2020北京市朝阳区初三(下)一模试题有答案
2020学年北京市朝阳区初三一模语文试题及答案
2020北京朝阳初三一模语文2020.5学校_______________ 班级_______________ 姓名_______________ 考号_______________一、基础•运用(共15分〉学校开展''相约云端,开启兰活新方式”主题学习活动,谴你圭成下列任务。
1.下面是本次活动的一段引言°冈读这段文字,宾成(1〉(2)题。
(ft 4分〉随看人工智能、工业互联网、物联网竽新型基砒设施建设的加强,倡助线上技术,“云生活”在这个香天悄然走进千衣万户【甲】线下课堂变身“云课堂”,我们在线上与知识“亲密接触” J楮心策划的“云展览”,让文化盛事触屛可赏•,匡家在线'‘云旅游”,让我们足不出户拥有诗和远方【乙】丰富多彩的''云生活”已Q (溥屉)入我们的日常。
同学们,未来@ (以/已〉来,让我们相约云端,开启生活新方式。
(1)依次在構结①②处埴入汉字,全都正确的一項翠(2分〉A.①融②以B.①溶②以C. Φ⅛4②已D.g ②已(Z)在【甲】【乙】两处分别填入标点符号,最恰兰的一项是(2分)A.【甲】冒号【乙】逗号E.【申】句号【乙】省略号C.【甲】句号【乙】逗号D.【甲】冒号【乙】雀略号2.语文老师帝领大家通过"云课堂”开展学习活动。
结合语境,完成(L)-(3)题。
(共5分〉(1)名著专题冥W谍上,大家在空中讨论空交流《从百草园列三味书屋》《阿长与〈山海经〉》的闻读感受• 这三篇文童都选目鲁迅於散文集《》(1分〕<2>书法专题复习课上,老师带領同学们欣赏关于历代名篇的书法作品。
对T⅛这四幅韦法作品葩欣赏,不 正确的一】页是(2分)《送杆少府7仟蜀州》钱tE 《醉翁亭记》(局咅【)苏牡书《陋室铭》赵孟頫可《岳阳桜记》(局部〉祝允明书A.《送社少府之任曷州》的字体属于篆书,线条匀称,开阔舒展。
E.《醉翁亭记》的字体属于隶书,蚕咲屣尾,刚健峻拔。
人教版初中英语北京市朝阳区2020届下学期初中九年级一模考试英语试卷
北京市朝阳区2020届下学期初中九年级一模考试英语试卷本试卷满分120分,考试时间120分钟。
听力理解(共26分)一、听对话,从下面各题所给的A、B、C三幅图片中选择与对话内容相符的图片。
每段对话你将听两遍。
(共4分,每小题1分)1.A. B. C.2.A. B. C.3.A. B. C.4.二、听对话或独白,根据对话或独白内容,从下面各题所给的A、B、C三个选项中选择最佳选项。
每段对话或独白你将听两遍。
(共12分,每小题1分)请听一段对话,完成第5至第6小题。
5. What’s wrong with the boy?A. He has a toothache.B. He has a fever.C. He has a bad cold.6. How long should the boy stay in bed?A. For a dayB. For three days.C. For five days.请听一段对话,完成第7至第8小题。
7. Where are the two speakers?A. In a library.B. In a museum.C. In a cinema.8. How many books can the man borrow at most each time?A. One.B. Two.C. Three.请听一段对话,完成第9至第10小题。
9. Why does the man look so tired?A. He is badly ill.B. He does much exercise.C. He doesn’t sleep well.10. What will the man do next?A. Go to the gym.B. Ride a bike.C. Walk up the stairs.请听一段对话,完成第11至第13小题。
11. Where will the woman fly?A. To New York.B. To Sydney.C. To China.12. How did the woman’s father help her?A. By sending her to learn thing about flying.B. By teaching her how to drive a plane himself.C. By taking her to see the doctor and take medicine.13. Which flight is the woman going to take?A. Flight LE 683.B. Flight RL 638.C. Flight RE 836.请听一段独白,完成第14至第16小题。
2020年朝阳市九年级数学下期末第一次模拟试卷含答案
2020年朝阳市九年级数学下期末第一次模拟试卷含答案一、选择题1.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( )A .()6,0-B .()6,0C .()2,0-D .()2,02.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.8 4.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D . 5.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .130 9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 10.若0xy <,则2x y 化简后为( )A .x y -B .x yC .x y -D .x y --11.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( )捐款数额10 20 30 50 100 人数 2 4 5 3 1A .众数是100B .中位数是30C .极差是20D .平均数是30二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.如图,反比例函数y=k x 的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.三、解答题21.计算:103212sin45(2π)-+--+-.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.24.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A ,小江抓着风筝线的一端站在D 处,他从牵引端E 测得风筝A 的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC =30米)的居民楼顶B 处测得风筝A 的仰角是45°,已知小江与居民楼的距离CD =40米,牵引端距地面高度DE =1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).25.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 26.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表. 整理情况频数 频率 非常好0.21 较好70 0.35 一般m 不好 36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y x y x =-+⎧⎨=-⎩,解得:20x y =⎧⎨=⎩即1l 与2l 的交点坐标为(2,0).故选D .【点睛】本题考查了关于x 轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.2.C解析:C【解析】试题分析:由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x 轴交点负半轴明显大于﹣1,∴y=a ﹣b+c <0,故本选项正确; ③由抛物线的开口向下知a <0,∵对称轴为1>x=﹣>0,∴2a+b <0,故本选项正确;④对称轴为x=﹣>0, ∴a 、b 异号,即b >0,∴abc <0,故本选项错误;∴正确结论的序号为②③.故选B .点评:二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x=﹣b2a 判断符号;(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0; (4)当x=1时,可以确定y=a+b+C 的值;当x=﹣1时,可以确定y=a ﹣b+c 的值. 3.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】∵AB 为直径,∴90ACB ︒∠=, ∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD ∆中,2246213BD =+=.故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.4.C解析:C【解析】从上面看,看到两个圆形,故选C .5.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1,在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 6.C解析:C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.7.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B . 10 的取值范围是解题关键.8.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=.