手机万能充电器电路原理图及分析
诺基亚手机充电器电路图及分析

图 1为一款诺基亚手机通用充电器实绘电路。
AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。
L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。
在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。
此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。
这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升至一定值时,在R3的作用下,Q2再次导通,重复上述过程,如此周而复始,形成自激振荡。
在Q2导通期间,L3中的感应电动势极性为上负下正,D7截止;在Q2截止期间,L3中的感应电动势极性为上正下负,D7导通,向外供电。
图1中,VD1、Q1等元件组成稳压电压。
若输出电压过高,则L2绕组的感应电压也将升高,D1整流、C4滤波所得电压升高。
由于VD1两端始终保持 5.6V的稳压值,则Q1 b极电压升高,Q1导通程序加深,即对Q2 b极电流的分流作用增强,Q2提前截止,输出电压下降若输出电压降低,其稳压控制过程与上述相反。
另外,R6、R4、Q1组成过流保护电路。
若流过Q2的电流过大时,R6上的压降增加,Q1导通,Q2截止,以防止Q2过流损坏。
手机充电器原理图

一款手机充电器用电源变换器电路的分析分析一个电源,往往从输入开始着手。
220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。
这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。
右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。
13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。
当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。
不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。
左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。
13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。
当取样电压大约大于,即开关管电流大于时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。
变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。
为了分析方便,我们取三极管C945发射极一端为地。
那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。
取样电压经过稳压二极管后,加至开关管13003的基极。
原理图如下:前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。
手机充电器电路图详解

手机充电器电路图详解充电器电路手机(或其它小电器)充电器多如牛毛,不同厂家的电路结构大不相同,随着科技的进步新技术、新元件的出现又增加了新款的充电器,再加上山寨充电器充斥其中,导致小小充电器电路结构琳琅满目,让人应接不暇。
但有一款比较现代也比较简洁、很容易看懂电路图、容易查找故障的分立元件充电器,可作为经典教材进行研究,笔者使用这款充电器已有三年之久,由于后来大电流的快充的出现,现在已经不用它了,只将其作为一种研究对象进行分析,今天就将此分享给大家。
电路原理图见下图:电路图分析:一、该电路属于自励、反激式、变压器耦合型、PWM开关电源;电源变换过程:交流(AC,输入市电)→直流(DC)→交流(AC,高频)→直流(DC,输出);电路由整流、振荡、稳压、保护四大系统组成。
二、输入整流、滤波电路:由二极管VD1、电解电容器C1组成,属于半波整流电路,输出脉动直流电压,峰值电压311v,经电容滤波达到300v左右的直流电压。
VD1为1N4007这个二极管使用比较普遍,最大整流电流1A,最大反向电压1000v;电解电容器的耐压要大于300v;三、振荡电路:由R2、VT1、L1、L2、C4、R5组成,如果没有L2、C4、R5反馈支路的存在,三极管VT1过着一种平淡的田园生活,它通过偏置电阻R2提供合适的偏压,形成了一般的放大电路,但第三者---反馈电路的插足让它的生活不再平静,而是动荡不安--形成了振荡电流。
L2为反馈线圈,从图上L1、L2同名端的关系看出该反馈属于正反馈,于是形成了振荡电路,由于电容C4的存在导致该振荡电路形成的振荡是间歇振荡,不是正弦波;起振过程:电路接通时,启动电阻R2为电路提供偏置电流,于是VT1的集电极就有电流Ic通过Ic,当集电极线圈L1电流发生变化时(0→增加),就会产生自感电动势,方向上+下-,因L2与L1同绕在一个磁心上,于是L2在互感的作用下,产生下+上-的感应电动势;版权所有。
Ceykmpl手机万能充电器电路原理与维修[1]doc
![Ceykmpl手机万能充电器电路原理与维修[1]doc](https://img.taocdn.com/s3/m/4d85960003d8ce2f0066230a.png)
-+懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。
—罗兰手机万能充电器电路原理与维修文章来源:网络由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。
该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。
四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。
面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。
一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V 经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T 的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
充电器6V电瓶设计级手机万能充电器维修图

