三角函数中考试题分类训练

合集下载

中考数学考点专题训练之锐角三角函数

中考数学考点专题训练之锐角三角函数

中考数学考点专题训练之锐角三角函数一.选择题(共5小题)1.如图,某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与水平方向的夹角为α(0°<α<90°),地下停车场层高CD=3米,则在停车场的入口处,可通过汽车的最大高度是()A.3B.3cosαC.3sinαD.3cos a2.在△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B3.如图,在△ABC中,DC平分∠ACB,BD⊥CD于点D,∠ABD=∠A,若BD=1,AC =7,则tan∠CBD的值为()A.5B.2√6C.3D.√264.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为()A.20tan37°B.20tan37°C.20sin37°D.20sin37°5.在△ABC中,若|sin A−12|+(√22−cos B)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°二.填空题(共11小题)6.如图1,位于市区的“铁军”雕塑“大铜马”是盐城市标志性文化名片,如图2,线段AB表示“铁军”雕塑的高,点B,C,D在同一条直线上,且∠ACB=60°,∠ADB=30°,CD=17.5m,则线段AB的长约为m.(计算结果保留整数,参考数据:√3≈1.7)7.如图1是小鸟牙签盒实物图,图2是牙签盒在取牙签过程中一个状态的部分侧面示意图,D、E为连接杆AB上两个定点,通过按压点B,连接杆AB绕点E旋转,从而带动连接杆DF上升,带动连接杆FH与FG绕点G旋转,致使牙签托盘HI向外推出,在取牙签过程中固定杆EG位置不变且DF与EG始终平行,牙签托盘HI始终保持水平,现测得FG=FH=1cm,EB=8113cm,DF=EG=7cm,∠HFG=46°与∠B=90°,杆长与杆长之间角度大小不变,已知,牙签盒在初始状态,D、H、F三点共线,在刚好取到牙签时,E、H、G三点共线,且点C落在线段HI上,(参考数据:tan23°=5 12)(1)从初始状态到刚好取到牙签时,牙签托盘HI在水平方向被向外推出cm;(2)鸟嘴BC的长为cm.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3√5米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为.9.已知△ABC中,∠C=90°,cos A=35,AC=6,那么AB的长是.10.如图,与斜坡CE垂直的太阳光线照射立柱AB(与水平地面BF垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若BC=2米,CD=8.48米,斜坡的坡角∠ECF =32°,则立柱AB的高为米(结果精确到0.1米).科学计算器按键顺序计算结果(已取近似值)0.5300.8480.62511.如图,某飞机于空中A处探测到某地面目标在点B处,此时飞行高度AC=1200米,从飞机上看到点B的俯角为37°,飞机保持飞行高度不变,且与地面目标分别在两条平行直线上同向运动.当飞机飞行943米到达点D时,地面目标此时运动到点E处,从点E 看到点D的仰角为47.4°,则地面目标运动的距离BE约为米.(参考数据:tan37°≈34,tan47.4°≈109)12.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为.13.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上;顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm,若按相同的方式将22.5°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数为cm.14.如图,在△ABC中,AB=AC,D是△ABC外一点,连接BD和DC,BD=AB,∠BDC+ 1∠BAC=180°,DC=1,tan∠ABC=2√33,则线段BC的长为.215.如图,学校操场上有一棵与地面垂直的树,数学小组两次测量它在地面上的影子,第一次是阳光与地面成30°,第二次是阳光与地面成60°,两次测量的影长相差6米,则树高为米.16.如图,已知∠ABC=90°,∠C=30°,∠EAB=150°,DC=AE.若AB=1,DB=3,则DE的长为.三.解答题(共9小题)17.在襄阳市诸感亮广场上矗立着一尊诸葛亮铜像.某校数学兴趣小组利用热气球开展综合实践活动,测量诸葛亮铜像的高度.如图,在点C处,探测器显示,热气球到铜像底座底部所在水平面的距离CE为32m,从热气球C看铜像顶部A的俯角为45°,看铜像底部B的俯角为63.4°.已知底座BD的高度为4m,求铜像AB的高度.(结果保留整数.参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00,√2≈1.41).18.无人机爱好者小新尝试利用无人机测量他家所住的楼房AB的高度.小新站在距离楼房60米的O处,他操作的无人机在离地面高度30√3米的P处,无人机测得此时小新所处位置O的俯角为60°,楼顶A处的俯角为30°.(O,P,A,B在同一平面内)(1)求楼房AB的高度;(2)在(1)的条件下,若无人机保持现有高度且以4米/秒的速度沿平行于OB的方向继续匀速向前飞行,请问:经过多少秒,无人机刚好离开小新的视线?19.莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)20.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,求点C到AE的距离.(结果保留小数点后一位,参考数据:sin70°≈0.94,√3≈1.73)21.如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°.另一边开挖点E在直线AC上,求BE的长(结果保留整数).(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)22.如图,在△ABC中,∠B=45°,CD是AB边上的中线,过点D作DE⊥BC,垂足为点E,若CD=5,sin∠BCD=3 5.(1)求BC的长;(2)求∠ACB的正切值.23.如图,在10×6的正方形网格中,每个小正方形的边长均为1,线段AB、线段EF的端点均在小正方形的顶点上.(1)在图中以AB为边画Rt△ABC,点C在小正方形的格点上,使∠BAC=90°,且tan∠ACB=2 3;(2)在(1)的条件下,在图中画以EF为边且面积为3的△DEF,点D在小正方形的格点上,使∠CBD=45°,连接CD,直接写出线段CD的长.24.为做好疫情防控工作,确保师生生命安全,学校门口安装一款红外线体温检测仪,该设备通过探测人体红外辐射的能量对进入测温区域的人员进行快速体温检测,无需人员停留和接触.如图所示,BF是水平地面,其中EF是测温区域,测温仪安装在校门AB上的点A处,已知∠DAG=60°,∠DAC=30°.(1)∠ACG=度,∠ADG=度.(2)学生DF身高1.5米,当摄像头安装高度BA=3.5米时,求出图中BF的长度;(结果保留根号)(3)学生DF身高1.5米,为了达到良好的检测效果,测温区EF的长不低于3米,请计算得出设备的最低安装高度BA是多少?(结果保留1位小数,参考数据:√3≈1.73)25.根据以下材料,完成项目任务.项目测量古塔的高度及古塔底面圆的半径测角仪、皮尺等测量工具测角仪高度AB=CD=1.5m,在B、D处分别测得古塔顶端的仰角为32°、45°,BD=9m,测角仪CD所在位置与古塔底部边缘距离DG=12.9m.点B、D、G、Q在同一条直线上.sin32°≈0.530,cos32°≈0.848,tan32°≈0.625参考数据项目任务(1)求出古塔的高度.(2)求出古塔底面圆的半径.。

三角函数专项训练(中考23题)

三角函数专项训练(中考23题)

