标和全局指标的绝对离 差。
成本考虑
当总体差异较大时,简单随机抽样的 精度可能受到影响。
对于大规模调查,简单随机抽样可能 需要较高的成本。
实施难度
在某些情况下,获取完整的抽样框可 能较为困难。
03 分层抽样技术及应用
分层抽样原理及特点
01
02
分层抽样原理:将总体 按照某种特征或标志分 成若干层,然后从每一 层中随机抽取一定数量 的样本,最后将这些样 本合并起来构成总体的 样本。

《统计学原理》课件第七章抽样调查

《统计学原理》课件第七章抽样调查
4 -6
第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序

究 原
总体分布 样本分布 抽样分布

一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析

最新(笔记整理)2011年统计基础知识与统计实务 第七章 抽样调查基础知识

最新(笔记整理)2011年统计基础知识与统计实务 第七章  抽样调查基础知识

(笔记整理)2011年统计基础知识与统计实务第七章抽样调查基础知识第七章抽样调查基础知识第一节抽样调查的概念、特点及分类一、抽样调查的概念与特点抽样调查的概念●从研究的总体中按随机原则抽取部分单位作为样本进行观察研究,并根据这部分单位的调查结果来推断总体,以达到认识总体的一种统计调查方法。

如:平均工资、1%人口调查●随机原则:在抽取调查单位时,完全排除人为的主观因素影响,保证每一个调查单位都有相等的中选可能的原则。

就概率意抽样调查的特点●按照随机原则抽取样本这个原则要求总体中每个单位都有同等被抽中的机会,使样本结构近似于总体结构,具有代表性●根据样本的资料推断总体的数值这种推断存在一定的抽样误差,但误差范围是可以计算和控制的,有一定可信度●费用低●时效性强比如:电视节目收视率调查●抽样调查有时是唯一的选择如:产品破坏实验、检验一批灯泡的平均寿命、水质调查二、抽样调查的种类(一)用主观(非随机)方法从总体中抽选单元进行调查,它是一种快速、简便且省钱的抽选样本的方法。

风险大,代表性差假定总体是同质,总体单元都相似,那么可抽选任何单元入样。

例如:街道拦截访问法是最常见的随意抽样,弊端就是调查员倾向有差别,所遇到的人差别较大例如:研究非典疫苗,需要人体试验,需要志愿者专家或者熟悉行业的人事,对抽样对象有所了解,采用判断抽样例如:按男女比例抽样。

总体的推断更具有代表性概率抽样的两条基本准则:第一,样本单位是随意抽取的;第二,调查总体中的每个单位都有一个非零的入样概率。

总体单位数始终是相同的,每个总体单位有多,每抽一次,总体会相应减少,每个总体单位只能被抽中一次。

按(组织方式不同),分为:●-----一步抽样法,不分组,随机原则进行抽样●机械随机抽样)或(等距随即抽样)等距抽样,按照一定的距离抽取样本例如:4000户居民中抽40人,平均每100户抽取1户;1-100号中随机抽取1个号码在第一组中抽取了5号,则5、105、205、以+100为单位抽取●分层抽样又称(类型随机抽样)或(分类随机抽样)先分组,后抽组内比如每个组抽5人;某地区三种地形:平原、丘陵、山区的粮食产量,先分地区,然后按每个组内按简单随机抽样抽取调查地块,构成样本●比如:全市居委会为不同群,抽不同的群,整群进行研究;了解某地区职工家庭生活状况,按居民委员会分群,一个居委会为一群,对抽中的居民委员会所辖每户职工家庭一一调查。

《统计学》第七章抽样推断第二节 抽样误差

《统计学》第七章抽样推断第二节 抽样误差
6-3
经济、管理类 基础课程
统计学
二、抽样误差的影响因素
差异越大,抽 样误差越大
单位数越多, 抽样误差越小
1.总体各单位标志值的差异程度; 2.样本的单位数; 3.抽样的方法; 4.抽样调查的组织形式。
重复抽样的抽 样误差比不重 复抽样的大 6-4 简单随机抽样 的抽样误差最 大
三、抽样平均误差

p p P


如果抽样极限误差用抽样平均误差来 衡量,则有: x t x 或 p t p
9
式中, N为总体单位数; n为样本容量;σP2 为总体成数方 差一般情况下是末知,可用样本成数方差替代σp2 。
8
四、抽样极限误差