市面上出现的6V电瓶供电的应急灯,随机配的充电器过于简单,长时间工作发热严重、易烧毁。
充电时还容易造成电瓶过充,引起电解液过早干涸而缩短电瓶寿命。
针对这—缺点,笔者将其改成自动充电器,经半年多使用,效果良好,电路如上图所示,原理简述比为T1基极提供基准电压,继电器J实现开关K自锁和自动断电,当接上电瓶后,按动K,电源指示灯L点亮,同时J得电吸合,K被其触点J—0自锁,充电开始,此时由于电瓶欠电,T1发射极电压低于(7.5V+0.65V),T1截止,T2也截止,它们对T3无影响。
当电瓶电压充至7.5V时,Tl发射极电压为7.5V+0.65V,T1饱和导通,T2也导通,T3基极电压下降而截止,J失电释放,J—0断开,充电停止。
指示灯L熄灭。
通过调节W还可对不同电压的电池充电。
电路中的二极管D是隔离二极管,可防止电瓶反向放电。
元件选择 R为充电限流电阻,可在5~10欧间选取,其它元件无特殊要求。
所有元件可搭接在一塑料盒上,Ic可不用散热器。
调试短接K,调W使IC输出电压为电瓶充满电压7.5V即可。
手机万能充电器电路原理与维修由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。
该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。
四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。
面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。
Cexevkc手机万能充电器电路原理与维修

-+懒惰是很奇怪的东西,它使你以为那是安逸,是休息,是福气;但实际上它所给你的是无聊,是倦怠,是消沉;它剥夺你对前途的希望,割断你和别人之间的友情,使你心胸日渐狭窄,对人生也越来越怀疑。
—罗兰手机万能充电器电路原理与维修文/韩军春由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。
该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。
四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。
面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。
一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b 极提供一个正向偏置电压,使VT2导通。
手机万能充电器设计与研究

手机万能充电器设计与研究电子技术的快速发展使得各种各样的电子产品都朝着便携式和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。
目前,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。
它们的各自特点决定了它们将在相当长的时期内共存发展。
由于不同类型电池的充电特性不同和各型号手机所附带的充电器插口不同,通常对于不同类型,甚至不同电压、容量等级不同的电池用不同的充电器,造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
手机万能充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面介绍其工作原理和维修方法。
该万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。
面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。
一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。
实用万能充电器电路原理图及分析

实用万能充电器电路原理图及分析一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。
由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。
随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。
在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。
在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。
2.充电电路该电路主要由一块软塑封集成块IC1(YLT539)和三极管VT3等组成。
从变压器T的1-3绕组感应出的交流电压5.5V经二极管VD3整流、电容C3滤波后,输出一个直流8.5V左右电压(空载时),该电压一部分加到三极管VT3的e极;另一部分送到软塑封集成块IC1(YLT539)的1脚,为其提供工作电源。
集成块IC1有了工作电源后开始启动工作,在其8脚输出低电平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E充电。
手机万能充电器制作