三角函数专项训练(中考23题)1.如图,在菱形ABCD 中,AE ⊥BC ,E 为垂足,cosB= 54,EC=2, (1)求菱形ABCD 的边长.(2)若P 是AB 边上的一个动点,则线段EP 的长度的最小值是多少?2.如图,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,则tan ∠ACE 的值为( ) A .21 B .34 C .43 D .23.如图,水坝的横断面是梯形,迎水坡AD 的坡角∠A=45°,背水坡BC 的坡度为31,坝顶DC 宽25米,坝高45米,求:(1)背水坡的坡角;(2)坝底AB 的长.4.小刚在一山坡上依次插了三根木杆,第一根木杆与第二根木杆插在倾斜角为30°,且坡面距离是6米的坡面上,而第二根与第三根又在倾斜角为45°,且坡面距离是8米的坡面上.则第一根与第三根木杆的水平距离是______米.(如图)(精确到0.01米)5.如图,是学校背后山坡上一棵原航空标志的古柏树AB 的示意图,在一个晴天里,数学教师带领学生进行测量树高的活动.通过分组活动,得到以下数据: 一是AC 是光线的方向,并且测得水平地面2m 的竹竿影长为0.5m .二是测得树在斜坡上影子BC 的长为10m ;三是测得影子BC 与水平线的夹角∠BCD 为30°;请你帮助计算出树的高度AB(根号 3 =1.732,精确到0.1m).6.如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:3 ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)7.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.8.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1:根号3 .(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)9.在日常生活中,我们经常看到一些窗户上安装着遮阳蓬,如图(1).现在要为一个面向正南的窗户设计安装一个遮阳蓬,已知该地区冬天正午太阳最低时,光线与水平线的夹角为34°.夏天正午太阳最高时,光线与水平线的夹角为76°.把图(1)画成图(2),其中AB表示窗户的高,BCD表示直角形遮阳蓬.(1)遮阳蓬BCD怎样设计,才能正好在冬天正午太阳最低时光线最大限度地射入室内而夏天正午太阳最高时光线刚好不射入室内,请在图(3)中画图表示;(2)已知AB=150cm,在(1)的条件下,求出BC,CD的长度.(精确到1cm)10.两艘渔船同时从O点出发,甲船以40海里/小时的速度沿北偏东45°的方向航行,乙船沿正东方向航行,2小时后甲船到达小岛P处,发现乙船恰好位于甲船正南方向的H处,以O为坐标原点,建立如图所示的直角坐标系.(1)P点的坐标是______,乙船的速度是______海里/小时(结果保留根号);(2)若乙船发现正东方向有另一小岛M,且M位于P点南偏东60°的方向上,若乙船速度不变,它再航行多长时间可以到达小岛M?(根号3 取1.7,结果保留两个有效数字).11.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:根号3 =1.732,根号2 =1.414);(2)已知本路段限速为50千米/小时,若测得某辆汽车从A到B用时2秒,这辆车是否超速?说明理由.12.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNPQ是否需要挪走,通过计算说明理由.13.小明要测量河的宽度.如图所示是河的一段,两岸ABCD,河岸AB上有一排大树.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明算出河宽.(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.如图.是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°,为了方便行人安全过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°.若新坡脚前需留2.5米的人行道,问离原坡脚10米的建筑物是否需要拆除?请说明理由.15.如图,甲楼AB的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角(参考数据:sin31°为45°,测得乙楼底部D处的俯角为31°,求乙楼CD的高度.≈0.52,cos31°≈0.86,tan31°≈0.60,结果精确到1m).16.如图,在某中学教学楼A西南方向510米的C处,有一辆货车以60km/h的速度沿北偏东60°方向的道路CF行驶、(1)若货车以60km/h的速度行驶时其噪声污染半径为100米,试问教学楼是否受到货车噪声的影响?(2)假设货车以60km/h的以上速度行驶时,其行驶速度每增加10km/h时其噪声污染半径约增大15米,要使教学楼不受货车的噪声影响,在此路段应该限速多少?(精确到10km/h)17.如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(3≈1.732,结果精确到0.1m)18.如图,矩形ABCD是供一辆机动车停放的车位示意图.请你参考图中数据(BC=2.2m,CD=5.4m,∠DCF=40°),计算车位所占街道的宽度EF.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m.)19.小楠家附近的公路上通行车辆限速为60千米/小时.小楠家住在距离公路50米的居民楼(如图中的P点处),在他家前有一道路指示牌MN正好挡住公路上的AB段(即点P、M、A和点P、N、B分别在一直线上),已知MN∥AB,∠MNP=30°,∠NMP=45°,小楠看见一辆卡车通过A处,7秒后他在B处再次看见这辆卡车,他认定这辆卡车一定超速,你同意小楠的结论吗?请说明理由.20.如图所示,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A⇒D⇒C⇒B到达.现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,则现在从A地到B地可比原来少走多少路程(结果精确到0.1km.参考数据: sin37°≈0.60,cos37°≈0.80)21.如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)22.如图,某旅游区有一个景观奇异的望天洞,点D是洞的入口,游人从入口进洞游览后,要经山洞到达山顶的出口凉亭A处观赏旅游区风景,最后做缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在A处测得的仰角∠ABC=40°,在D处测得的仰角∠ADF=45°,过点D做地面BE的垂线,垂足为点C.(1)求∠ADB的度数;(2)求索道AB的长(结果仅保留根号).23.如图是一座人行天桥的示意图,天桥的高BC为10米,坡面AC的坡角为53°.(1)求AB的长度.(精确到0.01米)(2)为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡角为30°,且新的坡角外侧需留3米宽的人行道,问离原坡角12米的建筑物EF是否需要拆除?24.为缓解“停车难”的问题,某单位拟建筑地下停车库,建筑设计师提供了该地下停车库的设计示意图,按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE.(精确到0.1m)(下列数据提供参考:sin20°=0.3420,cos20°=0.9397,tan20°=0.3640)25.如图,A、B是两座现代化城市,C是一个古城遗址,C城在A城的北偏东30°,在B城的北偏西45°,且C城与A城相距120千米,B城在A城的正东方向,以C为圆心,以60千米为半径的圆形区域内有古迹和地下文物,现要在A、B两城市修建一条笔直的高速公路.(1)请你计算公路的长度(保留根号);(2)请你分析这条公路有没有可能对文物古迹造成损毁,并说明理由.26.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只,正以24海里/小时的速度向正东方向航行.为迅速实施检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问:(1)需要几小时才能追上(点B为追上时的位置)?(2)确定巡逻艇的追赶方向.(精确到0.1°)参考数据:sin66.8°≈0.9191;cos66.8°≈0.393sin67.4°≈0.9231;cos67.4°≈0.3846sin68.4°≈0.9298;cos68.4°≈0.3681sin70.6°≈0.9432;cos70.6°≈0.3322.27.如图,为了测量河宽,在河的一边沿岸选取A、B两点,对岸岸边有一块石头C.在△ABC中,测得∠A=60°,∠B=45°,AB=60米.(1)求河宽(用精确值表示,保留根号);(2)如果对岸岸边有一棵大树D,且CD∥AB,并测得∠DAB=37°,求C、D两点之间的距离(结果精确到0.1米).(参考数据: sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,cot37°≈1.33)28.如图,在一个坡角为15°的斜坡上有一棵树,高为AB.当太阳光与水平线成50°时,测得该树在斜坡上的树影BC的长为7m,求树高.(精确到0.1m)29.阳光明媚的一天,数学兴趣小组的同学测量学校旗杆AB的高度(如图),发现旗杆AB的影子刚好落在水平面BC和斜坡的CD上,其中BC=48米,CD=4米,斜坡CD的坡角为27°.同一时刻,测得高为1米标杆的影长是2.5米.求出旗杆AB的高度?(结果精确到0.01米)。