抽样极限误差是指用绝对值形式表示的样本指 标与总体指标偏差可允许的最大范围。即:

x x X

即,抽样极限误差是 抽样平均误差的多少 式中, x样本平均指标 ;X 为总体平均指标 倍。我们把倍数 t称 p为样本成数;P 为总体成数 。 为抽样误差的概率度
2
n ( 1- ) 当N 很大时,可近似表示为: = n N
6
1. 重复抽样的条件下
平均数的抽样平均误差 : x

n
式中,n为样本容量; 为总体标准 。


成数的抽样平均误差 : p
p
n
式中,n为样本容量; 为总体成数标准差 P 一般情况下是末知,可用样本成数标准差替代 p。
P(1 P)

7
2. 不重复抽样的条件下
平均数的抽样平均误差 : x 当N很大时近似为 x
2 ( N n)
n( N 1)

2

经济统计学第7章抽样调查

经济统计学第7章抽样调查
CHAPTER ONE
参数的假设检验是根据样本,对总体参数某种假设的正确性作出判断。 可以分别提出两种假设: 前一种不能轻易拒绝的假设为原假 设,后一种为备选假设。假设检验就是根据样本,检验 是否成立, 不成立就接受备选假设 。
一、基本思想: 小概率原则:认为在一次实验中 小概率事件几乎是不可能发生的,小概率事件的概率为显著性水平 。
一个总体的检验
Z 检验 (单尾和双尾)
t 检验 (单尾和双尾)
Z 检验 (单尾和双尾)
2检验 (单尾和双尾)
均值
一个总体
比例
方差
总体方差已知时的均值检验 (双尾 Z 检验)
均值的双尾 Z 检验 (2 已知)
假定条件 总体服从正态分布 若不服从正态分布, 可用正态分布来近似(n30) 原假设为:H0: =0;备择假设为:H1: 0
单侧检验 (原假设与备择假设的确定) 例如,某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上
除非样本能提供证据表明使用寿命在1000小时以下,否则就应认为厂商的声称是正确的 建立的原假设与备择假设应为
H0: 1000 H1: < 1000
第二节
一个正态总体参数的假设检验
-10
100
20
25
-5
25
30
30
0
0
离差
40
35
5
25
50
40
10
100
10
25
-5
25
20
30
0
0
30
35
5
25
40
40
10
100
50
45
15

经济统计学第7章抽样调查

经济统计学第7章抽样调查
经济统计学第7章抽样调查
目录
• 抽样调查概述 • 抽样调查的基本方法 • 样本量的确定 • 抽样误差与推断方法 • 抽样调查的组织与实施
01 抽样调查概述
定义与特点
定义
抽样调查是一种统计学方法,通过对 总体中的一部分进行调查,来推断总 体的特征和规律。
特点
经济高效、快速、准确度高、可操作 性强、误差可控。
THANKS FOR WATCHING
感谢您的观看
准备辅助工具
根据调查需要,准备辅 助工具,如调查表格、 录音设备等。
调查过程的控制
培训调查人员
对调查人员进行培训,确保他们了解调查目 的、问卷内容、抽样方法等。
现场实施
按照抽样计划进行现场调查,确保每个样本 都得到有效的调查。
数据采集
对收集到的数据进行整理、分类和编码,确 保数据的准确性和完整性。
适用于总体内各单位之间存在明显的差异性。
系统抽样
定义
先将总体中的所有单位按一定的顺序排 列,然后按照固定的间隔或系统地抽取
样本单位的方法。
操作方法
首先确定一个合理的起始点,然后按 照固定的间隔依次抽取样本单位。
特点
每隔一个固定数量的单位抽取一个样 本单位,每个样本单位被抽中的概率 都相等。
适用范围
抽样调查的分类
按样本选取方式
随机抽样、分层抽样、系统抽样、整群抽样等。
按样本规模
大样本、中样本、小样本。
按调查目的
探索性调查、描述性调查、因果性调查。
抽样调查的应用场景
01
市场调研
了解市场需求、消费者行为、品牌 知名度等。
质量控制
产品检验、过程控制、质量评估等。
03