手机万能充电器制作一、实验内容:数字万用表的设计与制作二、实验要求:1、了解数字万用表的使用方法;2、认识分立器件,能够识别与连接色环电阻、普通电容、电解电容、二极管、三极管、振荡器、稳压管等元件的工作特性;3、理解电路的工作原理;4、完成整个电路焊接、装配与调试;三、实验步骤:1、清查元器件的数量与质量对不合格元件应及时更换。
2、确定元器件的安装方式、安装高度,一般由该器件在电路中的作用、印制版与外壳间的距离以及该器件两安装孔之间的距离所决定。
3、进行引脚处理,即对器件的引脚弯曲成形并进行烫锡处理。
成型时不得从引脚根部弯曲(应>1.5mm,卧装需从根部弯曲的元件请小心弯曲),尽量把所有字符的器件面置于易于观察的位置,字符应从左到右(卧式),从下到上(直立式)。
4、插装:根据元件位号对号插装,不可插错,对有极性的元器件(如二极管、三极管、电解电容等)及三极管的管脚,插孔时应特别小心5、焊接:各焊点加热时间及用锡量要适当,防止虚焊、错焊,避免因拖锡而造成短路。
6、焊后处理:剪去多余引脚线,检查所有焊点,对缺陷进行修补。
焊接注意事项:1、焊接时间不能过长(必要时可以用镊子夹住被焊元器件,起到散热作用)2、焊接时不能出现假焊或虚焊。
焊接前准备工作:1、搪(均匀涂抹)锡:将要锡焊的元器件引线或导电的焊接部位预先用焊锡润湿。
2、印刷板面的氧化物处理。
(1) 用细砂纸轻轻打磨,直到露出光亮的铜箔面。
(2) 在光亮的铜箔面涂上一层松香水(松香粉末与酒精配制的)。
焊接过程总结:(1) 准备施焊:焊接前的准备包括焊接部位的清洁处理,元器件安装及焊料、焊剂和工具的准备。
左手焊锡丝,右手握电烙铁(烙铁头要保持清洁,并使焊接头随时保持施焊状态)。
(2) 加热焊件:应注意加热整个焊件整体,要均匀受热。
(3) 送入焊丝:加热焊件达到一定温度后,焊丝烙铁从对面接触焊件。
(4) 移开焊丝:当焊丝融化一定量后,立即移开焊丝。
手机充电器电路图原理

手机充电器电路图原理关键词:电路图来源:本站整理点击:转播到腾讯微博对于市场上到处可见的手机充电器,万能充不断的增多,但质量又不是很高,经常会出现问题,扔了可惜,故教大家几招分析手机充电器原理的分析,希望能给大家修理带来些帮助。
分析一个电源,往往从输入开始着手。
<<提示:容源电子网为广大电子爱好者提供电路图专题网站“容源电路图网”,欢迎访问。
汇聚大量电路图与你共同分享。
》220V交流输入,一端一个4007半波整流,另一端一个10欧的电阻后,由10uF电容滤波。
10欧的电阻用来做保护的,出现故障等导致过流,那么电阻将被烧断,从而避免引起更大的故障。
右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。
<<提示:容源电子网为广大电子爱好者提供电路图专题网站“容源电路图网”,欢迎访问。
汇聚大量电路图与你共同分享。
》13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源的通、断。
当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
图中没有标明绕组的同名端,不能看出是正激式还是反激式。
不过,从电路的结构来看,可以推测出来,电源应该是反激式的。
左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。
<<提示:容源电子网为广大电子爱好者提供电路图专题网站“容源电路图网”,欢迎访问。
汇聚大量电路图与你共同分享。
》13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。
当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。
万能手机充电器下载资料2

/huian333/blog/item/7beb8f620ef49ddae7113a96.html手机万能充电器电路原理2008-12-25 06:03由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。
该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。
四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。
面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。
一、工作原理该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。
在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮?若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键)才行。
具体电路原理如下。
1.振荡电路该电路主要由三极管VT2及开关变压器T1等组成。
接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。
该电压经开关变压器T的卜1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。
此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。
自动识别极性手机充电器原理与检修