中考三角函数真题精选强化练习

中考三角函数真题精选强化练习

三角函数中考真题习题精选一、单选题1.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m·tanα C.AO=m2sina D.BD=mcosa2.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinx B.acosx+bcosx C.asinx+bcosx. D.acosx+bsinx 3.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.95sinα米B.95cosα米C.59sinα米D.59cosα米4.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm,把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合,当两张纸片交叉所成的角最小α时,tanα等于()A.14B.12C.817D.815 5.如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G,若cosB=14,则FG的长是()A.3B.83C.2√153D.52 6.如图1长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一楼进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.245B.325C.12√3417D.20√3417二、填空题7.图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为cm(结果保留根号).8.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD。

若BD的长为2 √3,则m的值为。

初中三角函数练习试题和答案解析

初中三角函数练习试题和答案解析

初中三角函数练习题及答案一精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都 A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点-sin60°,cos60°关于y 轴对称的点的坐标是A .32,12B .-32,12C .-32,-12D .-12,-329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地A 350m B100 m C150m D 3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,图145︒30︒BAD C向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距 .A30海里 B40海里 C50海里 D60海里 二细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B,且BP=2,那么PP '的长为____________. 不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个4错误!单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号.7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m 结果精确的到0.01m .可用计算器求,也可用下列参考数据求:sin43°≈,sin40°≈,cos43°≈,cos40°≈,tan43°≈,tan40°≈10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米结果用含α的三角比表示. 第6题图 xO A y B北甲北 乙第5题图αBCD第4题图1 211.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.•保留两个有效数字,2≈,3≈三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解;注意分母有理化,3 如图1,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠; 1求证:AC =BD2若sinC BC ==121312,,求AD 的长;图1分析:由于AD 是BC 边上的高,则有Rt ADB ∆和Rt ADC ∆,这样可以充分利用锐角三角函数的概念使问题求解;4如图2,已知∆ABC 中∠=∠C Rt ,AC m BAC =∠=,α,求∆ABC 的面积用α的三角函数及m 表示图2分析:要求∆ABC 的面积,由图只需求出BC;解应用题,要先看条件,将图形抽象出直角三角形来解.5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.分析:求CD,可解Rt ΔBCD 或Rt ΔACD.但由条件Rt ΔBCD 和Rt ΔACD 不可解,但AB=100若设CD 为x,我们将AC 和BC 都用含x 的代数式表示再解方程即可.7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m,底CD 宽12m,求路基顶AB 的宽B ADCE300 450ArE D BCAH8.九年级1班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9.如图3,沿AC 方向开山修路,为了加快施工速度,要在小山的另一边同时施工;从AC 上的一点B,取∠=︒=ABD BD 145500,米,∠=︒D 55;要使A 、C 、E 成一直S 线,那么开挖点E 离点D 的距离是多少图3分析:在Rt BED ∆中可用三角函数求得DE 长;10 如图8-5,一条渔船某时刻在位置A 观测灯塔B 、C 灯塔B 距离A 处较近,两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险分析:本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.11、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域;问A 城是否会受到这次台风的影响为什么若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长图8-4EA C BD北东12. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器;1请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案;具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ表示;2根据你测量的数据,计算塔顶端到地面的高度HG 用字母表示,测倾器高度忽略不计;13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行;为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问1需要几小时才能追上点B 为追上时的位置2确定巡逻艇的追赶方向精确到01.︒如图 4图4参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,分析:1由图可知∆ABO 是直角三角形,于是由勾股定理可求;2利用三角函数的概念即求;14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响如果不受影响,请说明理由;如果受影响,会受影响几分钟NP A Q M.15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC,小明站在点F 处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC 的长,小明的身高不计,结果精确到0.1米16、一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈217、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里结果精确到1海里 友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,3 1.732≈.A BC北东P 北403018、如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题:1火箭到达B 点时距离发射点有多远精确到0.01km2火箭从A 点到B 点的平均速度是多少精确到0.1km/s19、经过江汉平原的沪蓉上海—成都高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .1求所测之处江的宽度.48.268tan ,37.068cos ,93.068sin ≈≈≈; 2除1的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC 杆子的底端分别为D,C,且∠DAB=66. 5°.1求点D 与点C 的高度差DH ;2求所用不锈钢材料的总长度l 即AD+AB+BC,结果精确到0.1米.参考数据:°≈,°≈,°≈答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题图10ABOCCB图①图②1,352, 3,30°点拨:过点C 作AB 的垂线CE,构造直角三角形,利用勾股定理CE4连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,利用sin15°=,先求出PD,乘以2即得PP '5.48点拨:根据两直线平行,内错角相等判断6.0,4+B 作BC ⊥AO,利用勾股定理或三角函数可分别求得AC 与OC的长7.1点拨:根据公式sin 2α+cos 2α=18.125点拨:先根据勾股定理求得AC=5,再根据tan ACB AB =求出结果 9.点拨:利用正切函数分别求了BD,BC 的长 10.20sin α点拨:根据sin BCAB α=,求得sin BC AB =•α11.35三,解答题可求得 1. -1; 2. 43.解:1在Rt ABD ∆中,有tan B AD BD=, Rt ADC ∆中,有cos ∠=DAC ADACtan cos B DACAD BD ADACAC BD =∠∴==,故 2由sinC AD AC ==1213;可设AD x AC BD x ===1213, 由勾股定理求得DC x =5, BC BD DC x =∴+==121812即x =23 ∴=⨯=AD 122384.解:由tan ∠=BAC BCAC∴=∠=∠=∴=∴=⋅=⋅=BC AC BAC AC m BAC BC m S AC BC m m m ABC tan tan tan tan ,αααα∆12121225解过D 做DE ⊥AB 于E∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BCAB tgACB =)(4545米=⋅=∴ tg BC AB在Rt ΔADE 中,∠ADE=30°DEAE tgADE =315334530=⋅=⋅=∴tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米. 6 解:设CD=x在Rt ΔBCD 中,CD BCctgDBC =∴BC=x 用x 表示BC 在Rt ΔACD 中,CDACctgDAC = x ctgDAC CD AC 3=⋅=∴∵AC-BC=100 1003=-x x 100)13(=-x ∴)13(50+=x 答:铁塔高)13(50+米. 7、解:过B 作BF ⊥CD,垂足为FBF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠ 3:2=iBC AE=3m ∴DE=4.5mAD=BC,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m300450Ar E D BC︒=∠=∠90AEF BFE∴BF ∴∴3m CD FB ⊥AB FB ⊥CD AB∴∥CGE AHE∴△∽△CG EG AH EH∴=CD EF FD AH FD BD -=+3 1.62215AH -∴=+11.9AH ∴=11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=∠=︒∠=︒∴∠=︒ABD D BED 1455590,,Rt BED ∆ cos cos D DEBDDE BD D =∴=⋅, BD =500∠=︒D 55︒=∴55cos 500DE 716284AD =⨯=∵cos24°15′=ADAB, ∴2830.71cos 24150.9118AD AB ==≈'︒海里.AC=AB+BC=+12=海里. 在Rt△ACE 中,sin24°15′=CEAC, ∴CE=AC·sin24°15′=×=海里. ∵<,∴有触礁危险;答案有触礁危险,不能继续航行; 11、1过A 作AC ⊥BF,垂足为C︒=∠∴︒=∠30601ABC在RT ∆ABC 中 AB=300km响城会受到这次台风的影A kmAC ABC ∴=∴︒=∠150302AHh hkm kmt h km v km DE kmCD kmad km AC AD AE E ,BF km AD D ,BF 1071071007107100750200,150200==∴==∴=∴==== 使上取在使上取在答:A 城遭遇这次台风影响10个小时;12 解:1在A 处放置测倾器,测得点H 的仰角为α 在B 处放置测倾器,测得点H 的仰角为β()在中,2Rt HAI AI HI DI HI AI DI m ∆==-=tan tan αβHI m=-tan tan tan tan αββαHG HI IG mn =+=-+tan tan tan tan αββα13解:设需要t 小时才能追上; 则AB t OB t ==2426,1在Rt AOB ∆中, OB OA AB 222=+,∴=+()()261024222t t则t =1负值舍去故需要1小时才能追上; 2在Rt AOB ∆中sin .∠==≈AOB AB OB tt242609231 ∴∠=︒AOB 674. 即巡逻艇沿北偏东674.︒方向追赶; 14 解:1008030sin 1<=︒=∆AP AP APB Rt 中,)在( ∴会影响N()在中(米)2100806022Rt ABD BD ∆=-=6023610006022⨯⨯=∴.(分钟)分钟15 解: ∵∠BFC =︒30,∠BEC =︒60,∠BCF =︒90 ∴∠EBF =∠EBC =︒30 ∴BE = EF = 20 在Rt⊿BCE 中, )(3.17232060sin m BE BC ≈⨯=︒⋅= 答:宣传条幅BC 的长是17.3米;16 解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD. 设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°. 在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°.∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近17 解:过B 点作BE AP ⊥,垂足为点E ;过C 点分别作CD AP ⊥, CF BE ⊥,垂足分别为点D F ,,则四边形CDEF 为矩形. CD EF DE CF ∴==,,…………………………3分30QBC ∠=,60CBF ∴∠=.2040AB BAD =∠=,,B CDAFP 北4030cos 40200.766015.3AE AB ∴=⨯≈≈; sin 40200.642812.85612.9BE AB =⨯=≈≈. 1060BC CBF =∠=,,sin 60100.8668.668.7CF BC ∴=⨯=≈≈; cos60100.55BF BC ==⨯=.12.957.9CD EF BE BF ∴==-=-=. 8.7DE CF =≈,15.38.724.0AD DE AE ∴=++=≈.∴由勾股定理,得222224.07.9638.4125AC AD CD =++=≈≈.即此时小船距港口A 约25海里 18 解1在Rt OCB △中,sin 45.54OBCB=1分 6.13sin 45.54 4.375OB =⨯≈km 3分火箭到达B 点时距发射点约4.38km 4分 2在Rt OCA △中,sin 43OACA=1分 6sin 43 4.09(km)OA =⨯= 3分()(4.38 4.09)10.3(km /s)v OB OA t =-÷=-÷≈ 5分答:火箭从A 点到B 点的平均速度约为0.3km/s 19解:1在BAC Rt ∆中,68=∠ACB , ∴24848.210068tan =⨯≈⋅=AC AB 米答:所测之处江的宽度约为248米……………………………………………………3分 2从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识 来解决问题的,只要正确即可得分 20 解:1DH=×34=米.2过B 作BM ⊥AH 于M,则四边形BCHM 是矩形. MH=BC=1 ∴AM=AH -MH=1+一l=. 在RtAMB 中,∵∠A=° ∴AB=1.23.0cos66.50.40AM ≈=︒米.∴S=AD+AB+BC ≈1++1=米.答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米。