【详解】解:AB//CD ,EFC 40∠=,BAF 40∠∴=,BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.9.B解析:B【解析】【分析】设商品进价为x 元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x 元,售价为每件0.8×200元,由题意得 10.A解析:A【解析】【分析】二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】y>0,∵xy<0,∴x<0,∴原式=-故选A【点睛】此题考查二次根式的性质与化简,解题关键在于掌握其定义11.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.12.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S 侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.15.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m +m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点.解析:2【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k的几何意义以及平行四边形的性质.三、解答题21.1 3【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 3=+-=12121 313=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.25.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34 AD x=.在Rt△BCD中,tan48° =BD CD,则1110BDx=,∴1110 BD x=∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.26.(1)200;(2)52;(3)840人;(4)1 6【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
北京市朝阳区2020届初三中考一模考试英语试卷及答案
2020北京朝阳初三一模英语一、单项选择(共6 分,每小题 0.5分)从下面各题所给的A、B、C、D 四个选项中,选择可以填入空白处的最佳选项1. Mike has a little sister. ______ name is Lily.A. MyB. HisC. HerD. Your2. Students usually start their new term ______ September every year.A. onB. inC. atD. for3. I called Jim last night, ______ he didn't answer the phone.A. forB. andC. butD. or4. Kobe Bryant was one of ______ basketball players in the world.A. goodB. betterC. bestD. the best5. - ______ do you usually do exercise on Saturdays?- At about 3 o'clock in the afternoon.A. WhenB. WhereC. WhyD. How6. My best friend ______ an old man get home yesterday evening.A. helpsB. helpedC. is helpingD. will help7. James enjoys watching movies, and he often ______ a movie in his free time.A. watchesB. watchedC. is watchingD. will watch8. As soon as the rain stops, we ______ out to play football.A. goB. wentC. will goD. have gone9. My father ______ in a panda protection center since 2010, so he knows a lot about pandas.A. workB. workedC. is workingD. has worked10. - What were you doing at 10 o'clock yesterday morning?- I ______ with my parents.A. readB. will readC. am readingD. was reading11. Look at the flowers on both sides of the street. They ______ last month.A. plantB. plantedC. are plantedD. were planted12. - Could you tell me ______? - Next Sunday.A. when we will have a picnicB. when we had a picnicC. when will we have a picnicD. when did we have a picnic二、完形填空。
2020年北京市朝阳区中考一模数学试卷含答案解析
2020年北京市朝阳区初三一模数学试卷一、单选题(共10小题)1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众264000人,将264000用科学计数法表示应为()A.B.C.D.2.实数a,b,c,d在数轴上对应的位置如图所示,绝对值相等的两个实数是()A.与B.与C.与D.与3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.4.下列图形选自历届世博会会徽,其中是轴对称图形的是()A.B.C.D.5.如图,四边形ABCD内接于⊙O,E为DC延长线上一点,∠A = 50º,则∠BCE的度数为()A.40ºB.50ºC.60ºD.130º6.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使C到A、B两点均可直接到达,测量找到AC和BC的中点D、E,测得DE的长为1100m,则隧道AB的长度为()A.3300m B.2200m C.1100m D.550m 7.2022年将在北京—张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了冰壶选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示,设两队队员身高的平均数依次为,,方差依次为,,下列关系中完全正确的是()A.=,<B.=,>C.<,<D.>,>8.如图,△内接于⊙,若⊙的半径为6,,则的长为()A.2πB.4πC.6πD.12π9.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园—玲珑塔—国家体育场—水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(–1,0),森林公园的坐标为(–2,2),则终点水立方的坐标为()A.(–2,–4)B.(–1,–4)C.(–2,4)D.(–4,–1)10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CGB.线段AGC.线段AHD.线段CH二、填空题(共6小题)11.若二次根式有意义,则x的取值范围是____________.12.分解因式:____________.13.关于x的方程有两个不相等实数根,写出一个满足条件的k的值:k=____________.14.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”设共有客人x人,可列方程为____________.15.在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.16.阅读下面材料:数学课上,老师提出如下问题:小艾的作法如下:老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________.三、计算题(共1小题)17.计算:四、解答题(共12小题)18.已知,求的值.19.解不等式组并写出它的所有整数解.20.如图,E为AC上一点,EF∥AB交AF于点F,且AE = EF.求证:= 2∠1.21.台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2020年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.22.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF =∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.23.在平面直角坐标xOy中,直线与双曲线的一个交点为A(2,4),与y 轴交于点B.(1)求m的值和点B的坐标;(2)点P在双曲线上,△OBP的面积为8,直接写出点P的坐标.24.如图,点D在⊙O上,过点D的切线交直径AB延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,,求BC的长.25.人口老龄化已经成为当今世界主要问题之一.北京市在上世纪90年代初就进入了老龄化社会,全市60岁及以上户籍老年人口2020年底达到279.3万人,占户籍总人口的21.2%; 2020年底比2020年底增加17.4万人,占户籍总人口的22.3%;2020年底比2020年底增加23.3万人,占户籍总人口的23%.“百善孝为先”,北京市政府越来越关注养老问题,提出养老服务新模式,计划90%的老年人在社会化服务协助下通过家庭照顾养老(即居家养老),6%的老年人在社区养老,4%的老年人入住养老服务机构.本市养老服务机构的床位总数2020年达到8.0516万张,2020年达到10.938万张,2020年达到12万张.