能自动识别极性的手机充电器原理与检修作者:朱世民单位:长沙市高新技术工程学校邮箱:278546769@现在,市场上广为流行的是:能自动识别电池极性的手机万能充电器。
它和以前的脉动式万能充电器相比,具有电池极性自动识别和自动转换功能,它还具有控制精度高、限流充电和防止过充的优点。
但是,网络和杂志上少有这方面的介绍。
本文特地详细介绍其电路原理与检修方法。
一、工作原理:本电路由开关电源,恒压限流充电和电池极性识别三大部分组成。
1、开关电源:如图:电路主要以开关管VT1和开关变压器T为核心组成间接取样式开关电源,实现AC-DC变换,输出6V左右的直流电。
市电通过R1为限流,二极管VD2整流、电容C1滤波,得到280V左右的直流电压。
一路经启动电阻R2加到VT1基极;一路经变压器绕组加到VT1集电极。
由于C3 和R3 的正反馈作用,VT1和开关变压器T,以及外围元件组成一个组成间歇振荡器,将直流电变为40KHZ左右的交变电流,通过变压器的变换和降压,经过VD3整流和电容C5滤波,输出6V左右的直流电压,为后级电路供电。
图中R4为电流取样电阻,DW为过压检测器件。
它们和VT2一起构成过流、限压保护电路;电容C2为间歇定时电容,影响间歇时长短,从而可以改变输出电压高低。
2、恒压限流充电电路:图中Q2为充电控制三极管,TL431为三端可调稳压IC。
IC的①脚外接取样电阻R7、R8,决定着输出电压的高低。
R6为Q2基极偏压电阻,TL431和Q2一起组成高精度串联稳压电路,输出稳定电压为4.2V;R5为充电限流电阻,将充电初期的电流限制在800mA以下,这样通过高精度稳压和限制最大充电电流而保证不损坏理电池。
Q1为充电指示灯LED1的控制管。
在充电初期,充电电流较大,R5两端的电压大于0.5V,此时Q1导通,充电指示灯LED1得电发光;当电池接近充满时,充电电流变小,R5两端的电压降低,Q1导通电阻变大,LED1变暗,最后直到Q1截止而熄灭,表示电池接近充满。
镍氢电池智能充电电路

手机万能充电器电路图一、手机万能充电器是一个小型的开关电源,电路结构简单,外围元件较少。
但是一旦发生故障,有些人束手无策,因为没有电路图。
现在我将电路图传上,和大家一起分享。
有问题可以向我提问。
希望和大家共同进步!二、超力通电路图(原图)三、我修改过的图纸(我认为原图可能有错误)四、超力通电路原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。
在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。
该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。
PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。
由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。
当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。
开关管的截止时间取决于负载电流的大小。
开关管的导通/截止由电平开关从输出电压取样进行控制。
因此这种电源也称非周期性开关电源。
220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。
由V2和开关变压器组成间歇振荡器。
开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。
由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。
开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。
手机电池简易万能充