2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数(有答案)

2023年中考数学高频考点训练——锐角三角函数一、综合题1.如图, AB 是O 的直径,点C 、G 为圆上的两点,当点C 是弧 BG 的中点时, CD 垂直直线AG ,垂足为D ,直线 DC 与 AB 的延长线相交于点P ,弦 CE 平分 ACB ∠ ,交 AB 于点F ,连接BE .(1)求证: DC 与 O 相切;(2)求证: PC PF = ; (3)若 1tan 3E =, 5BE =,求线段 PF 的长. 2.如图,AB 是⊙O 的直径,AC 交⊙O 于点D ,点E 时弧AD 的中点,BE 交AC 于点F ,BC =FC.(1)求证:BC 是⊙O 的切线; (2)若BF =3EF ,求tan⊙ACE 的值.3.如图,ABC 内接于,O D 是O 的直径 AB 的延长线上一点, DCB OAC ∠=∠ .过圆心 O作 BC 的平行线交 DC 的延长线于点 E .(1)求证: CD 是 O 的切线;(2)若 4,6CD CE == ,求O 的半径及 tan OCB ∠ 的值;4.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点D 是AC 的中点,连接OD ,交AC 于点E ,作BFCD ,交DO 的延长线于点F.(1)求证:四边形BCDF 是平行四边形. (2)若AC=8,连接BD ,tan⊙DBF=34,求直径AB 的长及四边形ABCD 的周长. 5.如图,已知 AB 是O 的直径,弦 CD AB ⊥ 于点 E , 42AC =, 2BC = .(1)求 sin ABC ∠ ; (2)求CD 的长.6.如图,点 O 在 ABC ∆ 的 BC 边上,O 经过点 A 、 C ,且与 BC 相交于点 D .点 E 是下半圆弧的中点,连接 AE 交 BC 于点 F ,已知 AB BF = .(1)求证: AB 是O 的切线;(2)若 3OC = , 1OF = ,求 cos B 的值.7.如图,在Rt ΔABC 中,9068C AC BC ∠=︒==,,,AD平分ABC 的外角BAM ∠,AD BD ⊥于点D ,过D 点作DE 平行BC 交AM 于点E.点P 在线段AB 上,点Q 在直线AC 上,且22CQ BP t ==,连接PQ ,作P 点关于直线DE 的对称点P ',连接PP P Q '',.(1)当P 在AB 中点时,t = ;连接DP ,则此时DP 与EC 位置关系为 (2)①求线段AD 的长:②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上,求点A 到对应点A '的距离;(3)如图,当PP Q '的一边与ABD 的AD 或BD 边平行时,求所有满足条件的t 的值.8.如图,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3过点A(﹣3,0),B(1,0),与y 轴交于点C ,顶点为点D ,连接AC ,BC.(1)求抛物线的解析式;(2)在直线CD 上是否存在点P ,使⊙PBC =⊙BCO ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点M 为抛物线对称轴l 上一点,点N 为抛物线上一点,当直线AC 垂直平分线段MN 时,请直接写出点M 和点N 的坐标.9.如图,点F 是正方形ABCD 边AB 上一点,过F 作FG⊙BC ,交CD 于G ,连接FC ,H 是FC 的中点,过H 作EH⊙FC 交BD 于点E .(1)连接EF ,EA ,求证:EF =AE .(2)若BFk BA= , ①若CD =2, 13k = ,求HE 的长;②连接CE ,求tan⊙DCE 的值.(用含k 的代数式表示)10.如图,在 Rt ABC 中, 90,6,8ACB BC AC ∠=︒== ,D 是边AB 的中点,动点P 在线段BA 上且不与点A ,B ,D 重合,以PD 为边构造 Rt PDQ ,使 PDQ A ∠=∠ , 90DPQ ∠=︒ ,且点Q 与点C 在直线AB 同侧,设 BP x = ,PDQ 与 ABC 重叠部分图形的面积为S .(1)当点Q 在边BC 上时,求BP 的长; (2)当 7x ≤ 时,求S 关于x 的函数关系式.11.如图,在⊙ABC中,⊙ABC =90°,过点B 作BD⊙AC 于点D .(1)尺规作图,作边BC 的垂直平分线,交边AC 于点E . (2)若AD :BD =3:4,求sinC 的值.(3)已知BC =10,BD =6.若点P 为平面内任意一动点,且保持⊙BPC =90°,求线段AP 的最大值.12.【学习概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.(1)【理解运用】如图1,对余四边形中,AB = 5,BC = 6,CD = 4,连接AC ,若AC = AB ,则cos⊙ABC= , sin⊙CAD= .(2)如图2,凸四边形中,AD = BD ,AD⊙BD ,当2CD 2 + CB 2 = CA 2时,判断四边形ABCD 是否为对余四边形,证明你的结论.(3)【拓展提升】在平面直角坐标中,A (-1,0),B (3,0),C (1,2),四边形ABCD 是对余四边形,点E 在对余线BD 上,且位于⊙ABC 内部,⊙AEC = 90° + ⊙ABC.设AEBE= u ,点D 的纵坐标为t ,请在下方横线上直接写出u 与t 的函数表达,并注明t 的取值范围 .13.如图,在梯形ABCD 中,AD⊙BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF=5.AE 的延长线交边BC 于点G ,AF 交BD 于点N 、其延长线交BC 的延长线于点H .(1)求证:BG =CH ;(2)设AD =x ,⊙ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域;(3)联结FG ,当⊙HFG 与⊙ADN 相似时,求AD 的长.14.(1)【问题提出】如图1,在四边形ABCD 中,60A ∠=︒,90ABC ADC ∠=∠=︒,点E 为AB 延长线上一点,连接EC 并延长,交AD 的延长线于点F ,则BCE DCF ∠+∠的度数为 °;(2)【问题探究】如图2,在Rt⊙ABC 中,90ABC ∠=︒,点D 、E 在直线BC 上,连接AD 、AE ,若60DAE ∠=︒,6AB =,求⊙ADE 面积的最小值;(3)【问题解决】近日,教育部印发了《义务教育课程方案和课程标准(2022年版)》,此次修订中增加的跨学科主题学习活动,突破学科边界,鼓励教师开展跨学科教研,设计出主题鲜明、问题真实的跨学科学习活动.为此,某校欲将校园内一片三角形空地ABC (如图3所示)进行扩建后作为跨学科主题学习活动中心,在AB 的延长线上取一点D ,连接DC 并延长到点E ,连接AE ,已知AE BC ,40AB BC ==米,90ABC ∠=︒,为节约修建成本,需使修建后⊙ADE 的面积尽可能小,问⊙ADE 的面积是否存在最小值?若存在,求出其最小面积;若不存在,请说明理由.15.抛物线y =﹣x 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且B (﹣1,0),C (0,3).(1)求抛物线的解析式;(2) 如图1,点P 是抛物线上位于直线AC 上方的一点,BP 与AC 相交于点E ,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿CD 方向平移,且DD'=2CD ,点M 是平移后所得抛物线上位于D'左侧的一点,连结CN.当5D'N+CN 的值最小时16.在 Rt ABC 中, 90ACB ∠=︒ , 3AC = , 4BC = .将 Rt ABC 绕点B 顺时针旋转()060αα︒<<︒ 得到 Rt DEB ,直线DE , AC 交于点P.(1)如图1,当 BD BC ⊥ 时,连接BP. ①求BDP 的面积;②求 tan CBP ∠ 的值;(2)如图2,连接AD ,若F 为AD 中点,求证;C ,E ,F 三点共线.17.如图,抛物线与x 轴交于A (5,0),B ( 1- ,0),与y 轴的正半轴交于点C ,连接BC ,AC ,已知2sin 2BAC ∠=.(1)求抛物线的解析式;(2)直线 y kx = ( 0k > )交线段AC 于点M ,当以A 、O 、M 为顶点的三角形与⊙ABC 相似时,求k 的值,并求出此时点M 的坐标;(3)P 为第一象限内抛物线上一点,连接BP 交AC 于点Q ,请判断: PQQB是否有最大值,如有请求出这个最大值,如没有请说明理由.18.如图1,已知 Rt ABC ∆ 中, 90ACB ∠= , 2AC = , 23BC = ,它在平面直角坐标系中位置如图所示,点 ,A C 在 x 轴的负半轴上(点 C 在点 A 的右侧),顶点 B 在第二象限,将 ABC ∆ 沿AB 所在的直线翻折,点 C 落在点 D 位置(1)若点 C 坐标为 ()1,0- 时,求点 D 的坐标;(2)若点 B 和点 D 在同一个反比例函数的图象上,求点 C 坐标;(3)如图2,将四边形 BCAD 向左平移,平移后的四边形记作四边形 1111B C A D ,过点 1D 的反比例函数 (0)ky k x=≠ 的图象与 CB 的延长线交于点 E ,则在平移过程中,是否存在这样的 k ,使得以点 1,,E B D 为顶点的三角形是直角三角形且点 11,,D BE 在同一条直线上?若存在,求出 k 的值;若不存在,请说明理由答案解析部分1.【答案】(1)证明:CD AD ⊥,90D ∴∠=︒ ,∴⊙DAC+⊙DCA=90°, 点c 是弧 BG 的中点, ∴CG BC =DAC BAC ∴∠=∠ , OA OC = , OCA BAC ∴∠=∠ , OCA DAC ∴∠=∠ , //AD OC ∴ ,∴⊙D=⊙OCP=90°,OC 是圆O 的半径, DC ∴ 与O 相切,(2)证明:AB 是O 的直径,90ACB ∴∠=︒ ,90PCB ACD ∴∠+∠=︒ ,由(1)得: 90DAC DCA ∠+∠=︒ ,PCB DAC ∴∠=∠ , DAC BAC ∠=∠ , PCB BAC ∴∠=∠ , CE 平分 ACB ∠ , ACF BCF ∴∠=∠ ,∵⊙PFC=⊙BAC+⊙ACF ,⊙PCF=⊙PCB+⊙BCF ,PFC PCF ∴∠=∠ , PC PF ∴= ;(3)解:连接 AE ,CE 平分 ACB ∠ ,∴ AE BE = ,AE BE ∴= , AB 是O 的直径,90AEB ∴∠=︒ ,AEB ∴∆ 为等腰直角三角形,∵AB=210BE = ,∴OB=OC= 10∵1tan 3E =∴1tan 3BC CAB AC ∠== , ∵⊙PCB=⊙BAC ,⊙P=⊙P , ∴⊙PCB⊙⊙PAC , ∴13BC PB AC PC == , ∴ 设 PB x = , 3PC x = ,在 Rt OCP ∆ 中, 222OC PC OP += , ∴2221010(3))22x x +=+ , ∴10x =或x=0(舍去), ∴PC=310,∴PF=310.2.【答案】(1)证明:连接AE ,如图,∵AB 是⊙O 的直径, ∴⊙AEB =90°.∴⊙EAF+⊙AFE =⊙EAB+⊙ABE =90°. ∵点E 是弧AD 的中点, ∴AE DE = . ∴⊙EAD =⊙ABE. ∴⊙AFE+⊙ABE =90°. ∵⊙AFE =⊙BFC ,∴⊙ABE+⊙CFB =90°. ∵BC =FC , ∴⊙CFB =⊙CBF. ∴⊙CBF+⊙ABE =90°. ∴⊙ABC =90°, ∵AB 是⊙O 的直径, ∴BC 是⊙O 的切线. (2)解:连接OE ,BD ,∵点E 是弧AD 的中点,∴OH⊙AD ,AH =HD = 12AD . ∵AB 是⊙O 的直径, ∴BD⊙AD.