根据以上材料回答下列问题:(1)到2020年底,本市60岁及以上户籍老年人口为__________万人;(2)选择统计表或统计图,将2020年––2020年本市60岁及以上户籍老年人口数量和占户籍总人口的比例表示出来;(3)预测2020年本市养老服务机构的床位数约为_________万张,请你结合数据估计,能否满足4%的老年人入住养老服务机构,并说明理由.26.观察下列各等式:,,,……根据上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)请你写一个实数,使它具有上述等式的特征:-3=3;(3)请你再写两个实数,使它们具有上述等式的特征:-=;(4)符合上述特征的所有等式中,是否存在两个实数都是整数的情况?若存在,求出所有满足条件的等式;若不存在,说明理由.27.在平面直角坐标系xOy中,抛物线经过点(0,–3),(2,–3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x轴交点的坐标;(3)将(y≤0)的函数图象记为图象A,图象A关于x轴对称的图象记为图象B.已知一次函数y=mx+n,设点H是x轴上一动点,其横坐标为a,过点H作x轴的垂线,交图象A于点P,交图象B于点Q,交一次函数图象于点N.若只有当1<a<3时,点Q 在点N上方,点N在点P上方,直接写出n的值.28.在等腰三角形ABC中,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转,旋转角与∠C相等,得到线段PD,连接DB.(1)当∠C=90º时,请你在图1中补全图形,并直接写出∠DBA的度数;(2)如图2,若∠C=α,求∠DBA的度数(用含α的代数式表示);(3)连接AD,若∠C =30º,AC=2,∠APC=135º,请写出求AD长的思路.(可以不写出计算结果)29.在平面直角坐标系xOy中,A(t,0),B(,0),对于线段AB和x轴上方的点P 给出如下定义:当∠APB=60°时,称点P为AB的“等角点”.(1)若,在点,,中,线段AB的“等角点”是;(2)直线MN分别交x轴、y轴于点M、N,点M的坐标是(6,0),∠OMN=30°.①线段AB的“等角点”P在直线MN上,且∠ABP=90°,求点P的坐标;②在①的条件下,过点B作BQ⊥PA,交MN于点Q,求∠AQB的度数;③若线段AB的所有“等角点”都在△MON内部,则t的取值范围是.答案部分1.考点:科学记数法和近似数、有效数字试题解析:科学记数法是把一个数表示成 a×的形式,其中1≤|a|<10,n为整数.所以264000=2.64 .故本题选C.答案:C2.考点:实数的相关概念试题解析:所以绝对值相等的两实数是a与d。
2020年北京市朝阳区中考数学一模试卷 (含答案解析)
2020年北京市朝阳区中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.2017年4月8日,中国财经新闻报道中国3月外汇储备30090.9亿,这个数据用科学记数法表示为()A. 3.00909×104B. 3.00909×105C. 3.00909×1012D. 3.00909×10132.某几何体的三种视图如图所示,则该几何体是().A. 三棱柱B. 长方体C. 圆柱D. 圆锥3.已知实数a、b在数轴上的对应点的位置如图所示,那么√a+√−b是一个()A. 非负数B. 正数C. 负数D. 以上答案均不对4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. 18B. 13C. 38D. 355.如果m+n=1,那么代数式(2m+nm2−mn +1m)⋅(m2−n2)的值为()A. −3B. −1C. 1D. 36.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,已知tan∠CDB=34,BD=5,则OH的长度为()A. 23B. 56C. 1D. 767.如图,AB//CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F等于()A. 9.5°B. 19°C. 15°D. 30°8.根据下表中的信息解决问题:数据3738394041频数845a1若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共8小题,共16.0分)有意义,则x的取值范围是______.9.要使分式3x−110.分解因式:2mx2−4mx+2m=______ .11.如图所示,△ABC中,点D、E分别在AB、AC上,DE//BC,若AE=3,EC=1,,则BC=______且知DE=7212.如图,在边长为1的小正方形组成的网格中,则sin∠ABC的值为______.13.四边形ABCD中,若∠A:∠B:∠C:∠D=7:6:5:4,则它们的外角的比是________。
北京市朝阳区2019-2020学年中考语文一模试卷含解析
北京市朝阳区2019-2020学年中考语文一模试卷一、选择题1.下列词语中没有错别字的一项是()A.讴歌裁判员防微杜渐俯首贴耳B.松弛辩证法金榜题名言不由中C.赃款干燥剂风声鹤唳适得其反D.蝉联扫瞄仪蓬荜生辉藏污纳垢【答案】C【解析】【详解】此题考查的是字形。
A项中“俯首贴耳”应为“俯首帖耳”;B项应该是“言不由衷”;D项应为“扫描仪”。
故选C。
2.下列词语中加点字的注音完全正确的一项是()A.炽.痛(zhì)羁绊.(bàn)骈.进(pián)姹.紫嫣红(chà)B.隽.永(juàn)忌.讳(jí)坎坷.(ké)断壁颓垣.(yuán)C.信笺.(jiān)嘹.亮(liáo)寻觅.(mì)梦寐.以求(mèi)D.曙.光(shǔ)垂涎.(xián)粗犷.(kuàng)舐.犊情深(shì)【答案】C【解析】【详解】A:zhì——chì。
B:jí——jì,ké——kě。
D:kuàng——guǎng.故选A。
二、名句名篇默写3.默写古诗文中的名句。
补写出下列名句中的上句或下句。
①晴川历历汉阳树,__________。
(崔颢《黄鹤楼》)②我报路长嗟日暮,__________。
(李清照《渔家傲》)③出淤泥而不染,__________。
(周敦颐《爱莲说》)④__________,愁云惨淡万里凝。
(岑参《白雪歌送武判官归京》)⑤__________,并怡然自乐。
(陶渊明《桃花源记》)⑥__________,君子好逑。
(《诗经·关雎》)根据提示写出相应的名句。
①晏殊在《浣溪沙》中既流露了对繁华易尽的感慨、又传达出旧识重来的欣喜之情的诗句是:“__________,__________。
”②《北冥有鱼》中引述《齐谐》之言,描述鹏以“__________,__________”的雄姿,凭借六月的大风,离开飞往南海。
2020年北京市朝阳区中考数学一模试卷含答案
2020年北京市朝阳区中考数学一模试卷一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113800用科学记数法表示应为()A.1.138×105B.11.38×104C.1.138×104D.0.1138×106 2.(2分)右图是某几何体的三视图,该几何体是()A.圆锥B.球C.长方体D.圆柱3.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d4.(2分)一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A.m=n=8B.n﹣m=8C.m+n=8D.m﹣n=85.(2分)如果,那么代数式的值为()A.3B.C.D.6.(2分)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=,则AB的长为()A.2.5B.4C.5D.107.(2分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE 8.(2分)生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)1≤x<22≤x<33≤x<44≤x<55≤x≤6合计频数12b3m频率0.050.10a0.151表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④二、填空题(本题共16分,每小题2分)9.(2分)若分式有意义,则x的取值范围为.10.(2分)分解因式:2x2+8x+8=.11.(2分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,若AD=1,BD=4,则=.12.(2分)如图所示的网格是正方形网格,则∠AOB∠COD(填“>”、“=”或“<”).13.(2分)如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=°.14.(2分)用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a =.15.(2分)某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是.16.(2分)某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有人.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27,28题,每小题0分)17.计算:.18.解不等式组:;19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD=∠CDE.20.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE=2,求EG的长.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x <50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.1,75.7,79.9.c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“〇”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为亿件.