手机电池简易万能充电器目前市场上面充斥着形形色色、各式各样的手机电池万能充电器,这些充电器电路简单、成本低廉,其内部大都采用了一个小型的开关电源电路,这里介绍简易的手机电池万能充电器,(一)电路组成该万能充实质为小型开关电源电路,可分为:输入整流滤波电路、开关振荡电路、过压保护电路、次级整流滤波电路、稳压输出电路、自动识别极性及充电电路、跑马灯充电指示电路等。
(二)电路基本工作原理当充电器插到交流电源上后,220V交流电压经D1半波整流、C1滤波,得到约300V左右的直流电压。
由Q1、T1、R1、R3、R4、R5、C2等元件组成的开关振荡电路将直流转换为高频交流,振荡过程如下:通电瞬间,电压通过启动R1为开关管Q1提供从无到有增大的基极电流I B,Q1集电极产生从无到有增大的集电极电流I C,电流流经T1的1-2绕组,产生上正下负的自感应电动势,同时T1的正反馈绕组3-4中感应出上正下负的互感电动势,经R3、C2等反馈到Q1的基极,使I B增大,这是一个强烈的正反馈过程:↑→I C↑→T1(I此作用下,Q1进入饱和状态,T1储存磁场能量。
正反馈绕组不断对C2充电,极性上负下正,使Q1基极电压下降,后Q1退出饱和状态,T1 1-2绕组电流减小,T1感应电动势全部翻转,T1 3-4绕组的感应电动势极性上负下正,反馈到Q1的基极后,IB再减小,如此循环,进入另一个正反馈过程,Q1迅速截止。
C2在自身放电及+300V对它的反向充电的作用下,使Q1基极电压回升,进入下一轮循环,产生周期性的振荡,使Q1工作在不断的开、关状态下。
在Q1截止期间,T1次级绕组(5-6绕组)感应电动势的极性为上正下负,此时D3导通,该电动势对电容C4充电,在C4上得到约10V(带负载时约7.6V)左右的直流电压,向负载供电。
在T1正反馈绕组外还设有由D2、C3、Z1组成的过压保护电路,当220V电源电压异常升高导致输出电压也升高时,过压保护电路中的稳压二极管Z1将反向击穿导通,使开关管停振,输出端无电压,起到保护作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万能充电器原理图实物图:万能充电器电路图手机万能充电器万能充电器电路图手机万能充电器万能充电器电路图:手机用锂离子电池的充电原理锂离子电池的充电过程分两阶段进行,首要用恒流充电到4.2V+0.05V,即转入4.2V0.05V恒压的第二阶段充电,恒压充电电流会随着实物图:万能充电器电路图手机万能充电器万能充电器电路图手机万能充电器万能充电器电路图:手机用锂离子电池的充电原理锂离子电池的充电过程分两阶段进行,首要用恒流充电到4.2V+0.05V,即转入4.2V±0.05V恒压的第二阶段充电,恒压充电电流会随着时间的推移而逐渐降低,待充电电流降到0.1CmA时,表明电池已充到额定容量的93%或94%,此时即可认为基本充满,如果继续充下去,充电电流会慢慢降低到零,电池完全充满。
恒流充电率为0.1CmA~1.5CmA (CmA:当电池额定容量为1000mAh时,则 1.0CmA充电率表示充电电流为1000mA,依此类推)。
标准充电率为0.5CmA,约需2小时可将电池电压(放电到3.0V的电池)充到4.2V,再转入恒压充1小时左右,即可结束充电。
整个充电过程约需3小时,当充电率为1.5CmA时,第一阶段的充电时间只约需1/2小时。
实用万能充电器电路图手机万能充电器电路,此充电器主要有恒流源、恒压源和电池电压检测控制三部分组成。
手机万能充电器电路图简单实用的锂电充电器手机充电器电路原理图分析对于市场上到处可见的手机充电器,万能充不断的增多,但质量又不是很高,经常会出现问题,扔了可惜,故教大家几招分析手机充电器原理的分析,希望能给大家修理带来些帮助。
分析一个电源,往往从输入开始着手。
220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。
这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。
右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。
13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。
当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。
不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。
左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。
13003下方的10Ω 电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。
当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。
变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。
为了分析方便,我们取三极管C945发射极一端为地。
那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。
取样电压经过6.2V稳压二极管后,加至开关管13003的基极。
前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,实现了稳压输出的功能。
而下方的1KΩ电阻跟串联的2700pF电容,则是正反馈支路,从取样绕组中取出感应电压,加到开关管的基极上,以维持振荡。
右边的次级绕组就没有太多好说的,经二极管RF93整流,220uF电容滤波后输出6V的电压。
没找到二极管RF93的资料,估计是一个快速回复管,例如肖特基二极管等,因为开关电源的工作频率较高,所以需要工作频率的二极管。
这里可以用常见的1N5816、1N5817等肖特基二极管代替。
同样因为频率高的原因,变压器也必须使用高频开关变压器,铁心一般为高频铁氧体磁芯,具有高的电阻率,以减小涡流。