∴BD⊙OE. ∴EH EFBD BF = . ∵BF =3EF ,∴13EH BD = . 设EH =2a ,则BD =6a. ∵OE⊙BD ,OA =OB , ∴OF =12BD =3a. ∴OA =OE =OH+HE =5a. ∴AB =2OA =10a. ∴AD =228AB BD a -= .∴HD =12AD =4a. ∵⊙ABC =90°,BD⊙AC , ∴⊙ABD⊙⊙BCD. ∴AD BDBD CD= . ∴CD = 292BD a AD = .∴CH =HD+CD =172a . 在Rt⊙EHC 中,tan⊙ACE = 2417172EH a CH a ==.3.【答案】(1)证明:如图,,OA OC =OAC OCA ∴∠=∠ ,DCB OAC ∠=∠ , OCA DCB ∴∠=∠ ,AB 是O 的直径,90ACB ∴∠=︒ ,90OCA OCB ∴∠+∠=︒ ,90DCB OCB ∴∠+∠=︒ ,即 90OCD ∠=︒ , OC DC ∴⊥ ,又OC 是 O 的半径,CD ∴ 是O 的切线.(2)解:,BC OEBD CD OB CE ∴= ,即 4263BD OB == , ∴设 2BD x = ,则 3,5OB OC x OD OB BD x ===+= ,,OC DC ⊥222OC CD OD ∴+=222(3)4(5)x x ∴+= ,解得, 1x = ,33OC x ∴== .即O 的半径为3,,BC OEOCB EOC ∴∠=∠ ,在 Rt OCE 中, 6tan 23EC EOC OC ∠=== , tan tan 2OCB EOC ∴∠=∠=4.【答案】(1)证明:∵AB 是⊙O 的直径,∴⊙C=90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD=DC , ∴CA⊙DF ,AE=EC , ∴⊙AEO=90°,∴BC DF , ∵BF CD ,∴四边形BCDE 是平行四边形; (2)∵BC DF , ∴⊙DBF=⊙CDB ,又∵根据圆周角定理有⊙CDB=⊙BAC , ∴⊙DBF=⊙BAC , 即tan⊙BAC=34, ∵AC=8, ∴CB=6,则在Rt⊙ACB 中,利用勾股定理可得AB=10,即AO=5=OD , ∵AE=EC=12AC , ∴AE=EC=4,在Rt⊙AEO 中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt⊙AED 中,利用勾股定理,得55 ∴四边形ABCD 的周长5555.【答案】(1)解:∵AB 是O 的直径, 42AC =, 2BC = ,∴90ACB ∠=︒ , 22236AB AC BC =+= , ∴6AB = , 2sin 3ABC ∠=(2)解:∵CD AB ⊥ ,∴CE DE = , 由三角形的面积公式得:1122AC BC AB CE ⨯⨯=⨯⨯ , ∴423CE =, ∴822CD CE ==. 6.【答案】(1)证明:连接 OA 、 OE ,∵点 E 是下半圆弧的中点, OE 过 O , ∴OE DC ⊥ , ∴90FOE ∠=︒ , ∴90E OFE ∠+∠=︒ , ∵OA OE = , AB BF = ,∴BAF BFA ∠=∠ , E OAE ∠=∠ , ∵AFB OFE ∠=∠ , ∴90OAE BAF ∠+∠=︒ , 即 OA AB ⊥ , ∵OA 为半径, ∴AB 是O 的切线(2)解:设 AB x = ,则 BF x = , 1OB x =+ , ∵3OA OC == ,由勾股定理得: 222OB AB OA =+ , ∴()22213x x +=+ , 解得: 4x = ,∴4cos 5AB B OB == 7.【答案】(1)5;平行(2)解:①P 在AB 中点时,连接DP 并延长交BC 于点F ,由(1):DP CE ,∴1BF BPFC AP==, ∴142BF FC BC ===,∴132PF AC ==,11822DF DP PF AB AC =+=+=,∵90DEA BCE PDE ∠=∠=∠=︒, ∴四边形DECF 是矩形, ∴84CE DF DE CF ====,, ∴2AE CE AC =-=, ∴22222425AD AE DE =+=+=②将线段AD 绕着平面上某个点旋转180︒后,使AD 的两个对应点A '、D '落在Rt ABC 的边上, ∴AA '与DD '垂直平分,两条线段的交点O 即为旋转中心,如图所示:则:OD AB ⊥,∵902510ADB AD AB ∠=︒==,,, ∴()2222102545BD AB AD =-=-=∵1122ABD S AD BD AB DO ∆=⋅=⋅, ∴254510DO =, ∴4OD =, ∴222AO AD OD =-=,∴24AA OA '==;(3)解:当P Q AD '时;如图:延长P P '交BC 于点G ,过点P P ',分别作PH AC P T CQ '⊥⊥,,垂足为:H T ,,则:四边形CGP T '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PG BP sin ABC t BG BP cos ABC t =⋅∠==⋅∠=,,∴34855CH PG t P T CG BC BG t ====-=-',,∴385HE CE CH t =-=-,∵P ,P '关于直线DE 对称 ∴385ET EH t ==-,∴3138821655t QT CT CQ CE ET CQ t t =-=+-=+--=-,∵P Q AD ', ∴P QT DAE ∠=∠',∴2DEtan P QT tan DAE AE∠='∠==, ∴2P T TQ '=,即:413821655t t ⎛⎫-=- ⎪⎝⎭, 解得:6011t =; 当PQ BD 时,延长BD 交CQ 于点K ,∵PQ BD ,∴APQ ABD AQP AKB ∠=∠∠=∠,,∵90ADB ADK DAB KAD ∠=∠=︒∠=∠,(角平分线), ∴ABD AKB ∠=∠, ∴APQ AQP ∠=∠, ∴AP AQ =,∵1026AP AB BP t AQ CQ AC t =-=-=-=-,, ∴1026t t -=-, 解得:163t =; 当P Q BD '时,如图:延长P P '交BC 于点G ,过点P P ',分别作PO AC P R CQ '⊥⊥,,垂足为:OR,,延长BD ,交CM 于点S ,则:四边形CNP R '为矩形,∵3455AC BC sin ABC cos ABC AB AB ∠==∠==,, ∴3455PN BP sin ABC t BN BP cos ABC t =⋅∠==⋅∠=,,∴34855CO PN t P R CN BC BN t ====-=-',,∴385OE CE CO t =-=-,∵P ,P '关于直线DE 对称 ∴385ER OE t ==-,∴3132881655t QR CQ CR CQ CE ER t t =-=-+=--+=-; ∵AD BD ⊥,90AED ∠=︒,∴90ADE EDS ADE DAE ∠+∠=∠+∠=︒ ∴EDS DAE ∠=∠, ∵P Q BD ',∴QP R EDS DAE ∠=∠=∠', ∴2DEtan QP R tan DAE AE∠='∠==, ∴2QR P R =', 即:413281655t t ⎛⎫-=- ⎪⎝⎭,解得:8011t =; 综上:当PP Q '的一边与ABD 的AD 或BD 边平行时,6011t =或163t =或8011t =. 8.【答案】(1)解:根据二次函数交点式为 ()()()120y a x x x x a =--≠ ,抛物线过A(﹣3,0),B(1,0)两点,∴设 ()()2331y ax bx a x x =+-=+- ,∵x=0时,y =ax 2+bx ﹣3=-3,∴将 ()0,3- 代入 ()()31y a x x =+- ∴﹣3a =﹣3, ∴a =1,故抛物线的表达式为:y =x 2+2x ﹣3.(2)解:由抛物线的表达式知,点C 、D 的坐标分别为(0,﹣3)、(﹣1,﹣4), 由点C 、D 的坐标知,直线CD 的表达式为:y =x ﹣3①,1tan 3BCO ∠= ,则 cos 10BCO ∠= ,当点P (P′)在点C 的右侧时,如图所示:∵⊙P'BC =⊙BCO ,故P′B⊙y 轴,则点P′(1,﹣2), 当点P 在点C 的左侧时,设直线PB 交y 轴于点H ,过点H 作HN⊙BC 于点N , ∵⊙P'BC =⊙BCO , ∴⊙BCH 为等腰三角形,则 222cos 23110BC CH BCO CH =⋅∠=⨯=+, 解得: 53CH =,则 433OH CH =-= ,故点 4(0,)3H = , 由点B 、H 的坐标得,直线BH的表达式为: 4433y x =-②,联立①②并解得:58xy=-⎧⎨=-⎩,故点P的坐标为(﹣5,﹣8),综上所述,满足条件的点P坐标为(1,﹣2)或(﹣5,﹣8).(3)M(﹣1,2﹣2),N(﹣1﹣2,﹣2)或M'(﹣1,﹣2﹣2),N'(﹣1+ 2,﹣2) 9.【答案】(1)证明:如图,连接EF,EA,EC,∵ EH⊙FC,H是FC的中点,∴EF=EC,∵AD=CD,⊙ADE=⊙CDE=45°,DE=DE,∴⊙ADE⊙⊙CDE,∴AE=EC,∴EF=AE;(2)解:如图,①∵CD=2,13 BFBA=,∴BF=23,AF=43,∴FC=22210 3BC BF+=,过点E作EM⊙AB于点M,∵EF=AE,∴EM垂直平分FA,∴FM=AM=23,∴BM=ME=43,∴2253FM ME+=,∵H是FC的中点,∴10,∴2210EF FH-=②设AB=2a,∵BFkBA=,∴BF=2ak,∴FM=MA=a-ka,BM=a+ak=ME,∵⊙ADE⊙⊙CDE,∴⊙DCE=⊙DAE=⊙FEM,∴tan⊙DCE=tan⊙FEM=11FM kME k-=+. 10.【答案】(1)解:在Rt ABC中,90,6,8 ACB BC AC∠=︒==,22226810 AB AC BC∴+=+=.4tan3ACBBC==,3tan4BCAAC==, ∵D是边AB的中点,∴5BD=如图,当点Q落在BC上时,BP x = ,4tan 3PQ BP B x ==, ∵PDQ A ∠=∠ , 90DPQ ∠=︒ ,16tan 9QP PD x A == , 5BD PD BP =+= ,1659xx += , 解得, 95x = ,95BP ∴= ;(2)解:如图,当 905x < 时,设PQ 、DQ 与BC 交于点M 、N ,∵D 是边AB 的中点,∴5BD = , 4ND = , 3BN = ,4tan 3PM BP B x == , 211423462233BNDPBMS SSx x x =-=⨯⨯-⨯=- ; 当955x << 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 当 57x <≤ 时, 5PD x =- , 3tan (5)4PQ DP A x ==- , 21331575(5)(5)24848PDQS Sx x x x ==⨯--=-+ ; 故 PDQ 与 ABC 重叠部分图形的面积关系式为: 2222960353157595848531575(57)848x x S x x x x x x ⎧⎛⎫-< ⎪⎪⎝⎭⎪⎪⎛⎫=-+<<⎨ ⎪⎝⎭⎪⎪-+<⎪⎩ . 11.【答案】(1)解:作图如下:(2)解:∵⊙ABC=⊙BDC=90°, ∴⊙ABD +⊙CBD=90°,⊙CBD +⊙C=90°,∴⊙ABD=⊙C ,在Rt⊙ABD 中,AD :BD =3:4, ∴AB⊙AD=3⊙5,∴sinC=sin⊙ABD=35AD AB =. (3)解:如图,点P 在BC 为直径的圆上,O 为圆心,当A 、P 、O 三点共线时,AP 最大,∵BC =10,BD =6,∴CD=8,∵⊙ABD⊙⊙BCD ,∴2BD AD CD =⋅,26=8AD ,解得9=2AD , 在Rt⊙ABD 中,AB=152,∵BC=10, ∴BO=OP=5, 在Rt⊙ABO 中,22513AO AB OB =+=, ∴AP=AO +513, 故答案为:5132.. 