统计学中的抽样调查与数据分析的方法与步骤

统计学中的抽样调查与数据分析的方法与步骤

数据标准化与归一化
为了消除量纲影响,对数据进行标准化或归 一化处理。
数据可视化原理及常用工具介绍
数据可视化原理
通过图形化手段展示数据,帮助用户 更直观地理解数据分布、趋势和关联 关系。
常用工具介绍
Excel、Tableau、PowerBI等,这些 工具提供了丰富的图表类型和可视化 效果,方便用户进行数据分析和展示 。
对未来学习的展望与计划
如深入学习更多高级统计方法、提升数据可视化技能等。
行业发展趋势预测
大数据与人工智能的融合
利用大数据技术进行抽样调查,提高样本代表性和数据分析准确性 ;结合人工智能技术,实现自动化、智能化的数据分析。
跨学科领域的交叉应用
统计学在医学、经济学、社会学等领域的广泛应用,推动跨学科领 域的数据分析与决策支持。
将多个评估指标综合起来,构建 综合评估模型,对抽样调查结果 进行全面、客观的评价。
针对性改进建议提
1 2
针对数据质量问题提出改进建议
如加强数据收集、整理、审核等环节的质量控制 ,提高数据准确性和完整性。
针对评估结果提出改进建议
如优化抽样方案、调整样本结构、改进调查方法 等,提高抽样调查的代表性和可信度。
简单随机抽样
适用于总体容量较小、个体差 异不大的情况,通过随机方式
抽取样本。
分层抽样
将总体划分为若干层,每层内 个体具有相似特征,从每层中 随机抽取样本。
系统抽样
按照某种规则或系统方法,在 总体中每隔一定距离或时间抽 取一个样本。
整群抽样
将总体划分为若干群,以群为 单位进行随机抽取,群内所有
个体均作为样本。
经验法则
根据以往的经验和实践来确定样本容量的 大小,如某些行业或领域可能有自己的经 验法则或惯例。

统计学抽样调查

统计学抽样调查

引言
简要介绍调查的目 的、背景和意义。
结果
详细呈现调查结果 ,包括图表、数据 和解释。
结论
总结调查的主要发 现,提出建议和展 望。
报告的撰写技巧
语言简练准确
使用简洁明了的语言,避免专业术语过多。
数据可视化
利用图表、图像等形式展示数据,提高可读性。
逻辑清晰
按照逻辑顺序组织内容,使读者易于理解。
客观公正
对不同因素对总体变异的影响进行分析, 判断因素之间的交互作用。
方差分析应用
结果解释与结论
举例说明方差分析在实践中的应用,如实 验设计、市场调研等。
解释方差分析的结果,得出结论并提出相 应的建议。
05
抽样调查报告的撰写
报告的结构与内容
方法
描述抽样方法、样 本规模、调查工具 和数据分析方法。
讨论
对结果进行解释和 讨论,探讨可能的 原因和影响。
统计学抽样调查
汇报人: 202X-01-04
目录
• 抽样调查的基本概念 • 抽样调查的设计与实施 • 抽样调查的误差控制 • 抽样调查的数据分析 • 抽样调查报告的撰写
01
抽样调查的基本概念
定义与特点
定义
抽样调查是一种统计学方法,通过对 总体中的一部分进行调查,来推断总 体的特征和规律。
特点
抽样调查具有经济性、高效性和代表 性,能够以较小的样本量来推算总体 的数据,节省资源和时间。
避免主观臆断,以客观事实为基础进行分析。
报告的审核与发布
审核
由专家或同行对报告进行审核,确保数据的 准确性和分析的可靠性。
发布
选择合适的发布渠道,如学术期刊、政府机 构或企业报告等。
反馈