(结果保留整数)23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.24.有这样一个问题:探究函数的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数的自变量x的取值范围是x≠2;(2)取几组y与x的对应值,填写在下表中.x…﹣4﹣2﹣101 1.2 1.252.75 2.834568…y…1 1.52367.5887.563m 1.51…m的值为;(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数的图象是轴对称图形,它的对称轴是;②过点P(﹣1,n)(0<n<2)作直线l∥x轴,与函数的图象交于点M,N(点M在点N的左侧),则PN﹣PM的值为.25.在平面直角坐标系xOy中,直线y=1与一次函数y=﹣x+m的图象交于点P,与反比例函数的图象交于点Q,点A(1,1)与点B关于y轴对称.(1)直接写出点B的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q两点中只有一个点在线段AB上,直接写出m的取值范围.26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合函数图象,求a的取值范围.27.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.28.在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.2020年北京市朝阳区中考数学一模试卷一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.(2分)自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113800用科学记数法表示应为()A.1.138×105B.11.38×104C.1.138×104D.0.1138×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据113800用科学记数法可表示为:1.138×105.故选:A.【点评】此题考查科学记数法的表示方法.表示时关键要正确确定a的值以及n的值.2.(2分)右图是某几何体的三视图,该几何体是()A.圆锥B.球C.长方体D.圆柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.故选:D.【点评】此题考查了由三视图判断几何体,关键是熟练掌握三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.3.(2分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是()A.a B.b C.c D.d【分析】首先根据:当数轴方向朝右时,右边的数总比左边的数大,可得:a<b<c<d;然后根据:哪个数越大,则它的相反数越小,判断出这四个数中,相反数最大的是哪个数即可.【解答】解:根据图示,可得:a<b<c<d,∴这四个数中,相反数最大的是a.故选:A.【点评】此题主要考查了实数大小比较的方法,在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.4.(2分)一个不透明的袋中装有8个黄球,m个红球,n个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m与n的关系一定正确的是()A.m=n=8B.n﹣m=8C.m+n=8D.m﹣n=8【分析】由一个不透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率与不是黄球的概率相同,可得=,即可得求得m与n的关系.【解答】解:∵一个不透明的袋中装有8个黄球,m个红球,n个白球,∴任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,∵是黄球的概率与不是黄球的概率相同,∴=,∴m+n=8.故选:C.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.5.(2分)如果,那么代数式的值为()A.3B.C.D.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=(+)•=•=a+1,当a=﹣1时,原式=﹣1+1=.故选:B.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6.(2分)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=,则AB的长为()A.2.5B.4C.5D.10【分析】首先根据垂径定理和CD的长求得CE和DE的长,然后根据同弧所对的圆周角相等确定∠B=∠C,根据正切的定义求得AE和BE的长即可求得答案.【解答】解:∵AB⊥CD,CD=4,∴CE=DE=2,∵∠B=∠C,tan C=,∴tan B=,∴AE=1,BE=4,∴AB=AE+BE=1+4=5,故选:C.【点评】考查了圆周角定理及垂径定理的知识,解题的关键是根据垂径定理求得CE和DE的长,难度不大.7.(2分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),连接AC,AD,BC,CD,其中AD交l2于点E.若∠ECA=40°,则下列结论错误的是()A.∠ABC=70°B.∠BAD=80°C.CE=CD D.CE=AE【分析】根据平行线的性质得出∠CAB=40°,进而利用圆的概念判断即可.【解答】解:∵直线l1∥l2,∴∠ECA=∠CAB=40°,∵以点A为圆心,适当长度为半径画弧,分别交直线l1,l2于B,C两点,∴BA=AC=AD,∴∠ABC=,故A正确;∵以点C为圆心,CB长为半径画弧,与前弧交于点D(不与点B重合),∴CB=CD,∴∠CAB=∠DAC=40°,∴∠BAD=40°+40°=80°,故B正确;∵∠ECA=40°,∠DAC=40°,∴CE=AE,故D正确;故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质得出∠CAB=40°解答.8.(2分)生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)1≤x<22≤x<33≤x<44≤x<55≤x≤6合计频数12b3m频率0.050.10a0.151表中3≤x<4组的频率a满足0.20≤a≤0.30.下面有四个推断:①表中m的值为20;②表中b的值可以为7;③这m天的日均可回收物回收量的中位数在4≤x<5组;④这m天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是()A.①②B.①③C.②③④D.①③④【分析】①根据数据总和=频数÷频率,列式计算可求m的值;②根据3≤x<4组的频率a满足0.20≤a≤0.30,可求该范围的频数,进一步得到b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.【解答】解:①1÷0.05=20.故表中m的值为20,是合理推断;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在4≤x<5组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15故这m天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D.【点评】考查频数(率)分布表,从表中获取数量及数量之间的关系是解决问题的关键.二、填空题(本题共16分,每小题2分)9.(2分)若分式有意义,则x的取值范围为x≠2.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.【点评】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.(2分)分解因式:2x2+8x+8=2(x+2)2.【分析】首先提公因式2,再利用完全平方公式进行分解即可.【解答】解:原式=2(x2+4x+4)=2(x+2)2.故答案为:2(x+2)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.(2分)如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,若AD=1,BD=4,则=.【分析】证明△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,故答案为:.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.12.(2分)如图所示的网格是正方形网格,则∠AOB<∠COD(填“>”、“=”或“<”).【分析】连接OE,由图可知,∠DOE=∠BOA,然后根据∠DOC=∠DOE+∠EOC,可得∠DOC>∠DOE,从而可以得到∠AOB和∠COD的大小关系.【解答】解:连接OE,则∠DOE=∠BOA,∵∠DOC=∠DOE+∠EOC,∴∠DOC>∠DOE,∴∠DOC>∠AOB,即∠AOB<∠COD,故答案为:<.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.13.(2分)如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=360°.【分析】根据多边形的外角和等于360°解答即可.【解答】解:∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.【点评】本题考查多边形的外角与内角,解题的关键是灵活应用多边形的外角和为360°解决问题,属于中考常考题型.14.(2分)用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a=﹣1(答案不唯一).【分析】根据题意找到一个使得命题不成立的a的值即可.