12.【答案】(1)35;1225(2)解:如图②中,结论:四边形ABCD 是对余四边形.理由:过点D 作DM⊙DC ,使得DM =DC ,连接CM. ∵四边形ABCD 中,AD =BD ,AD⊙BD ,∴⊙DAB =⊙DBA =45°, ∵⊙DCM =⊙DMC =45°, ∴⊙CDM =⊙ADB =90°, ∴⊙ADC =⊙BDM , ∵AD =DB ,CD =DM , ∴⊙ADC⊙⊙BDM (SAS ), ∴AC =BM ,∵2CD 2+CB 2=CA 2,CM 2=DM 2+CD 2=2CD 2,∴CM 2+CB 2=BM 2, ∴⊙BCM =90°,∴⊙DCB =45°, ∴⊙DAB+⊙DCB =90°, ∴四边形ABCD 是对余四边形. (3)4)2tu t =<< 13.【答案】(1)解:∵AD⊙BC ,∴AD DE BG EB = , AD DFCH FC= . ∵DB =DC =15,DE =DF =5,∴12DE DF EB FC == , ∴AD ADBG CH= . ∴BG =CH .(2)解:过点D 作DP⊙BC ,过点N 作NQ⊙AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP =CP =9,DP =12.∵12AD DE BG EB == , ∴BG =CH =2x , ∴BH =18+2x . ∵AD⊙BC ,∴AD DNBH NB = , ∴182x DNx NB=+ , ∴18215xDN DNx x NB DN ==+++ ,∴56xDNx=+.∵AD⊙BC,∴⊙ADN=⊙DBC,∴sin⊙ADN=sin⊙DBC,∴NQ PD DN BD=,∴46xNQx=+.∴211422266x xy AD NQ xx x=⋅=⋅=++(0<x≤9).(3)解:∵AD⊙BC,∴⊙DAN=⊙FHG.(i)当⊙ADN=⊙FGH时,∵⊙ADN=⊙DBC,∴⊙DBC=⊙FGH,∴BD⊙FG,∴BG DF BC DC=,∴5 1815 BG=,∴BG=6,∴AD=3.(ii)当⊙ADN=⊙GFH时,∵⊙ADN=⊙DBC=⊙DCB,又∵⊙AND=⊙FGH,∴⊙ADN⊙⊙FCG.∴AD FC DN CG=,∴5(182)106xx xx⋅-=⨯+,整理得x2﹣3x﹣29=0,解得3552x+=,或3552x-=(舍去).综上所述,当⊙HFG与⊙ADN相似时,AD的长为3或3552x+=.14.【答案】(1)60(2)解:S⊙ADE=12DE·AB=3DE,∴当DE取最小值时,⊙ADE面积取最小值.作⊙ADE的外接圆,圆心为O,连接OD、OE、OA,过O作OH⊙DE于H,则⊙DOE=2⊙DAE=120°,由OD=OE知,⊙ODH=30°,∴OD=2OH,∵OA+OH≥AB,∴OA+12OA≥6,即OA≥4,OH≥2,由垂径定理得:3OH≥3此时,A、O、H共线,AD=AE,∴⊙ADE面积的最小值为:3×433(3)解:过C作CH⊙AE于H,如图所示,设BD=x,EF=y,∵⊙ABC=90°,AE⊙BC,∴四边形ABCF 为矩形, ∵AB=BC=40∴四边形ABCF 为正方形, 由tan⊙E=tan⊙BCD 知,CF BDEF BC=, 即4040x y =, ∴y=1600x, 即xy=1600, ∵22220x x y y x y-+=≥,∴2x y xy +≥,当x=y 时取等号,即x+y 的最小值为80,又⊙ADE 的面积=正方形ABCF 面积+三角形BCD 面积+三角形CEF 面积, 即⊙ADE 的面积=1600+20(x+y )≥1600+20×80=3200, 综上所述,⊙ADE 的面积的最小值为3200 m 2.15.【答案】(1)解:∵y =﹣x 2+bx+c 经过B (﹣1,6),3),∴340c b c =⎧⎨-++=⎩ , 解得 25b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+7(2)解:如图1中,过点B 作BT⊙y 轴交AC 于T.设P(m ,﹣m 2+2m+3),对于抛物线y =﹣x 2+5x+3,令y =0,∴A(2,0), ∵C(0,8),∴直线AC 的解析式为y =﹣x+3, ∵B(﹣1,2), ∴T(﹣1,4), ∴BT =3, ∵PQ⊙OC , ∴Q(m ,﹣m+3),∴PQ =﹣m 2+2m+3﹣(﹣m+3)=﹣m 3+3m , ∵PQ⊙BT , ∴PQ BT = PE BC = 15, ∴﹣m 2+3m =4,解得m =1或2,∴P(4,4)或2.(3)解:如图8中,连接AD ,过点C 作CT⊙AD 于T.∵抛物线y=﹣x2+2x+6=﹣(x﹣1)2+3,∴顶点D(1,4),∵C(8,3),∴直线CD的解析式为y=x+3,CD=7,∵DD′=2CD,∵DD′=2 4,CD′=3 2,∴D′(4,6),∵A(3,2),∴AD′⊙x轴,∴OD′=22OA D A+'=2256+=3 5,∴sin⊙OD′A=OAOD'=45,∵CT⊙AD′,∴CT=3,∵NJ⊙AD′,∴NJ=ND′•sin⊙OD′A=7D′N,5D'N+CN=CN+NJ,∵CN+NJ≥CT,∴55D'N+CN≥7,5D'N+CN的最小值为8.16.【答案】(1)解:①过点P作PH BD⊥于H.BD BC⊥,PH BD⊥,90CBH PHB C∴∠=∠=∠=︒,∴四边形BCPH 是矩形,4PH BC∴==,在Rt ACB中,2222345AB AC BC++=,由旋转的旋转可知,5BD BA==,11541022PBDS BD PH∆∴=⋅⋅=⨯⨯=.②由旋转的性质可知,4BE BC==,12PBDS PD BE∆=⋅⋅,2054PD∴==,90PHD∠=︒,2222543DH PD PH∴=-=-=,2PC BH∴==,90C∠=︒,21tan42PCPBCBC∴∠===.(2)证明:如图2中,连接BF,取BD的中点T,连接FT,ET.BC BE = , BA BD = ,BCE BEC ∴∠=∠ , BAD BDA ∠=∠ ,BDE ∆ 是由 BAC ∆ 旋转得到, BCE ABD ∴∠=∠ , BEC ADB ∴∠=∠ ,BA BD = , AF DF = , BF AD ∴⊥ , 90AFD ∴∠=︒ ,90BED AFD ∠=∠=︒ , DT TB = ,12ET BD ∴=, 12FT BD = , ET FT DT TB ∴=== , E ∴ ,F ,D ,B 四点共圆, 1DBF ∴∠=∠ ,90DBF BDF ∠+∠=︒ , 190BEC ∴∠+∠=︒ ,1180BEC BED ∴∠+∠+∠=︒ , C ∴ 、E 、F 三点共线.17.【答案】(1)解:由 ()50A ,可知 5OA = , 在Rt⊙AOC 中, 2sin 2BAC ∠= , ∴45BAC ∠=︒ ,∴5OA OC == ,即点C (0,5),由题意可设 ()()51y a x x =-+ ,把点C 代入得: 55a -= , 解得: 1a =- ,∴抛物线解析式为 ()()25145y x x x x =--+=-++ ;(2)解:由(1)可得:C (0,5), ()50A ,,设直线AC 的解析式为 1y k x b =+ ,把点A 、C 坐标代入得:{b =55k 1+b =0 ,解得: {b =5k 1=−1, ∴直线AC 的解析式为 5y x =-+ ,∵直线 y kx = ( 0k > )交线段AC 于点M ,则设 ()5M m m -+,, ∴5m k m-+=, 由(1)可知 5OA OC == , 1OB = , ∴()()22055052AC =-+-=, 6AB = ,由题意可分:①当 AOM ABC ∽ 时,∴56AO AM AB AC == , ∴525266AM AC ==, ∴由两点距离公式可得: ()()226255518m m -+-= , 解得: 1255566m m ==, , ∵05m ≤≤ , ∴56m =, ∴55525655666M k -+⎛⎫== ⎪⎝⎭,, ; ②当 AOM ACB ∽ 时,∴2252AO AM AC AB ===,∴232AM AB ==,∴由两点距离公式可得: ()()225518m m -+-= , 解得: 1228m m ==, (不符合题意,舍去),∴()2532322M k -+==,, ; (3)解:过点B 作BF⊙x 轴,交AC 的延长线于点F ,过点P 作PD⊙x 轴于点D ,交AC 于点H ,如图所示:∴BF⊙PH ,∴BQF PQH ∽ ,∴PQ PHBQ BF= , 由(2)知,直线AC 的解析式为 5y x =-+ ,点 ()10B -, , ∴点 ()16F -, ,即 6BF = , 设点 ()245P a a a -++,,则有 ()5H a a -+, , ∴()224555PH a a a a a =-++--+=-+ ,∴225152566224PQ a a a BQ -+⎛⎫==--+⎪⎝⎭ , ∵106-< , ∴当 52a =时, PQ BQ 的值最大,最大值为 2524.18.【答案】(1)解:如图,过点 D 作 DM x ⊥ 轴于点 M∵90ACB ∠=︒ , ∴3tan 32BC CAB AC ∠===∴60CAB ∠=由题意可知 2DA AC == , 60DAB CAB ∠=∠=︒ . ∴180180606060DAM DAB CAB ∠=︒-∠-∠=︒-︒-︒=︒ . ∴906030ADM ∠=︒-︒=︒ 在 Rt ADM ∆ 中, 2DA = , ∴1AM = , 3DM =.∵点 C 坐标为 (10)-,, ∴1214OM OC AC AM =++=++= . ∴点 D 的坐标是 (3)-(2)解:设点 C 坐标为 (,0)a ( 0a < ),则点 B 的坐标是 (,3)a , 由(1)可知:点 D 的坐标是 (3)a - ∵点 B 和点 D 在同一个反比例函数的图象上, ∴33(3)a a =- .解得 3a =- . ∴点 C 坐标为 (3,0)-(3)解:存在这样的 k ,使得以点 E, 1B , D 为顶点的三角形是直角三角形①当 190EDB ∠= 时.如图所示,连接 ED , 1B B , 1B D , 1B B 与 ED 相交于点 N .则 190EBN NDB ∠=∠=︒ , 1BNE DNB ∠=∠ , 130DBN NB E ∠=∠= .∴BNE ∆ ⊙ 1DNB ∆∴1BN ENDN B N= ∴1BN DNEN B N= 又∵1BND ENB ∠=∠ , ∴BND ∆ ⊙ 1ENB ∆ .∴130NEB NBD ∠=∠= , 130NDB NB E ∠=∠= , ∴30BED BDE ∠=∠=︒ . ∴23BE BD == , 16tan 30BEBB ==设 (43)E m , ( 0m < ),则 1(3)D m - , ∵E , 1D 在同一反比例函数图象上, ∴433(9)m m =- .解得: 3m =- . ∴(343)E -,∴343123k =-⨯=-②当 190EB D ∠= 时.如图所示,连接 ED , 1B B , 1B D ,∵1//BD ED ,∴1118090BDB EB D ∠=︒-∠=︒ .在 1Rt BDB ∆ 中,∵130DBB ∠=︒ , 3BD =, ∴14cos30BDBB == .在 1Rt EBB ∆ 中, ∵130BB E ∠=︒ ,∴143tan 30EB BB =︒=. ∴1033EC BC EB =+=设 3(,)3E m ( 0m < ),则 1(13)D m - ∵E , 1D 在同一反比例函数图象上,1033(7)m=-.解得:3m=-,∴103 (3,3 E-∴3333k=-⨯=-21/ 21。

