无桥PFC电路说明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应用的青睐。具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而为全新应用和拓扑选项打开了大门。连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN优点的拓扑。与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。本文分析了AC 交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。一个750W图腾柱PFC原型机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。

关键字—GaN;PFC;图腾柱;数字控制

I. 简介

当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千英里之外的数据中心。承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。随着数据存储和通信网络的快速增长,持续运行电力系统的效率变得越来越重要。现在比以前任何时候都需要对效率进行空前的改进与提升。

几乎所有ICT生态系统的能耗都转换自AC。AC输入首先被整流,然后被升压至一个预稳压电平。下游的DC/DC 转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系统的电源,以及存储器和处理器的内核电压。随着MOSFET技术的兴起和发展,电力转换效率在过去三十年间得到大幅提升。自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。然而,由于MOSFET的性能限制,以及与钛金级效率要求有关的重大设计挑战,效率的改进与提升正在变慢。为了达到96%的钛金级峰值效率,对于高压线路来说,功率因数校正 (PFC) 电路效率的预算效率应该达到98.5%及以上,对于低压电路,这个值应该不低于96.4%。发展前景最好的拓扑是无桥PFC 电路,它没有全波AC整流器桥,并因此降低了相关的传导损耗。[3] 对于不同无桥PFC的性能评价进行了很好的总结。这个性能评价的前提是,所使用的有源开关器件为MOSFET或IGBT。大多数钛金级AC/DC整流器设计使用图6中所示的拓扑 [3],由两个电路升压组成。每个升压电路在满功率下额定运行,不过只在一半AC线路周期内运行,而在另外周期内处于空闲状态。这样的话,PFC转换器以材料和功率密度为代价实现了一个比较高的效率值 [4]。通常情况下,由于MOSFET体二极管的缓慢反向恢复,一个图腾柱PFC无法在连续传导模式 (CCM) 下高效运行。然而,它能够在电压开关为零 (ZVS) 的变换模式下实现出色的效率值。数篇论文中已经提到,PFC 效率可以达到98.5%-99%。对于高功率应用来说,多个图腾柱升压电路可以交错在一起,以提高功率水平,并且减少输入电流纹波。然而,这个方法的缺点就是控制复杂,并且驱动器和零电流检测电路的成本较高。此外,因此而增加的功率组件数量会产生一个低功率密度设计。因此,这个简单的图腾柱电路需要高效运行在CCM下,以实现高功率区域,并且在轻负载时切换至具有ZVS的TM。通过使用这个方法,可以同时实现高效率和高功率密

度。作为一款新兴半导体开关,氮化镓 (GaN) FET正在逐渐走向成熟,并且使此类应用成为可能。Transphorm 公司已经在APEC 2013上展示了一款峰值效率达到99%的基于GaN的图腾柱CCM PFC [9]。[10-12] 还介绍了GaN器件出色的开关特性,以及应用优势。为了更好地理解GaN特性,并且进一步解决应用中存在的顾虑,特别是开关频率和交叉电流尖峰问题,这篇文章讨论了:II. GaN技术概述、III. 图腾柱CCM PFC控制、IV. 实验和V. 结论。

II. GaN技术概述

GaN高电子迁移率晶体管 (HEMT) 首次问世是在2004年。HEMT结构表现出非同寻常的高电子迁移率,这个值所表示的是一个AlGaN和GaN异构表面附近的二维电子气 (2DEG)。正因如此,GaN HEMT也被称为异构FET (HFET),或者简单地称为FET。基本GaN晶体管结构如图1中所示 [13]。源电极和漏电极穿透AlGaN层的顶部,并且接触到下面的2DEG。这就在源极和漏极之间形成一个低阻抗路径,而也就自然而然地形成了一个D模式器件。通过将负电压施加到栅极上,2DEG的电子被耗尽,晶体管被关闭。

增强模式 (E-mode) GaN晶体管器件使用与D-mode GaN器件一样的基底工艺,在一个硅 (Si) 或碳化硅 (SiC) 基板顶部培养一层薄薄的氮化铝 (AlN) 绝缘层。然后,高阻性GaN和一个氮化铝镓与GaN的异构体被先后放置在AlN上。源电极与2DEG接触,而漏电极与GaN接触。对于栅极的进一步处理在栅极下形成一个耗尽层。图2中给出了这个基本结构。要接通FET,必须在栅极上施加一个正电压。