统计学课件--第七章抽样调查

统计学课件--第七章抽样调查

不重置抽样,是指每次从总体中抽取一个单位记录
其标志表现后不再放回,从剩余的单位中抽取下一
个单位。
2021/3/2
12
第七章 抽样调查
第二节 总体和样本
(二)样本可能数目
样本可能数目是指抽样组织和抽样方法一定时,从总体N 个单位中随机抽取一个容量为n的样本,该样本不同构成 的可能数目,一般用m来表示。
2021/3/2
10
第七章 抽样调查
第二节 总体和样本
(二)样本指标
由样本总体各个单位的标志值计算的综合指标称 为样本指标,样本指标又称为样本统计量 (Statistic),简称为统计量。
样本指标主要有:样本平均数: x 样本比率 p(或 q)
样本方差: s 2 样本标准差: s
2021/3/2
11
某外国公司在大连进 行微波炉市场调查: 在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
7
时间表抽样框
连续出产的产品总体 可以编制抽样框:均 匀的出产时间、可以 预见到的产品总量。
连续到加油站加油的
汽车总体无法编制抽
样框:时间不定、总
2021/3/2
量也无法确定。 8
第七章 抽样调查
第二节 总体和样本
四、中心极限定理及其意义
中心极限定理论证了如下几点 :
1) 如果总体服从正态分布,样本平均数也同样服从正态分布。
2) 如果总体很大,但不服从正态分布,只要样本足够大, 样本的总和或平均数就会趋近于正态分布。

3) 样本平均数分布的数学期望(该抽样的所有可能样本平均
数的均值) 等于总体均值。即 E(x) X 。
<x<
2

统计学原理第七章抽样调查

统计学原理第七章抽样调查
22
不具有某一标志的单位数用N0表示。 ►总体成数和标准差与样本成数和标准差的计
算方法相同。只是总体指标用大写字母表示,
样本指标用小写字母表示。例如:
►具有某一标志的单位数占总体的比重:
P N1 N
总体成数
p n1 n
样本成数
不具有某一标志的单位数占总体的比重:
Q N0 1P q n0 1 p PQ1
一定的置信程度下,确定总体指标取值 区间的方法和过程。 ►(二)置信区间(抽样极限误差) ►是根据概率理论,以一定的可靠程度保 证抽样误差不超过某一事先给定的范围。 这一范围是抽样指标与全及指标之间离 差的可能范围。
σ
(
xA)2 f d
(

xA)
2
f
d
d
f
f


σ 256 72250 115500 453.6 200 200
30
第三节 全及指标的推断
一、全及指标的点估计 二、全及指标的区间估计
31
一、全及指标的点估计
►(一)点估计的概念 ►点估计又称定值估计,它是直接以样本
QN0 NN11P NN
6
3. 总体标准差σ和总体方差σ2 ►都是测量总体标志值分散程度的指标。
(XX)2 2 (XX)2
N
N
►(二)抽样指标
►是指根据抽样总体各个标志值或标志特征计
算的综合指标。与全及指标相对应也有抽样
平均数、抽样成数、样本标准差和样本方差
等估计量。抽样指标是随机的。
18
※ 四、抽样平均误差的计算
►(一)抽样平均数的抽样平均误差μx ►是变量总体一系列抽样平均数对总体平均数
的标准差。其理论计算公式:

第七章 抽样

第七章 抽样

第七章抽样本章讨论抽样。

对抽样的统计学原理我们不作详细介绍,重点讨论抽样的过程和具体的操作。

抽样是一项非常重要的技术,在自然科学和社会科学的各个领域广泛运用。

自然科学方面包括化学、天文学、机械工程学和动物学等。

在社会科学研究中,抽样技术可用于实验、调查、内容分析等研究。

7.1 抽样原理7.1.1 为什么要抽样抽样是从一大批研究对象中选出一小群作为研究对象,如从20000人中选出150人。

用抽样方法获得的研究对象称为样本(sample)。

研究中用样本作为具体操作对象比用所有对象要经济得多。

然而研究者感兴趣的不仅仅是样本,他的目的是以小见大,希望把从样本得出的结论推广至全体研究对象。

“管中窥豹,可见一斑”。

数学理论和科学研究的实践业已表明,抽样是非常有效的技术。

如果使用正确,两千多个个体的样本,可有效地代表有两亿个成员的研究对象总体,出错的概率不超过百分之二到四。

这种以小见大,以少胜多并非无稽之谈,而是有缜密的统计学原理为依据,并已一再被经验证据所证实。

并非所有样本都可使结论推而广之,抽取样本必须遵守严密的程序,而且从任何样本得出的结论都必须附带说明,表明其局限性。

7.1.2 总体、个体和抽样框架研究者从一大批研究对象中抽取样本。

这些研究对象是一个个的个体(elements),有时称作个案(cases),可以是个人、群体或组织,也可以是信息、文档,甚至是社会行为(如离婚、吸毒、乱扔垃圾)。