2022年中考数学真题分类汇编:三角函数实际问题专题一(含答案)

2022年中考数学真题分类汇编:三角函数实际问题专题一(含答案)

2022年全国各省市中考数学真题汇编三角函数实际问题专题一1.(2022·湖北省宜昌市)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?2.(2022·山西省)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,√3≈1.73).3.(2022·江苏省泰州市)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB=8m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)4.(2022·湖北省仙桃市)小红同学在数学活动课中测量旗杆的高度.如图,已知测角仪的高度为1.58米,她在A点观测旗杆顶端E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位)(参考数据:√3≈1.732)5.(2022·湖北省鄂州市)亚洲第一、中国唯一的航空货运枢纽——鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C处看见飞机A的仰角为45°,同时另一市民乙在斜坡CF上的D处看见飞机A的仰角为30°.若斜坡CF的坡比=1:3,铅垂高度DG=30米(点E、G、C、B在同一水平线上).求:(1)两位市民甲、乙之间的距离CD;(2)此时飞机的高度AB.(结果保留根号)6.(2022·湖南省常德市)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG//BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)7.(2022·湖北省荆州市)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).8.(2022·广西壮族自治区贺州市)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B处,测量人员用高为1.2m的测角器在与烟囱底部B成一直线的C,D两处地面上,分别测得烟囱顶部A的仰角∠B′C′A=60°,∠B′D′A=30°,同时量得CD为60m.问烟囱AB的高度为多少米?(精确到0.1m,参考数据:√2≈1.414,√3≈1.732)9.(2022·四川省宜宾市)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1米.参考数据:√3≈1.7,√2≈1.4)10.(2022·河北省)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线MN//AB.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.(1)求∠C的大小及AB的长;(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan76°取4,√17取4.1)11.(2022·湖南省娄底市)“体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P处,在无外力作用下,弹簧的长度为3cm,即PQ=3cm.开始训练时,将弹簧的端点Q调在点B处,此时弹簧长PB=4cm,弹力大小是100N,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q调到点C处,使弹力大小变为300N,已知∠PBC=120°,求BC的长.注:弹簧的弹力与形变成正比,即F=k⋅Δx,k是劲度系数,Δx是弹簧的形变量,在无外力作用下,弹簧的长度为x0,在外力作用下,弹簧的长度为x,则Δx=x−x0.12.(2022·四川省成都市)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A′OB=108°时(点A′是A的对应点),用眼舒适度较为理想.求此时顶部边缘A′处离桌面的高度A′D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)13.(2022·四川省自贡市)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(√3≈1.73,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P 的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).14.(2022·浙江省嘉兴市)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)15.(2022·甘肃省武威市)灞陵桥位于甘肃省渭源县城南清源河(渭河上游)上,始建于明洪武初年,因“渭水绕长安,绕灞陵,为玉石栏杆灞陵桥”之语,得名灞陵桥(图1),该桥为全国独一无二的纯木质叠梁拱桥.某综合实践研究小组开展了测量汛期某天“灞陵桥拱梁顶部到水面的距离”的实践活动,过程如下:方案设计:如图2,点C为桥拱梁顶部(最高点),在地面上选取A,B两处分别测得∠CAF和∠CBF的度数(A,B,D,F在同一条直线上),河边D处测得地面AD到水面EG的距离DE(C,F,G在同一条直线上,DF//EG,CG⊥AF,FG=DE).数据收集:实地测量地面上A,B两点的距离为8.8m,地面到水面的距离DE=1.5m,∠CAF=26.6°,∠CBF=35°.问题解决:求灞陵桥拱梁顶部C到水面的距离CG(结果保留一位小数).参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.根据上述方案及数据,请你完成求解过程.16.(2022·四川省眉山市)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30°,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45°,求此建筑物的高.(结果保留整数.参考数据:√2≈1.41,√3≈1.73)17.(2022·浙江省台州市)如图1,梯子斜靠在竖直的墙上,其示意图如图2.梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)18.(2022·四川省广元市)如图,计划在山顶A的正下方沿直线CD方向开通穿山隧道EF.在点E处测得山顶A的仰角为45°,在距E点80m的C处测得山顶A的仰角为30°,从与F点相距10m的D处测得山顶A的仰角为45°,点C、E、F、D在同一直线上,求隧道EF的长度.参考答案1.解:(1)53°≤α≤72°,当α=72°时,AO取最大值,在Rt△AOB中,sin∠ABO=AOAB,∴AO=AB⋅sin∠ABO=4×sin72°=4×0.95=3.8(米),∴梯子顶端A与地面的距离的最大值为3.8米;(2)在Rt△AOB中,cos∠ABO=BOAB=1.64÷4=0.41,∵cos66°≈0.41,∴∠ABO=66°,∵53°≤α≤72°,∴人能安全使用这架梯子.2.解:延长AB,CD分别与直线OF交于点G和点H,则AG=60m,GH=AC,∠AGO=∠EHO=90°,在Rt△AGO中,∠AOG=70°,∴OG=AGtan70∘≈602.75≈21.8(m),∵∠HFE是△OFE的一个外角,∴∠OEF=∠HFE−∠FOE=30°,∴∠FOE=∠OEF=30°,∴OF=EF=24m,在Rt△EFH中,∠HFE=60°,∴FH=EF⋅cos60°=24×12=12(m),∴AC=GH=OG+OF+FH=21.8+24+12≈58(m),∴楼AB与CD之间的距离AC的长约为58m.3.解:连接MC,过点M作HM⊥NM,由题意得:∠DMC=2∠CMH,∠MCD=∠HMN=90°,AB=MC=8m,AB//MC,∴∠CMN=180°−∠MNB=180°−118°=62°,∴∠CMH=∠HMN−∠CMN=28°,∴∠DMC=2∠CMH=56°,在Rt△CMD中,CD=CM⋅tan56°≈8×1.48≈11.8(米),∴能看到的水平地面上最远处D到他的距离CD约为11.8米.4.解:过点D作DG⊥EF于点G,则A,D,G三点共线,BC=AD=20米,AB=CD=FG=1.58米,设DG=x米,则AG=(20+x)米,在Rt△DEG中,∠EDG=60°,tan60°=EGDG =EGx=√3,解得EG=√3x,在Rt△AEG中,∠EAG=30°,tan30°=EGAG =√3x20+x=√33,解得x=10,∴EG=10√3米,∴EF=EG+FG≈18.9米.∴旗杆EF的高度约为18.9米.5.解:(1)∵斜坡CF的坡比=1:3,DG=30米,∴DGGC =13,∴GC=3DG=90(米),在Rt△DGC中,DC=√DG2+GC2=√302+902=30√10(米),∴两位市民甲、乙之间的距离CD为30√10米;(2)过点D作DH⊥AB,垂足为H,则DG=BH=30米,DH=BG,设BC=x米,在Rt△ABC中,∠ACB=45°,∴AB=BC⋅tan45°=x(米),∴AH=AB−BH=(x−30)米,在Rt△ADH中,∠ADH=30°,∴tan30°=AHDH =x−30x+90=√33,∴x=60+30√3,经检验:x=60√3+90是原方程的根,∴AB=(60√3+90)米,∴此时飞机的高度AB为(60√3+90)米.6.解:如图,过点F作FN⊥BC于点N,交HG于点M,则AB=AH−EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG//BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF⋅sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7−m)米,∴EM=MG⋅tan∠EGM=MG⋅tan36°=0.73m,EM=FM⋅tan∠EFM=FM⋅tan25°=0.47(7−m),∴0.73m=0.47(7−m),解得m≈2.7(米),∴EM=0.47(7−m)≈2.021(米),∴AB=AH−EM+EN≈32−2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离是70米.7.解:延长DF交AB于点G,则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,设FG=x米,∴DG=FG+DF=(x+6.6)米,在Rt△AGF中,∠AFG=45°,∴AG=FG⋅tan45°=x(米),在Rt△AGD中,∠ADG=32°,∴tan32°=AGDG =xx+6.6≈0.625,∴x=11,经检验:x=11是原方程的根,∴AB=AG+BG=11+1.5=12.5(米),∴城徽的高AB约为12.5米.8.解:由题意得:BB′=DD′=CC′=1.2米,D′C′=DC=60米,∵∠AC′B′是△AD′C′的一个外角,∴∠D′AC′=∠AC′B′−∠AD′B′=30°,∴∠AD′C′=∠D′AC′=30°,∴D′C′=AC′=60米,在Rt△AC′B′中,∠AC′B′=60°,∴AB′=AC′⋅sin60°=60×√32=30√3(米),∴AB=AB′+BB′=30√3+1.2≈53.2(米),∴烟囱AB的高度约为53.2米.9.解:由已知可得,tan∠BAF=BFAF =724,AB=25米,∠DBE=60°,∠DAC=45°,∠C=90°,设BF=7a米,AF=24a米,∴(7a)2+(24a)2=252,解得a=1,∴AF=24米,BF=7米,∵∠DAC=45°,∠C=90°,∴∠DAC=∠ADC=45°,∴AC=DC,设DE=x米,则DC=(x+7)米,BE=CF=x+7−24=(x−17)米,∵tan∠DBE=DEBE =xx−17,∴tan60°=xx−17,解得x≈40,答:东楼的高度DE约为40米.10.解:(1)∵嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,∴∠CAB=14°,∠CBA=90°,∴∠C=180°−∠CAB−∠CBA=76°,∵tanC=ABBC,BC=1.7m,∴tan76°=AB1.7,∴AB=1.7×tan76°=6.8(m),答:∠C=76°,AB的长为6.8m;(2)图中画出线段DH如图:∵OA=OM,∠BAM=7°,∴∠OMA=∠OAM=7°,∵AB//MN,∴∠AMD=∠BAM=7°,∴∠OMD=14°,∴∠MOD=76°,在Rt△MOD中,tan∠MOD=MD,OD∴tan76°=MD,OD∴MD=4OD,设OD=x m,则MD=4x m,AB=3.4m,在Rt△MOD中,OM=OA=12∴x2+(4x)2=3.42,∵x>0,≈0.82,∴x=√175∴OD=0.82m,∴DH=OH−OD=OA−OD=3.4−0.82=2.58≈2.6(m),答:最大水深约为2.6米.11.解:由题意可得,x0=3cm,100=k(4−3),解得k=100,∴F=100Δx,当F=300时,300=100×(PC−3),解得PC=6cm,由图可得,∠PAB=90°,∠PBC=120°,∴∠APB=30°,∵PB=4cm,∴AB=2cm,PA=√PB2−AB2=2√3(cm),∵PC=5cm,∴AC=√PC2−PA2=2√6(cm),∴BC=AC−AB=(2√6−2)cm,即BC的长是(2√6−2)cm.12.解:∵∠AOB=150°,∴∠AOC=180°−∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°−∠A′OB=72°,在Rt△A′DO中,A′D=A′O⋅sin72°≈20×0.95=19(cm),∴此时顶部边缘A′处离桌面的高度A′D的长约为19cm.13.解:(1)∵∠COG=90°,∠AON=90°,∴∠POC+∠CON=∠GON+∠CON,∴∠POC=∠GON;(2)由题意可得,KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,∵tan∠POQ=PQ,OQ∴tan60°=PQ,5解得PQ=5√3,∴PH=PQ+QH=5√3+1.5≈10.2(米),即树高PH 为10.2米;(3)由题意可得,O 1O 2=m ,O 1E =O 2F =DH =1.5米, 由图可得,tanβ=PD O 2D ,tanα=PDO 1D , ∴O 2D =PD tanβ,O 1D =PD tanα, ∵O 1O 2=O 2D −O 1D ,∴m =PD tanβ−PD tanα,∴PD =mtanαtanβtanα−tanβ,∴PH =PD +DH =(mtanαtanβtanα−tanβ+1.5)米.14.解:(1)如图,过点C 作CF ⊥DE 于点F ,∵CD =CE =5cm ,∠DCE =40°.∴∠DCF =20°,∴DF =CD ⋅sin20°≈5×0.34≈1.7(cm), ∴DE =2DF ≈3.4cm ,∴线段DE 的长约为3.4cm ;(2)∵横截面是一个轴对称图形,∴延长CF 交AD 、BE 延长线于点G ,连接AB ,∴DE//AB ,∴∠A =∠GDE ,∵AD ⊥CD ,BE ⊥CE ,∴∠GDF +∠FDC =90°,∵∠DCF +∠FDC =90°,∴∠GDF =∠DCF =20°,∴∠A =20°,∴DG =DF cos20∘≈ 1.70.94≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG⋅cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.15.解:设BF=x m,由题意得:DE=FG=1.5m,在Rt△CBF中,∠CBF=35°,∴CF=BF⋅tan35°≈0.7x(m),∵AB=8.8m,∴AF=AB+BF=(8.8+x)m,在Rt△ACF中,∠CAF=26.6°,∴tan26.6°=CFAF =0.7x8.8+x≈0.5,∴x=22,经检验:x=22是原方程的根,∴CG=CF+FG=0.7x+1.5=16.9(m),∴灞陵桥拱梁顶部C到水面的距离CG约为16.9m.16.解:在Rt△BCD中,∠CBD=45°,设CD为x m,∴BD=CD=x m,∴AD=BD+AB=(60+x)m,在Rt△ACD中,∠CAD=30°,tan∠CAD=tan30°=CDAD =x60+x=√33,解得x=30√3+30≈82.答:此建筑物的高度约为82m.17.解:在Rt△ABC中,AB=3m,∠BAC=75°,sin∠BAC=sin75°=BCAB =BC3≈0.97,解得BC≈2.9.答:求梯子顶部离地竖直高度BC约为2.9m.18.解:过点A作AH⊥DE,垂足为H,设EH=x米,在Rt△AEH中,∠AEH=45°,∴AH=EH⋅tan45°=x(米),∵CE=80米,∴CH=CE+EH=(80+x)米,在Rt△ACH中,∠ACH=30°,∴tan30°=AHCH =x80+x=√33,∴x=40√3+40,经检验:x=40√3+40是原方程的根,∴AH=EH=(40√3+40)米,在Rt△AHD中,∠ADH=45°,∴DH=AHtan45∘=(40√3+40)米,∴EF=EH+DH−DF=(80√3+70)米,∴隧道EF的长度为(80√3+70)米.。