B.GaN,SiC和Si的物理属性比较

一个半导体材料的物理属性决定了终端器件的最终性能。表1中显示的是影响器件性能的主要属性。

E G是带隙能量。E G>1.4的半导体通常被称为宽带隙材料。E G更大的材料将需要更多的能量来将电子从其键位上断开,以穿越带隙。它具有更低的泄露电流和更高的温度稳定性。E BR是临界区域击穿电压,这个电压会直接影响到电离和雪崩击穿电压电平。V S是饱和速率。峰值电子漂移速率决定了开关频率限值。µ是电子迁移率,它与接通电阻成反比。接通电阻与这个参数之间的关系为 [19]:

与一个Si器件相比,如图3的品质因数中所示,碳化硅的接通电阻减少了大约500倍,而对于一个指定尺寸的半导体来说,GaN的这些值甚至更高。

图3—硅、碳化硅和氮化镓理论接通电阻与阻断电压能力之间的关系 [16]。

过去三十年间,硅 (Si) 在功率应用中占主导地位。但是,随着其性能接近了理论限值,性能方面的提升也变得十分有限。作为2个新兴半导体材料,SiC和GaN看起来似乎是针对未来高性能应用的极有发展前途的候选材料。C.在FET模式和二极管模式中运行的GaN器件

D-mode和E-mode GaN FET的输出特性如图4中所示 [13]。很明显,D-mode器件使用起来不太方便,其原因在于,将一个功率级连接至DC输入之前,必须在功率器件上施加一个负偏置电压。相反地,E-mode GaN FET,正如MOSFET,通常情况下是关闭的,并且对于应用来说更加友好。然而,常开型GaN器件更加易于生产,并且性能要好很多 [20]。对于一个指定区域或导通电阻,D-mode GaN FET的栅极电荷和输出电容比E-mode GaN FET的少一半。而这在开关电力转换器应用中具有重大优势。对于高压GaN器件来说,大多数供应商正在使用图5中所示的,具有共源共栅LV NMOSFET结构的D-mode GaN。LV NMOS是一种具有低R ds-on和快速反向恢复体二极管的20V-30V硅材料N沟道MOSFET。当把一个正电压施加到GaN共源共栅FET的漏极与源极之间时,内部MOSFET的V ds在FET关闭时开始上升,进而在GaN器件的栅极和源极上形成一个负电压,从而使GaN器件关闭。通常情况下,MOSFET的V ds将保持几伏特的电压,这个电压足够使GaN器件保持在关闭状态。当施加栅极电压时,MOSFET被接通,这使得MOSFET的栅极与源极短接,随后,GaN器件被接通。在FET模式下,一个GaN共源共栅FET与具有扩展GaN电压额定值和附加GaN电阻的集成MOSFET的工作方式十分相似。然而,GaN器件决定了输出电容值,而这个值远远小于与之相对应的MOSFET的C oss。GaN器件本身没有体二极管,但是,当反向电流被施加到GaN共源共栅FET上时,MOSFET的体二极管首先导电,而这样实际上就把体二极管的V f施加到GaN器件的栅极上,随后GaN器件被接通。这样的话,低压FET的体二极管运行为共源共栅开关“体二极管”。由于LV MOSFET的正向压降和Qrr比高压MOSFET要低,所以这样做还是有其实际意义的。出色的体二极管运行方式是GaN共源共栅FET的其中一个主要特性和优势。由于对GaN共源共栅FET驱动的要求与对于传统MOSFET的要求是一样的,在应用采用方面,MOSFET的直接简易替换也是GaN共源共栅FET的另外一个优势。共源共栅方法的缺点在于,集成MOSFET必须在每个开关周期内切换。GaN共源共栅FET继承了MOSFET开关的某些特点,其中包括大栅极电荷与反向恢复。这些特点限制了GaN器件的性能。

相关文档
最新文档