这些都是研究者拟测量或可以测量的事物。

拟定研究对象的全体叫做总体(population)或全域(universe)。

总体是抽样的基础,必须严格界定,没有定义清晰的总体就谈不上抽样。

总体有三个要素:内容、范围和时间。

内容即组成总体的个体单位是什么:人、物还是机构等;范围即总体所处的空间界限,包括地理位置;时间即总体存在的时间界限。

表7.1举例说明了抽样的个体单位(人、企业、医院住院人次、商业广告),地理位置和时间界限。

2015年《统计学》第七章 抽样调查习题及满分答案

2015年《统计学》第七章 抽样调查习题及满分答案

2015年《统计学》第七章抽样调查习题及满分答案一、单选题1. 反映样本指标与总体指标之间抽样误差可能范围的指标是( B)。

A、样本平均误差B、抽样极限误差C、可靠程度D、概率度2.在其它条件不变的情况下,抽样单位数目和抽样误差的关系是(B)。

A.抽样单位数目越大,抽样误差越大B.抽样单位数目越大,抽样误差越小C.抽样单位数目的变化与抽样误差的数值无关D.抽样误差变化程度是抽样单位数变动程度的1/23.事先将全及总体各单位按某一标志排列,然后依固定顺序和间隔来抽选调查单位的抽样组织形式,被称为(D)。

A、分层抽样B、简单随机抽样C、整群抽样D、等距抽样4.在同样条件下,不重置抽样的抽样平均误差与重置抽样的抽样平均误差相比(A)。

A、前者小于后者B、前者大于后者C、两者相等D、无法判断5.如果总体成数方差未知,计算必要抽样数目时,可用总体方差的最大值,最大值为(B)。

A、0.24B、0.25C、0.50D、1 6.抽样估计的置信度是( C )A.概率度 B.区间范围的大小C.概率保证程度或置信概率D.与概率度无关的量7.随机抽样的基本要求是严格遵守(B)A、准确性原则B、随机性原则C、代表性原则D、可靠性原则8.抽样调查的主要目的是(D)A.广泛运用数学方法B.计算和控制抽样误差C.修正普查资料D.用样本指标推算总体指标9. 抽样调查中(A)A、既有登记性误差,也有代表性误差B、只有登记性误差,没有代表性误差C、没有登记性误差,只有代表性误差D、既没有登记性误差,也没有代表性误差10.要使抽样误差减少一半(在其它条件不变的情况下),则抽样单位数必须(D)。

A、增加2倍B、增加到2倍C、增加4倍D、增加到4倍11.抽样平均误差反映了样本指标与总体指标之间的( C )A、实际误差B、实际误差的绝对值C、平均误差程度D、可能误差范围12.在实际工作中,不重复抽样的抽样平均误差的计算,采用重复抽样的公式的场合是(A)A、抽样单位数占总体单位数的比重很小时B、抽样单位数占总体单位数的比重很大时C、抽样单位数目很少时D、抽样单位数目很多时13.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将(C )。

吉珠统计学期末考试重点第7章 抽样及抽样分布

吉珠统计学期末考试重点第7章  抽样及抽样分布

x
时, f (x) 的曲线以 x 轴为渐近线。
第七章 抽样调查
4. 标准正态分布
标准正态分布的概率密度函数为:
1 ( z) e , <z< 2
若随机变量 Z 服从标准正态分布, 则记为 Z~ (0, 1)
z2 2
1. 任何一个一般的正态分布,可通过下面的 线性变换转化为标准正态分布
总体均值的区间估计
(一) 大样本时总体均值的区间估计
第七章 抽样调查
例:某企业生产A产品的工人有1000人, 某日采用不重复抽样从中随机抽取100人调查 他们的当日产量,样本人均产量为35件,产量 的样本标准差为4.5件。请以95.45%的臵信度
估计该日人均产量的臵信区间。
解:①计算抽样平均误差
x 0
x a
第七章 抽样调查
标准差 决定密度函数曲线 f (x) 的陡缓程度.
0.5
1
2
第七章 抽样调查
3. 正态分布密度函数的特点
(1) 对称性。 (2) 非负性。
(3) f (x) 在 X x 时达到极大值 f(x ) 1 2
(4) f (x) 的曲线在 X x 处有拐点。 (5 )当
Z X