【解答】解:当a=﹣1时,2a=﹣2,﹣1>﹣2,故答案为:﹣1(答案不唯一)【点评】考查了命题与定理的知识,解题的关键是能够根据题意举出反例,难度不大.15.(2分)某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是①②③.【分析】根据题意和函数图象中的数据,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:由题意可得,甲出发10分钟后与乙相遇,故①正确;甲的速度为2400÷6=400(米/分),故②正确;乙返回办公室用时14﹣10=4(分钟),故③正确;故答案为:①②③.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.16.(2分)某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有20人.【分析】可设该小组共有x人,往返的有y人,根据等量关系:①去程时的人数+返程时的人数﹣往返的人数=该小组一共的人数;②乘坐缆车的总费用是2400元;列出方程组求解即可.【解答】解:设该小组共有x人,往返的有y人,依题意有,解得.故该小组共有20人.故答案为:20.【点评】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程(组)求解.三、解答题(本题共68分,第17-22题,每小题0分,第23-26题,每小题0分,第27,28题,每小题0分)17.计算:.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=+2×﹣1+3=+1﹣1+3=+3.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.解不等式组:;【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>1,则不等式组的解集为1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD=∠CDE.【分析】由等腰三角形的性质可得∠B=∠C,可证△ADB∽△DEC,可得结论.【解答】解:∵AB=AC,∴∠B=∠C,∵AD⊥BC,DE⊥AC,∴∠ADB=∠DEC=90°,∴△ADB∽△DEC,∴∠BAD=∠CDE.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,证明△ADB∽△DEC 是本题的关键.20.关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.【分析】(1)先根据方程有两个不相等的实数根得出△=(m+1)2﹣4×1×m2>0,解之可得答案;(2)取m=0,代入后利用因式分解法求解可得(答案不唯一).【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△=(m+1)2﹣4×1×m2>0,解得m>﹣;(2)取m=0,此时方程为x2+x=0,则x(x+1)=0,∴x=0或x+1=0,解得x=0或x=﹣1(答案不唯一).【点评】本题主要考查根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30°,AE=2,求EG的长.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)由直角三角形的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,且BE=DF,∠B=∠D,∴△AEB≌△AFD(AAS),∴AB=AD,∴四边形ABCD是菱形;(2)如图,∵AD∥BC,∴∠CEG=∠G=30°,∵AE⊥BC,AD∥BC,∴∠EAG=90°,且∠G=30°,∴EG=2AE=4.【点评】本题考查了菱形的判定和性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x <50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.1,75.7,79.9.c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第3;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“〇”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为31亿件.(结果保留整数)【分析】(1)由城市先进制造业创新指数得分为79.9以上(含79.9)的城市有2个,即可得出结果;(2)根据北京在虚线l的上方,北京的先进制造业城市发展指数得分为79.9,找出该点即可;(3)根据30个城市的先进制造业城市发展指数得分情况统计图,即可得出结果.【解答】解:(1)∵在这30个城市中,先进制造业创新指数得分为79.9以上(含79.9)的城市有3个,∴北京的先进制造业城市发展指数排名3,故答案为:3;(2)如图所示:(3)由30个城市的先进制造业城市发展指数得分情况统计图可知,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为31万亿件;故答案为:31.【点评】本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.【分析】(1)根据题意可得三角形ABC是直角三角形,再根据切线长定理即可求出a的值;(2)①根据题意可得点O是三角形ABC的内心,再根据三角形内角和即可得结论;②作OE⊥MN于点E,根据角平分线的性质可得OD=OE,所以得OE为圆O的半径,进而可得MN为圆O的切线,即可得出结论.【解答】解:(1)如图,∵AB=3,AC=4,BC=5,∴33+42=52,∴∠A=90°,∴△ABC是直角三角形,由题意可知:图形G是以O为圆心,a为半径的圆,AB,AC,BC与圆O相切,设切点分别为F,D,Q,连接OF,OD,OQ,∴OF⊥AB,OD⊥AC,OQ⊥BC,∴四边形AFOD为正方形,∴AF=AD=OF=OD=a,根据切线长定理可知:BF=BQ=3﹣a,CD=CQ=4﹣a,∴3﹣a+4﹣a=5,解得a=1;(2)①由题意可知:点O是△ABC的内心,∴∠ABM=∠CBM,∵MA⊥AB,MB⊥BC,∴∠A=∠BNM=90°,∴∠BMA=∠BMN;②如图,作OE⊥MN于点E,∵∠BMA=∠BMN,∵OD⊥AC,∴OD=OE,∴OE为圆O的半径,∴MN为圆O的切线,∴直线MN与图形G的公共点个数为1.【点评】本题考查了三角形的内切圆与内心,解决本题的关键是掌握三角形的内心定义.24.有这样一个问题:探究函数的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数的自变量x的取值范围是x≠2;(2)取几组y与x的对应值,填写在下表中.x…﹣4﹣2﹣101 1.2 1.252.75 2.834568…y…1 1.52367.5887.563m 1.51…m的值为2;(3)如图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数的图象是轴对称图形,它的对称轴是x =2;②过点P(﹣1,n)(0<n<2)作直线l∥x轴,与函数的图象交于点M,N(点M在点N的左侧),则PN﹣PM的值为6.【分析】(2)把x=5代入函数解析式求出函数值即可.(3)利用描点法画出函数图象即可.(4)①根据轴对称图形的定义判断即可.②求出PN,PM的长(用n表示)即可解决问题.【解答】解:(2)由题意x=5时,y==2,∴m=2,故答案为2.(3)函数图象如图所示:(4)①观察图象可知图象是轴对称图形,对称轴x=2.故答案为x=2.②由题意,M(﹣+2,n),N(+2,n),∴PN=+2+1=+3,PM=﹣1﹣(﹣+2)=﹣3,∴PN﹣PM=+3﹣(﹣3)=6,故答案为6.【点评】本题考查反比例函数的性质,解题的关键是学会用描点法画出函数图象,学会利用参数解决问题,属于中考常考题型.25.在平面直角坐标系xOy中,直线y=1与一次函数y=﹣x+m的图象交于点P,与反比例函数的图象交于点Q,点A(1,1)与点B关于y轴对称.(1)直接写出点B的坐标;(2)求点P,Q的坐标(用含m的式子表示);(3)若P,Q两点中只有一个点在线段AB上,直接写出m的取值范围.【分析】(1)根据关于y轴对称的两点,其纵坐标相等横坐标互为相反数,即可写出点B 的坐标;(2)把y=1代入y=﹣x+m,求出x,进而得到点P的坐标;把y=1代入,求出x,进而得到点Q的坐标;(3)由点P,Q的坐标,可知点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况进行讨论:①只有P点在线段AB上;②只有Q点在线段AB上.分别列出关于m的不等式组,求解即可.【解答】解:(1)∵点A(1,1)与点B关于y轴对称,∴点B的坐标是(﹣1,1);(2)把y=1代入y=﹣x+m,得1=﹣x+m,解得x=m﹣1,∴点P的坐标为(m﹣1,1);把y=1代入,得1=,解得x=m,∴点Q的坐标为(m,1);(3)∵点P的坐标为(m﹣1,1),点Q的坐标为(m,1),∴点P在点Q的左边.当P,Q两点中只有一个点在线段AB上时,分两种情况:①只有P点在线段AB上时,由题意,得,解得1<m≤2;②只有Q点在线段AB上时,由题意,得,解得﹣1≤m<0.综上可知,所求m的取值范围是﹣1≤m<0或1<m≤2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了关于y轴对称的点的坐标特征,一元一次不等式组的应用.26.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+a+1与y轴交于点A.(1)求点A的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点M(﹣2,﹣a﹣2),N(0,a).若抛物线与线段MN恰有一个公共点,结合。
2020年北京市朝阳区初三物理一模试卷及答案
2020年北京市朝阳区初三一模物理 2020.05一、单项选择题(下列各小题的四个选项中,只有一个选项符合题意。