一、手机万能充电器是一个小型的开关电源,电路结构简单,外围元件较少。
但是一旦发生故障,有些人束手无策,因为没有电路图。
现在我将电路图传上,和大家一起分享。
有问题可以向我提问。
希望和大家共同进步!二、超力通电路图(原图)三、我修改过的图纸(我认为原图可能有错误)四、超力通电路原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。
在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。
该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。
PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。
由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。
当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。
开关管的截止时间取决于负载电流的大小。
开关管的导通/截止由电平开关从输出电压取样进行控制。
因此这种电源也称非周期性开关电源。
220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。
由V2和开关变压器组成间歇振荡器。
开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。
由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。
开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。
此电压若超过稳压管VD17的稳压值,VD17便导通,此负极性整流电压便加在V2的基极,使其迅速截止。
V2的截止时间与其输出电压呈反比。
VD17的导通/截止直接受电网电压和负载的影响。
电网电压越低或负载电流越大,VD17的导通时间越短,V2的导通时间越长,反之,电网电压越高或负载电流越小,VD5的整流电压越高,VD17的导通时间越长,V2的导通时间越短。
V1是过流保护管,R5是V2Ie的取样电阻。
当V2Ie过大时,R5上的电压降使V1导通,V2截止,可有效消除开机瞬间的冲击电流,同时对VD17的控制功能也是一种补偿。
VD17以电压取样来控制V2的振荡时间,而V1是以电流取样来控制V2振荡时间的。
如果是为镍镉、镍氢电池充电,由于这类电池存在一定的记忆效应,需不定时对其进行放电。
SW1是镍镉、镍氢、锂离子电池充电转换开关。
SW1与精密基准电源SL431为运放LM324⑨提供两个不同的精密基准源,由SW1切换。
在给镍镉、镍氢电池充电时,LM324⑨脚的基准电压约0.09V(空载);在给锂离子电池充电时,LM324⑨脚的基准电压约为0.08V(空载),这种设计是由这两种类型电池特有的化学特性决定的。
按下SW2,V5基极瞬间得一低电平而导通,可充电池上的残余电压通过V5的ec极在R17上放电,同时放电指示灯VD14点亮。
在按下SW2后会随即释放,这时可充电池上的残余电压通过R16、R13分压,C9滤波后为V4的基极提供一个高电平,V4导通,这相当于短接SW2。
随着放电时间的延长,可充电池上的残余电压也越来越低,当V4基极上的电压不能维持其继续导通时,V4截止,放电终止,充电器随即转入充电状态。
由于锂电不存在记忆效应,当电池低于3V时便不能开机,其残余电压经电阻R40、R41分压后得到2.53V送入运算放大器的同相端③、⑤、⑩脚,由于LM324⑨脚电压在负载下始终为2.66V,因此⑧脚输出低电平,V3导通,+9V电压通过V3ec极、VD8向可充电池充电。
IC1d在电容C6的作用下,{14}脚输出的是脉冲信号,由于IC1⑧脚为低电平,因此VD12处于闪烁状态,以指示电池正在充电,对应容量为20%。
随着充电时间的延长,可充电池上的电压逐渐上升。
当R40、R41的分压值约等于2.58V时,即IC1③脚等于2.58V时,IC1②脚经电阻分压后得2.57V,其①脚输出高电平(由于在充电时,IC1⑨脚电压始终是2.66V,V6导通;反之在空载时,IC1⑨脚为0.08V,V6截止),VD10、VD11点亮,对应指示容量为40%、60%。
当R40、R41的分压值上升到2.63V时,即IC1⑤脚等于2.63V,其⑥脚经电阻分压后得2.63V,⑦脚输出高电平,VD9点亮,对应充电容量为80%。
只有IC1⑩脚电压≥2.66V时,⑧脚才输出高电平,VD13点亮,对应充电容量为100%。
即使VD13点亮时,VD12仍处于闪烁状态,这表示电池仍未达到完全饱和。
只有IC1⑧脚电压>6.5V时,VD12才逐渐熄灭,表示电池完全充至饱和。
VD16在电路中起过充、过流保护作用,VD8起反向保护作用,避免充电器断电后,电池反向放电。
五、我用霸力通充电器改装的2节电池充电器(和超力通差不多)六、再加一个普通的手机充电器(这个不是万能充哦)四海通S538型手机万能充电器电路原理与维修来源:网络作者:编辑:网络时间:2009-06-06 点击:363次关键词:充电器电源集成块三极管开关电压充电绕组原理变压器维修电子稳压电容电阻二极管电路图振荡手机万能充电器电路原理与维修由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。
当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。
万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。
下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。
该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维修时参考。
四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。