x2 2
~ N (0,1)
2. 标准正态分布的概率密度函数
1 ( x) e 2 , x
3. 标准正态分布的分布函数 t2 x x 1 -2 ( x) (t )dt e dt 2
第七章 抽样调查
标准正态分布, 具有如下性质或结论:
③计算抽样极限误差
由 1 ) 0.95 ,查t分布表得, (
t n 1 t 2.5% (9)=2.2622

统计学抽样调查ppt课件

统计学抽样调查ppt课件
三、抽样调查的作用
(一)用于一些不可能或不必要进行全面调查 的社会经济现象,以达到对总体数量特征的 认识,可以取得事半功倍的效果
(二)对全面调查的资料进行补充和修正 (三)广泛运用于工业生产过程中的质量检验
与控制
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
样本成数的平均误差的计算公式。
1.在重复抽样下:
μp=
σ2
n
n
=
p (1 p )
n
2.在不重复抽样下:
μp=
2 Nn
( )= n N 1
p (1 p ) n
(N n) N 1
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
第二节、抽样误差和抽样估计
一、抽样误差 (一)概念:是指抽样估计值与被估计的
未知的真实参数( 总体特征值)之差。 (二)误差的来源
1、登记性误差 2、系统性误差 3、偶然性误差
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2、区间估计
对于总体的未知指标X, 根据样本确定 总体指标所在的区间,并指出估计推断的可 靠程度。
x1、x2(x1 x < 2),使随机区间 (x1,x2)
包含X的概率等于给定值1-α(0<α<1),
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s
x x n


2
s
2
x x n


2
一个总体可以抽取许多个样本,而样本不同,
抽样指标的数值也各不相同。可见,抽样指标的数 值不是惟一确定的。因为抽样指标是样本变量的函数, 是随机可变的变量。也就是说,由 样本观测值所决定的
统计量是随机变量。
(三)重复抽样和不重复抽样 1.重复抽样(重置抽样) 采用这种方法抽取样本单位的特点是:同一单位 有多次重复被抽中的机会,并且总体单位数目始 终不变,每个单位抽中或抽不中的机会在各次都 是相同的。
产品不合格率
P= N 1 /N=500/10000=5.0%
产品合格率
Q=1—P=1-5.0%=95%
(3)总体标准差和总体方差。
表示单位之间标志值的变异程度指标,叫做总
体标准差,又称总体均方差(标准差)。总体标准差的
平方称为总体方差。其计算公式为:

X X N


2

2
X X N
三、抽样推断的作用 (一)解决了无法进行全面调查或很难进行 全面调查的问题 (二)可以补充或修正全面调查的数据
(三)可以节省调查费用和调查时间
四、抽样推断涉及的基本概念
(一)总体和样本 1.全及总体(总体、母体)
它是指调查对象的全部单位,是由具有某种共同性 质的许多单位组成的。组成总体的单位称为总体单 位,总体的单位数通常用N表示。
xi
n
(2)抽样成数。
在抽样总体中,一个现象有两种表现时,其中具有 某一种表现的单位数占抽样总体单位数的比重,叫 做抽样成数,亦称样本成数。用p或q表示。其计算 公式为:
n1 p n
n0 q n
同总体成数
n1 n0 n ( n1 n0 ) p q 1 n 则q= 1 -p
数。 2.抽样误差就是指按随机原则抽样时,单纯由不同的随机 样本得出不同的估计量而产生的误差。
3. 抽样误差是随机变量。抽样误差愈小,表示样本的代表 性愈高;反之,样本的代表性就愈低。
4.抽样误差是不能消除的,但可以把它控制出所允许的范
2.不重复抽样(不重置抽样)
采用这种方法抽取样本单位的特点是:同一单位 只有一次被抽中的机会,并且总体单位数目随着 样本单位数目抽取的次数的增多而愈变愈少。每 个单位抽中或抽不中的机会在各次是不同的。
第二节
抽样估计
一、抽样误差的概念 1.由样本得到的估计值与被估计的总体未知真实特征值
之差,就是误差。或样本指标数值与总体指标数值之间的差
N1 p N
N代表总体单位数;
N0 Q N
N1代表具有某一种表现的总体单位数; No代表具有另一种表现的总体单位数; P、Q代表成数。
N1 N 0 N N1 N 0 P Q 1 N 则Q 1 P
〔例1〕 某公司生产的10000件产品中,有500件
为不合格品。则
小样本。社会经济现象的抽样调查多取大样本,而自然实
验观察则多取小样本。以很小的样本来推断很大的总体, 这是抽样推断法的重要特点。
(二)总体指标和抽样指标
1.总体指标
总体指标是指根据总体各单位的标志值计算出来 的,反映总体某种属性或特征的综合指标,亦称
为总体参数。由于总体是惟一确定的,因此,根
据总体计算的总体指标也是惟一确定的。 常用的总体指标有:总体平均数、总体成数、总体标 准差和总体方差。
[例5.2) 从某公司生产的产品中,抽样检查了 100件产品,其中有5件不合格,则: 样本产品不合格率 :
5 n1 p 5% n 100
样本产品合格率
q 1 p 1 5% 95 %
(3)抽样总体标准差和抽样总体方差。
说明抽样总体之间标志值变异程度的指标,叫做抽样 总体标准差。抽样总体标准差的平方称为抽样总体方 差(简称样本方差)。其计算公式为:
(1)总体平均数 代表总体单位数量标志一般水平的指标,它表明变量
变动的集中趋势,通常用
X
表示。
n
Xi X 1 X X ... X n X i 1 N N
其中:
X1,X2,…Xn为总体中每一 个调查单位的取值
N是总体单位数
∑是总和符号
(2)总体成数 当总体的一个现象有两种表现时,其中具有某 一种表现的单位数占总体单位数目的比重,叫 总体成数,用P或Q表示。其计算公式为:

ቤተ መጻሕፍቲ ባይዱ
2
2.抽样指标 抽样指标是指根据抽样总体各单位标志值计算的综合指
标,又称样本指标。常用的抽样指标有:抽样平均数、
抽样成数、抽样总体标准差和抽样总体方差。
(1)抽样平均数。 代表样本单位数量标志一般水平的指标称抽样平
均数或样本平均数。
x1 x2 x3 ... xn i1 x n n
第 七 章
抽 样 调 查
第一节 抽样调查概述
第二节 抽样估计
第三节 抽样的组织形式
第一节 抽样调查概述 一、抽样调查的含义
(一)抽样推断的含义
抽样调查是按随机原则,从全部研究对象中抽取一
部分单位进行观察,并根据样本的实际数据,对总体的
数量特征做出具有一定可靠程度的估计和判断,从而达 到对全部研究对象的认识的一种统计方法。其中心问题 是如何根据已知的部分资料来推断未知的总体情况。
(二)抽样推断的特点 1.抽样推断是非全面调查 2.抽样推断是按随机原则抽选调查单位。 3.抽样推断是用样本的指标数值去推算总体的指标数值。 4.抽样推断中产生的抽样误差,可以事先计算并加以控制。
二、抽样调查的主要内容 (一)随机抽样:按照随机原则从总体中抽取部分单 位构成样本的过程。 (二)统计估计:根据随机抽取的部分单位的特性来对 总体的分布函数、分布参数或数字特征等进行推测估算的过程。 (三)假设检验:根据经验或认识,提出某一假设,并判断该假 设正确性的过程。
2.抽样总体(样本、子样)
是指在总体中按随机原则抽取的那一部分
单位所构成的集合体。 组成样本的单位称为样本单位,样本单位数亦称样本 容量,通常用n表示。样本单位数总是大于1而小于总体单 位数N的,即1<n<N。
样本单位数n相对于总体的单位数N要小得多。 统计把n/N称为抽样比例。样本单位数达到或超过 30个(n≥30)称为大样本,而在30个以下(n<30)称为
相关文档
最新文档