共30分,每小题2分)1.下列能源中,属于可再生能源的是A.煤炭B.石油C.核能D.太阳能2.图1所示的自然现象中,属于凝华形成的是3.图2所示的自行车零部件中,主要为了减小摩擦的是4.下列实例中,通过做功的方式改变物体内能的是A.烧水时,水温逐渐升高B.两手相互摩擦,手的温度升高C.冰块放入饮料中,饮料变得凉凉的D.阳光照在身上,身体感觉很温暖5.图3所示的厨房器具中,在使用时属于省力杠杆的是6.鲁迅的《社戏》中有这样的描写:“淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了……”其中“连山……向船尾跑去了”所选的参照物是A.船B.河岸C.水D.山7.图4所示的光现象中,由于光的反射形成的是8.下列有关声现象的说法中正确的是A.一切发声的物体都在振动B.声音可以在真空中传播C.在公路两旁植树,可以有效防止噪声的产生D.我们能分辨不同乐器发出的声音,是因为音调不同9.下列说法中正确的是A.重力的方向总是垂直于地面B.只要物体不受力,就会保持匀速直线运动状态C.手压缩弹簧时,手对弹簧的力大于弹簧对手的力D.运动员跑步到达终点后,由于惯性而不能马上停下来10.图5所示的电路中,电源两端电压保持不变。
闭合开关S,将滑动变阻器的滑片P向右滑动,则下列说法中正确的是A.小灯泡L变亮B.电流表的示数变小C.电压表的示数变大D.滑动变阻器接入电路中的电阻变小11.图6为水电站剖面图,拦河大坝中的水从H流出,经过P流向Q,水流推动叶轮转动使发电机发电。
下列判断中正确的是A.修筑拦河大坝是为了增加水的机械能B.水从H流到P的过程中,其动能减小C.发电机将电能转化为机械能D.水在H处的机械能等于Q处的机械能12.小阳为了探究导体在磁场中产生感应电流的条件,如图7所示,在蹄形磁体的磁场中放置一根导线ab,导线ab与开关和电流表组成了闭合回路。
2020学年北京市朝阳区初三一模生物试题及答案
2020北京朝阳初三一模生 物2029.5学校 ____________ ≡. ______________ 名 _______________ 考号 _____________—、诜择課(毎5H 外,共阿分〉1.细胞中控制基本0令活动的结构是A.细胞里B.细胞肢C.细胞质E ∙细胞核2•若要观鑿叶绿体,可以选取的材科是A.洋葱缄片叶E.蚕豆根矣C.滾朶叶D.苗帀果肉3. 北京西□国家森林公园是貝型的森林生态系统,元宝枫是重要的红叶观赏植物,进入秋季,日平均温度译低、昼夜温差划大,叶色逐渐褪垛变红。
黄刺蚁幼虫、天牛幼虫均可以敦食元宝抿叶片。
以下叙述错误的是A. 元宝枫是生态系疣成力中的生产者B. 黄刺蚁幼虫与天牛幼虫之囘是竞爭关系C. 幼虫取食叶片促进了生态系统的能量循环D. 影响叶片变红的非生松因素王要是泯度4. 下團是“採究绿片在光F 制逍淀粉”实脸的步滋,F 列解β∏5S 的是二从种子苗发到幼茁生K 的过程中,记泉下二氧:化族释放對f 据,绘;1»线圍。
以丁相关叙述的是A. 种子的萌发足一个'消耗大量能量的过程B.能童释孜的过程可以托氧气产生重吴表示A. 培飓①杲询了隆低叶片的荃腾作用C. 步骤②是为了促进细胞吸攻有机物R.尉≡②的女卜理昙论罟对瞋辅佥C∙在阶段3,呼吸作用非常日三盛u.在阶E殳4光合作用逐渐増强6.以下罡冥品牌蚩瞬卷的営养成分表,结合表中数据,下夕靦法正确旳是A.脂肪杲重要笊备用能沥物质,因此可以大量食用蛋卷啡E.钠盐作为无机盐,在消化道內要先被消化,再被吸收C.蛋靳容中的蛋白责可在口驛内初步消化D.耨类最终在小肠坡消化为葡萄*fL葡萄粧塞芍纟日胞的呼吸作用7.心脏薄动为血液循环提供动力,TLVflE内部荷彫肢可次保证血液沼看一定的方向洗动“如图,房室蕭可次厉Itltn液A.从④流入② E.从@)流人③C∙从②济入©D•从①济入③营养成外表顶目含量/10OS 蛋白质8. Og脂肪31. Og56. 7g钠20OngR当肋间肌和膈肌收縮时,气体依次经过A.外界f咽-食道f肺B.肺f气管f昂腔〜外界C-外界〜鼻腔f气誇*肪D肺f气管fD0f外界9.如图,分别能为大豆种子和玉米籽粒的萌发提供营养的结拘定A.②迪B.⑤®C. @0D.⑤⑩)10.蚕的一生会经历形态结松的包大变化。
2020年朝阳市九年级数学下期中第一次模拟试卷含答案
2020年朝阳市九年级数学下期中第一次模拟试卷含答案一、选择题1.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;2.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m3.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .19 4.若37a b =,则b a a-等于( ) A .34 B .43 C .73 D .37 5.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =12m ,则坡面AB 的长度是( )A.15m B.203m C.24m D.103m6.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶17.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.128.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.8039.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m10.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A .3B .3或43C .3或34D .4311.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .1312.下列变形中:①由方程125x -=2去分母,得x ﹣12=10; ②由方程29x =92两边同除以29,得x =1; ③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4 B .3 C .2 D .1二、填空题13.如果把两条邻边中较短边与较长边的比值为51-的矩形称作黄金矩形.那么,现将长度为20cm 的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____cm . 14.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.15.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.16.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.17.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.18.如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.19.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.20.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 三、解答题21.如图,AB ∥CD ,AC 与BD 的交点为E ,∠ABE =∠ACB .(1)求证:△ABE ∽△ACB ;(2)如果AB =6,AE =4,求AC ,CD 的长.22.计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒. 23.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.24.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE V V ∽.(2)若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.25.如图,在△ABC 中,DE ∥BC ,23AD AB =,M 为BC 上一点,AM 交DE 于N. (1)若AE =4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.2.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 3.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF ,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 4.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.5.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1∴AC=BC÷tanA=cm,∴AB24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.6.C解析:C【解析】【分析】过A作AF∥BC交BM延长线于F,设BC=3a,则BP=PQ=QC=a;根据平行线间的线段对应成比例的性质分别求出BD、BE、BM的长度,再来求BD,DE,EM三条线段的长度,即可求得答案.【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.7.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.8.B解析:B【解析】∵△ABC ∽△A ′B ′C ′,∴34ABC AB A B C A B ''=''='V V 的周长的周长, ∵△ABC 的周长为15cm ,∴△A ′B ′C ′的周长为20cm .故选B .9.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++∴1.2AB=1.8,∴AB=1.5m .故选A .10.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:11.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.12.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】①方程125x-=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程29x=92,两边同除以29,得x=814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题13.【解析】【分析】设这个黄金矩形较长的边长是xcm 根据题意得:解方程可得【详解】设这个黄金矩形较长的边长是xcm 根据题意得:解得:x=则这个黄金矩形较短的边长是cm 故答案为:【点睛】考核知识点:黄金分解析:(15-【解析】【分析】设这个黄金矩形较长的边长是xcm ,根据题意得:220x x ⎛⎫+= ⎪⎝⎭,解方程可得. 【详解】设这个黄金矩形较长的边长是xcm ,根据题意得:12202x x ⎛⎫-+= ⎪⎝⎭,解得:x= 5,则这个黄金矩形较短的边长是15)(152⨯=-cm .故答案为:(15-【点睛】考核知识点:黄金分割点的应用.理解黄金分割的意义是关键. 14.-3【解析】【分析】根据比例系数k 的几何含义:在反比例函数y=的图象中任取一点过这一个点向x 轴和y 轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC 的面积为3∴|k|解析:-3【解析】【分析】根据比例系数k 的几何含义:在反比例函数y=k x的图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC 的面积为3,∴|k|=3.∴k=±3. 又∵点A 在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】 本题考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.15.【解析】【分析】由证得【详解】∵∴△CED ∽△CAB ∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE ∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出 解析:35【解析】【分析】由DE AB ∥证得【详解】∵DE AB ∥,∴△CED ∽△CAB, ∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE, ∴AE AB =35DE CE AB AC ==, 故填:35. 【点睛】 此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AEAB的值.16.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 17.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC 中,OC==, ∴BC=OB﹣OC=2﹣,∴在Rt△ABC 中,tan∠ABO==2+. 故答案是:2+.【点睛】 本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键.18.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =.故答案为35y x .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了矩形的性质.19.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:48-163【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=33x.所以x+33x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16320.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)详见解析;(2)AC=9,CD=15 2.【解析】【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴AB AE AC AB=,∴AB2=AC•AE,∵AB=6,AE=4,∴AC=29 ABAE=,∵AB∥CD,∴△CDE∽△ABE,∴CD CE AB AE=,∴()••651542AB AC AEAB CECDAE AE-⨯====.【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.22.14-.【解析】试题分析:把特殊角的三角函数值代入运算即可.试题解析:原式23321121 22322.124122=⋅-⋅--==+⨯23.(1)DE的长为9;(2)BE的长为11;【解析】【分析】(1)由果6AB=,8BC=,可得AC=14,然后根据平行线等分线段定理得到6=14DE ABDF AC=,然后将已知条件代入即可求解;(2)过D作DH∥AC,分别交BE,CF于H,说明四边形ABGD和四边形BCHG是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF=,最后代入已知条件求解即可.【详解】(1)∵6AB=,8BC=,∴AC=AB+BC=14∵AD BE CFP P∴6=14DE ABDF AC=∴662191414DE DF==⨯=(2)过D作DH∥AC,分别交BE,CF于H.∵AD BE CFP P∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF ==⨯= ∴BE=BG+GE=9+2=11.【点睛】 本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.24.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD :AE=AC :AB ,有一组公共角∠A ,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE V V ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=o .∵A A ∠=∠,∴ACD ABE V V ∽.()2若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.∵ACD ABE V V ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC V V ∽.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.25.(1)2(2)8【解析】【分析】(1)首先根据DE ∥BC 得到△ADE 和△ABC 相似,求出AC 的长度,然后根据CE=AC -AE 求出长度;(2)根据△ABC 的面积求出△ABM 的面积,然后根据相似三角形的面积比等于相似比的平方求出△ADN 的面积.【详解】解:(1)∵DE ∥BC∴△ADE ∽△ABC ∴23AE AD AC AB == ∵AE=4∴AC=6∴EC=AC -AE=6-4=2(2)∵△ABC 的面积为36,点M 为BC 的中点∴△ABM 的面积为:36÷2=18 ∵△ADN 和△ABM 的相似比为23 ∴:4:9ADN ABM S S ∆∆=∴ADN S V =8考点: 相似三角形的判定与性质。
2020年北京市朝阳区物理初三一模试题及答案
2020北京朝阳初三一模物理1.下列能源中,属于可再生能源的是A.煤炭B.石油C.核能D.太阳能2.图1所示的自然现象中,属于凝华形成的是3.图2所示的自行车零部件中,主要为了减小摩擦的是4.下列实例中,通过做功的方式改变物体内能的是A.烧水时,水温逐渐升高B.两手相互摩擦,手的温度升高C.冰块放入饮料中,饮料变得凉凉的D.阳光照在身上,身体感觉很温暖5.图3所示的厨房器具中,在使用时属于省力杠杆的是6.鲁迅的《社戏》中有这样的描写:“淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了……”其中“连山……向船尾跑去了”所选的参照物是A.船B.河岸C.水D.山7.图4所示的光现象中,由于光的反射形成的是8.下列有关声现象说法中正确的是A.一切发声的物体都在振动B.声音可以在真空中传播C.在公路两旁植树,可以有效防止噪声的产生D.我们能分辨不同乐器发出的声音,是因为音调不同9.下列说法中正确的是A.重力的方向总是垂直于地面B.只要物体不受力,就会保持匀速直线运动状态C.手压缩弹簧时,手对弹簧的力大于弹簧对手的力D.运动员跑步到达终点后,由于惯性而不能马上停下来10.图5所示的电路中,电源两端电压保持不变。
闭合开关S,将滑动变阻器的滑片P向右滑动,则下列说法中正确的是A.小灯泡L变亮B.电流表的示数变小C.电压表的示数变大D.滑动变阻器接入电路中的电阻变小11.图6为水电站剖面图,拦河大坝中的水从H流出,经过P流向Q,水流推动叶轮转动使发电机发电。
下列判断中正确的是A.修筑拦河大坝是为了增加水的机械能B.水从H流到P的过程中,其动能减小C.发电机将电能转化为机械能D.水在H处的机械能等于Q处的机械能12.小阳为了探究导体在磁场中产生感应电流的条件,如图7所示,在蹄形磁体的磁场中放置一根导线ab,导线ab与开关和电流表组成了闭合回路。
下列操作中可以使电流表指针发生明显偏转的是A.闭合开关即可B.闭合开关后,使导线ab在磁场中向右运动C.闭合开关后,使导线ab在磁场中竖直向上运动D.闭合开关后,使磁体沿导线ab向前运动13.关于图8所示的四个情境,下列说法中正确的是A.用丝绸摩擦过的两根玻璃棒靠近时,会相互吸引B.图中自由电子的定向移动方向为电流方向C.开关闭合后,用导线触接L2两端时,L1发光,L2不发光D.用橡胶棒把验电器A和B连接起来,B的金属箔会张开14.盛一盆水,在盆里放两块高出水面的砖头,砖头上搁一只比盆小一点的篮子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年北京市朝阳区初三(下)一模试题语文一、基础•运用(共15分)学校开展“相约云端,开启生活新方式”主题学习活动,请你完成下列任务。
1.下面是本次活动的一段引言。
阅读这段文字,完成(1)(2)題。
(共4分)随着人工智能、工业互联冋、物联网等新型基础设施建设的加强,借助线上技术,“云生活”在这个春天悄然走进千家万户【甲】线下课堂变身“云课堂”,我们在线上与知识“亲密接触”:卷心策划的“云展览”,让文化盛事触屏可赏:居家在线“云旅游”.让我们足不出户拥有诗和远方【乙】丰富多彩的“云生活”已①(溶/融)入我们的日常。
同学们,未来②(以/已)来,让我们相约云端,开启生活新方式。
(1)依次在横线①②处填入汉字,全都正确的一项是(2分)A.①融②以B.①浴②以C.①融②已D.①浴②已(2)在【甲】【乙】两处分别填入标点符号,最恰当的一项是(2分)A.【甲】冒号【乙】逗号B.【甲】句号【乙】省略号C.【甲】句号【乙】逗号D.【甲】冒号【乙】省略号.语文老师带领大家通过“云课堂”开展学习活动。
结合语境,完成(1)-(3)題。
(共5分)(1)名著专题复习课上,大家在空中讨论室交流《从百草园到三味书屋》《阿长与〈山海经〉》的阅读感受。
这三篇文章都选自鲁迅的散文集《》(1分)(2)书法专题复习课上,老师带领同学们欣赏关于历代名篇的书法作品。
对下面这四幅书法作品的欣赏,不正确的一项是(2分)《送杜少府之任蜀州》钱站书《醉翁亭记》(局部)苏轼书《随室铭》赵孟頫书《岳阳楼记》(局部)祝允明书A.《送杜少府之任蜀州》的字体属于篆书,线条匀称,开阔舒展。
B.《醉翁亭记》的字体属于隶书,蚕头雁尾,刚健峻拔。
C.《随室铭》的字体属于行书,字形定扁,稳重道劲。
D.《岳阳楼记》的字体属于草书,笙势奉连,自由奔放。
(3)文言文专题复习课上,同学们针对“冠''字展开了讨论。
阅读大家的发言(见下图),请你作出判断。
(2分)依据发言,可以判断“丈夫之冠也,父命之”的“冠〃读作, “既加冠”的“冠”读作©。
2.老师和同学们相约参观“永远的东方红一一纪念'东方红一号'卫星成功发射五十周年”云展览。
阅读下面文字,完成(1) -(3)題。
(共6分)1970年4月24日,中国第一颗人造地球卫星——东方统一号”从荒漠戈壁发射成功,一曲嚓•亮的《东方红》响彻衰宇。
今年4月24 H ,在第五个“中国颠天.日”签“东方统一号”卫星成功发射50周年之际,“永远的东方红——纪念,东方统一号'卫星成功发射五十周年”云展览在国家博物馆云展厅开幕。
“永远的东方统”云展览紧扣“弘插貌天.対神拥抱星辰大海”活动主题,分为“太空奏响东方统” “五十年砥砺前行” “格神的力量” “杭天强国立新功”四个单元。
云展览通过文字、图片、音颊等数字资源,展出从“东方统一号”到“神舟” “嫦嫉”系列颠天珍贵物泣近50件套,涵盖手稿、任务书、名单、邮票、模拟器、菰天服等诸多品类:。
_______________________________ o(1)结合语境,在横线处填入语句,最恰当的一项是(2分)【甲】这些珍贵的物证展现了我国社会主义现代化建设的历史性时刻和巨大成就,阐释了建设者艰苦奋斗的精神。
【乙】为了阐释不断传承发展的航天精神,这些珍贵的物证回顾了中国航天事业的发展历程以及取得的巨大成就。
【丙】这些珍贵的物证展现了中国航天事业的发展历程以及取得的巨大成就,阐释了不断传承发展的航天精神。
(2)下面是四位同学分别写下的参观感受。
其中修辞方法或词语使用不恰当的一项是(2分)A.这台手揺计算机格外引人入胜:它似乎让我看到了邓稼先在简陋的实验室里埋头计算的日日夜夜。
B.借助AR技术,我仿佛身临其境,回到了东方红一号”发射的那一刻,耳边传来地动山揺的轰鸣声。
C.五十年过去了,“东方红一号”依然在遥远的太空守望着你我,灯塔般照亮着中国航天事业的征途。
D.星空浩瀚无比,探索永无止境。
代代相传的航天精神,鼓舞着我们中华儿女,向着星辰大海进爰!(3)下面是一位同学观看本次云展览后在直播间写下的一句留言。
请你依据本次参观活动补写一句话,与其构成一副对联。
(2分)上联:烈焰腾空,东方红直指天宇下联:二、古诗文阅读(共17分)(一)默写。
(共5分)4.东风不与周郎便,。
(杜牧《赤壁》)(1分)5.,柳暗花明又一村。
(陆游《游山西村》)(1分)6.颐和园的西堤仿杭州西湖苏堤而建。
说起西湖,你能想到的一联诗句是“颐和园景明楼,©”。
沿西堤行走,从柳桥去往练桥,你会经过“景明楼“。
看到这座楼,你一定会想起范仲淹在《岳阳楼记》中所写到的“至若春和景明,®”。
(3 分)(二)阅读《黄鹤楼》,完成7T題。
(共5分)黄鹤楼崔甄昔人已来黄終去,此地空余黄鹤楼。
黄終一去不复返,白云千载空悠悠。
晴川历历汉阳树.芳草妻■萎■鞘鹉洲。
日舔乡关何处是?烟波江上使人愁。
7.诗歌前两联,从神话传说落笔,遅过写、白云悠悠,表达了诗人对世事变化难以预料的感慨。
(1分)8.画线句描绘了诗人登楼所望之明丽景象。
请你发挥想象,用生动形象的语言将你脑海中浮现的画面描述出来。
(2分)答:9.下列与“日暮乡关何处是?烟波江上使人愁“表达情感一致的一项是(2分)A.夕阳西下,断肠人在天涯。
B.念天地之悠悠,独怆然而涕下。
C.我寄愁心与明月,随君直到夜郎産。
D.人有悲欢离合,月有阴晴圆缺,此事古难全。
(三)阅读《桃花源记》(节选),完10-12題。
(共7分)林尽水源,便得一山,山有小口,仿佛若有光。
便舍船,从口入。
初极狭,才通人。
复行数十步,谿然开朗。
土地平旷,屋舍伊然,有良田、美池、桑竹之属。
阡陌交通,房犬和闻。
其中往来种作,男女衣着,悉如外人。
【甲】黄发垂毋.并怡然再乐。
见渔人,乃大惊,问所从来。
其答之。
便要还家,设酒杀房作食。
村中闻有此人,成来问讯。
負云先世避泰时乱,率妾子邑人来此絶境,不复出焉,【乙】遂与外人间隔。
问今是何世,乃不知有汉,无论魏晋。
此人 ------------ 为其言所闻,皆叹惋。
余人各复延至其家,皆出酒食。
停数日,徉去。
此中人语云:“不足为外人道也。
”既出,得其船,便扶向路,处处志之。
[丙】及郡下.诣太守.说如此。
太守即遣人随其往,寻向所志,遂迷,不复得路。
(节选白陶'渊明《桃花源记》)10.下列选项中加点字的意思都相同的一项是(2分)A.便舍船舍生取又四舍五入锲而不舍B.才通人指通豫南通情达理融会贯通C.具答之百废具兴别具匠心交通工具D.扶向路寻向所志所向披靡欣欣向荣11.翻译文中三处画线语句,并依据上下文对其作出进一步理解,全都正确的一项是(2分)【甲】黄发垂毋,并怡然白乐。
翻译:黄发的老人和垂下头发的小孩,都安适愉快,自得其乐。
理解:住在桃花源里,人们因为环境优美、生活富足而心情舒畅,这也是陶湖明所向往的田园生活。
【乙】遂与外人间隔。
翻译:于是桃花源中的人们就同外界的人断绝了来往。
理解:桃花源之所以与世隔绝,是因为桃花源人的祖先为躲避战乱来到这里后,就再也没有出去过。
【丙】及郡下,诣太守,说如此。
翻译:到了郡城,渔人去拜见了太守,报告了自己的这番经历。
理解:渔人希望太守能派人探个究竟,所以向太守报告了自己发现桃花源的经过,以及村中的生活情状。
12.上文描绘的世外桃源是陶'渊明心中的理想社会。
阅读下面三则链接材料,用自己的话简要说说不同材料中的理想社会各有怎样的特点。
(3分)【链接材料一】使有什伯之器①而不用,使民重死②而不远彼。
虽有舟舆气无所乘之:虽有甲兵,无所陈④之。
使民复结绳而用之。
邻国和望,勇犬之声和闻,民至老死,不相往来。
(节选自《老子》)【链接材料二】故至徳之世,山无茨隧气泽无舟梁:万物群生,连為其乡气禽兽成群,革木遂长。
是故禽兽可系羁⑦而游,鸟鹊之巢可攀援而宛。
夫至德之世,同却与禽■兽居,族⑨与万物并。
(节选自《庄子•马蹄》)【链接材料三】故人不独亲其亲,不独子其子,使老有所终,牡有所用,幼有所长,矜、嘉、旗、独、废疾者皆有所养,男有分,女有归。
货恶其弃于地也,不必藏于已:力恶其不出于身也,不必为已。
(节选自《礼记•礼运》)注:①[什伯之器]各种各样的器具。
什伯,十倍,百倍。
②[重死]以死为重。
③[舆]轧④[陈]通“阵”,列阵。
⑤段隧]小径和穴道。
⑥[连屬其乡]指居所和连。
⑦[羁]拴住。
⑧[同]混同。
刎族]聚集。
链接材料①链接材料二:©链接材料三:®三、名著阅读(5分)13.阅读名著时,可以采取精读和跳读交替使用的方法。
请你从所阅读的名著中任选一部,结合具体内容,说说你是如何运用这个读书方法阅读的。
(100字左右)四、现代文阅读(共23分)(一)阅读下面材料,完成14-16題。
(共7分)【材料一】疫情期间,出行不便催生了人们多样的云端生活。
首先,各种生鲜APP-夜诞生。
各大电商通过云端为家底配送生活物资,人们足不出户,便可买莱、买米。
其次,过去只有一部分人选择的线上教育,如今开展得如火如荼。
成年人挙办各种“云培训” “云沙龙”,全国各地的大中小学也都开设了“云课堂”此外,各种“云会议”也成为特殊时期的办公常态,就连G20国际峰会也开通全球视颊端,从线下转到了线上。
直播帯貨更是如®。
2月以来,有100多种线下职业在直播中找到了新商机,房产顾问“云卖房”,律师“云问案”,医生“云问诊”,农民“云卖莱” ........ 一场疫情将生活的方方面面帯入云端,我们的生活已经离不开数字技术。
虽然我们可能仍然对云储存、云计算等名词还不甚了解,但无可豈疑的是,我们已然“腾云驾雾”,开启了一种新的生活方式。
【材料二】与传统生活模式和比,“云生活”模式具有、时间减省、服务融准等优势。
“云医疗” 让每一个医院不再是信息的孤岛。
数据采道畅通,有效缓解了医疗资源分布不均的难题。
以往病人在医院排长队桂号、墩费的苦恼,也将随着一些多功能匮疗APP的出现而烟消云散。
有了电子健康档案和数据分析,医生可以随时耕准诊疗。
“云办公”让优质资源得以共享,重复资源能够裱迅速发现,合理的配翌避免了源的浪费。
灵活的办公地点节省了通勤的时间,灵活的办公时沮更便于及时准确地处理突发问题。
当下的“云课堂”也配豊了丰富多样、适合不同学生的学习资源。
学生可以根捱白身需要选取资料,制定个性化学习方案,弥补了以往学习方式中用时过长、效率不高的缺陷。
【材料三】2020年2月中旬之后,全国各大中小学相继开启“云课堂”。
从面对面、面对黑板到面对屏幕,从教室空间到冋络空间……无论是老师还是学生,在线上教学中都面临着巨大的挑战。
一方面,教师很难及时全面地掌握课堂情况。
因为网络上教师与学生存在着距离,无法与学生直面交流,不知道学生是否还在课堂现场,不了解学生的思路是否与負己的教学思路相伴而行。