中考数学复习之锐角三角函数训练题

中考数学复习之锐角三角函数训练题

中考数学复习之锐角三角函数训练题一.选择题(共12小题)1.(2022•平原县模拟)一艘货轮B在灯塔A的南偏西60°方向,距离A点海里,货轮B沿北偏东15°航行一段距离后到达C地,此时AC距离海里,判断C在A 的北偏西多少度()A.60°B.30°C.15°D.45°2.(2022•高新区校级三模)如图,在△ABC中,DC平分∠ACB,BD⊥CD于点D,∠ABD =∠A,若BD=1,AC=7,则tan∠CBD的值为()A.5B.C.3D.3.(2022•沂源县二模)如图,某车型车门设计属于剪刀门设计,即车门关闭时位置如图中四边形ABCD,车门打开是绕点A逆时针旋转至CD与AD垂直,已知四边形ABCD与四边形AB'C'D'在同一平面,若AD∥BC,∠D=45°,∠DAB'=30°,CD=60cm,,则AB的长约为()A.60cm B.51cm C.42cm D.21cm 4.(2022•惠安县模拟)如图所示是一个左右两侧不等长的跷跷板,跷板AB长为4米,支柱OH垂直地面.如图①,当AB的一端A接触地面时,AB与地面的夹角的正弦值为;如图②,当AB的另一端B接触地面时,AB与地面的夹角的正弦值为,则支柱OH的长为()A.0.5米B.0.6米C.0.8米D.米5.(2022•湖里区二模)如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则sin∠BAD的值为()A.B.C.D.6.(2022•双阳区一模)如图为固定电线杆AC,在离地面高度为7米的A处引拉线AB,使拉线AB与地面BC的夹角为α,则拉线AB的长为()A.7sinα米B.7cosα米C.7tanα米D.米7.(2022•红花岗区三模)如图,小明为了测量遵义市湘江河的对岸边上B,C两点间的距离,在河的岸边与BC平行的直线EF上点A处测得∠EAB=37°,∠F AC=60°,已知河宽30米,则B,C两点间的距离为()(参考数据:sin37°≈,cos37°≈,tan37°≈)A.(18+25)米B.(40+10)米C.(24+10)米D.(40+30)米8.(2022•朝阳区校级模拟)如图,AB表示一条跳合滑雪赛道,在点A处测得起点B的仰角为35°,底端点C与顶端点B的距离为50米,则赛道AB的长度为()米.A.50sin35°B.50cos35°C.D.9.(2022•襄州区模拟)如图,在边长为1的4×4的正方形网格中,D为AB与正方形网格线的交点,下列结论中不正确的是()A.tan A=B.∠ACB=90°C.CD AB D.cos B=10.(2022•碑林区校级模拟)如图,在△ABC中,∠ACB=60°,∠B=45°,AB=,CE平分∠ACB交AB于点E,则线段CE的长为()A.+1B.2C.D.﹣11.(2022•井研县模拟)如图,边长为1的小正方形网格中,点A、B、C、E在格点上,连接AE、BC,点D在BC上且满足AD⊥BC,则∠AED的正切值是()A.B.2C.D.12.(2022•宁德模拟)市防控办准备制作一批如图所示的核酸检测点指示牌,若指示牌的倾斜角为α,铅直高度为h,则指示牌的边AB的长等于()A.h sinαB.C.h cosαD.二.填空题(共5小题)13.(2022•鹿城区校级二模)飞机导航系统的正常工作离不开人造卫星的信号传输(如图1).五颗同轨道同步卫星,其位置A,B,C,D,E如图2所示.⊙O是它们的运行轨道,弧AC度数为120°,点B到点C和点A的距离相等,BD⊥CE于M,AD交BE于N,交CE于H,连结CD,AE,已知一架飞机从M飞到N的直线距离为8千公里,则轨道⊙O的半径为千公里,当BE:BD=4:5时,则线段AE,CD的长度之和为千公里.14.(2022•丰润区二模)如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P的距离为海里;AB=海里(结果保留根号).15.(2022•德州一模)如图,小文准备测量自己所住楼房与对面楼房的水平距离,他在对面楼房处放置一个3米长的标杆CD,然后他在A处测得C点的俯角β为53°.再测得D 点的俯角α为45°,则两座楼房之间的水平距离大约为米.(参考数据:sin53°≈,cos53°≈,tan53°≈)16.(2022•固安县模拟)如图,小明在P处测得A处的俯角为15°,B处的俯角为60°,PB=20m,∠PHB=∠AFB=90°,若斜面AB坡度为1:.(1)∠PBA=;(2)HF的长为m.17.(2022•博山区二模)计算:6tan30°﹣2cos30°=.三.解答题(共5小题)18.(2022•榆阳区一模)凌霄塔亦名文笔塔,为榆林市重点文物保护单位,位于榆林城南榆阳桥东侧山峰上,某校数学社团开展“探索生活中的数学”实践活动,小华与队友计划测量凌霄塔的高AB,如图,首先,在阳光下某一时刻,小树CD的影子顶端恰好与塔的影子顶端E重合,测得CD=DE=3m;然后利用测角仪在G点测得塔顶A的仰角为35°,测角仪的高GF=1m,EG=17m;已知AB⊥BG,CD⊥BG,FG⊥BG,点B、D、E、G 在一条直线上,求凌霄塔的高AB.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(2022•嘉兴一模)图1是小明家电动单人沙发的实物图,图2是该沙发主要功能介绍,其侧面示意图如图3所示.沙发通过开关控制,靠背AB和脚托CD可分别绕点B,C旋转调整角度.“n°某某”模式时,表示∠ABC=n°,如“140°看电视”模式时∠ABC =140°.已知沙发靠背AB长为50cm,坐深BC长为54cm,BC与地面水平线平行,脚托CD长为40cm,∠DCD'=∠ABC﹣80°,初始状态时CD⊥BC.(1)求“125°阅读”模式下∠DCD'的度数.(2)求当该沙发从初始位置调至“125°阅读”模式时,点D运动的路径长.(3)小明将该沙发调至“150°听音乐”模式时,求点A,D′之间的水平距离(精确到个位).(参考数据:≈1.7,sin70°≈0.9,cos70°≈0.3)20.(2022•云岩区模拟)如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.21.(2022•安顺模拟)火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)22.(2022•湖北模拟)周末爬山、郊游是现代市民常见的健康休闲生活方式.小明和小亮两家相约周末一起去天柱山游玩.如图,他们从天柱山西坡的B点出发,沿坡角为30°的山坡走了300m到达山腰E点处休息;然后又沿着坡角为45°的山坡走了150m到达山顶A处.求天柱山的高度.(结果精确到个位,参考数据:≈1.4,≈1.7)。

中考数学专题 初中三角函数应用题10道-含答案

中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。

“三角函数”中考试题分类汇编(含答案)

“三角函数”中考试题分类汇编(含答案)

1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。

九年级数学中考分类训练:锐角三角函数实际应用 必刷题

九年级数学中考分类训练:锐角三角函数实际应用 必刷题

2021年九年级数学中考分类训练:锐角三角函数实际应用必刷题1.如图1是一个手机的支架,由底座、连杆和托架组成,如图2是它的平面示意图,底座AD,连杆AB和托架BC始终在一个平面内.连杆AB可以绕着点A在5°﹣120°范围内旋转,托架BC可以绕着点B在5°﹣90°范围内旋转,连杆BA的长度为18厘米,托架CB的长度为8厘米.当连杆AB和托架BC旋转至图3位置,∠DAB=∠ABC =60°,请你计算此时点C到底座AD的距离CM的长.(结果保留根号)2.如图,在一条笔直公路BD的正上方A处有一探测仪,AD=24m,∠D=90°,一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.(参考数据:tan31°≈0.6,tan50°≈1.2)(1)求B,C两点间的距离(结果精确到1m);(2)若规定该路段的速度不得超过15m/s,判断此轿车是否超速.3.小强洗漱时的侧面示意图如图所示,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时身体前倾,下半身与地面的夹角∠FGK=80°,上半身与下半身所成夹角∠EFG=125°,脚与洗漱台距离GC=15cm,点D,C,G,K在同一直线上.(1)求此时小强腰部点F到墙AD的距离.(2)此时小强头部点E是否恰好在洗漱盆AB的中点O的正上方?若是,请说明理由;若不是,则他应向前还是向后移动多少厘米,使头部点E恰好在洗漱盆AB的中点O的正上方?(计算过程及结果的长度均精确到1cm.参考数据;sin80°≈0.98,cos80°≈0.17,≈1.41)4.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C的仰角∠ADC=45°,从点E处看点B的仰角∠AEB=53°,且DE=2.4米.(1)求点C到墙壁AM的距离;(2)求匾额悬挂的高度AB的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)5.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)6.如图是某堤坝经过改造后的横断面梯形ABCD,高DH=10米,斜坡CD的坡度是1:1,此处,堤坝的正上方有高压线通过,点P,D,H在一条直线上,点P是高压线上离堤面AD最近的点,测得∠PCD=26°.(1)求斜坡CD的坡角α.(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,此次改造是否达到了安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)7.如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.8.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G 信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)9.为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°(注:即四边形ABDC 是梯形).(1)求限速道路AB的长(精确到1米);(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)10.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地﹣﹣安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB的高度,小明在纪念碑前D处用测角仪测得顶端A的仰角为60°,底端B的俯角为45°;小明又在同一水平线上的E处用测角仪测得顶端A的仰角为30°,已知DE=8m,求该纪念碑AB的高度.(≈1.7,结果精确到0.1m)11.某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)12.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速.如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的终点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度i=1:2时,求电子眼区间测速路段AB的长(结果保留根号).13.如图,是小明家房屋的纵截面图,其中线段AB为屋内地面,线段AE、BC为房屋两侧的墙,线段CD、DE为屋顶的斜坡.已知AB=6米,AE=BC=3.2米,斜坡CD、DE的坡比均为1:2.(1)求屋顶点D到地面AB的距离;(2)已知在墙AE距离地面1.1米处装有窗ST,如果阳光与地面的夹角∠MNP=β=53°,为了防止阳光通过窗ST照射到屋内,所以小明请门窗公司在墙AE端点E处安装一个旋转式遮阳棚(如图中线段EF),公司设计的遮阳棚可作90°旋转,即0°<∠FET=α≤90°,长度为1.4米,即EF=1.4米.试问:公司设计的遮阳棚是否能达到小明的要求?说说你的理由.(参考数据:≈1.41,≈1.73,≈2.24,≈3.16,sin53°=0.8,cos53°=0.6,tan53°=).14.如图,海中有一个小岛A,它的周围25海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西45°的C处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.15.如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)参考答案1.解:延长AM、BC交于E,由题意得BC=8厘米,BA=18厘米,∵∠DAB=∠ABC=60°,∴△ABE是等边三角形,∴∠E=60°,BE=BA=18厘米,∴CE=BE﹣BC=10,∵CM⊥AD,∴∠CME=90°,∴∠ECM=90°﹣60°=30°,∴EM=CE=5,∴CM===5(厘米),答:此时点C到底座AD的距离CM的长是5厘米.2.解:(1)在Rt△ACD中,,∴,在Rt△ABD中,,∴.∴BC=BD﹣CD=20(m);∴B,C两点间的距离为BD﹣CD=20(m);(2)此轿车的速度,所以此轿车在该路段没有超速.3.解:(1)如图,过点F作FN⊥DK于点N,作FM⊥AD于点M.在Rt△FGN中,∵∠FGK=80°,FG=100cm,∴GN=FG⋅cos∠FGK=100⋅cos80°≈17(cm).∴DN=DC+CG+GN=48+15+17=80(cm).∵FN⊥DK,FM⊥AD,∴∠FMD=∠FND=90°,∵四边形ABCD是矩形,∴∠D=90°.∴四边形MDNF是矩形.∵MF=DN=80(cm).∴此时小强腰部点F到墙AD的距离为80cm.(2)此时小强头部点E没有在洗漱盆AB中点O的正上方.如图,过点E作EP⊥AB于点P,延长OB交FN于点H.∵∠EFG=125°,∴∠EFM=125°+10°﹣90°=45°.∵EF=166﹣FG=166﹣100=66(cm),∴FQ=66⋅sin45°≈47(cm).∴PH≈47(cm).∵AB=48cm,点O为AB的中点,∴AO=BO=24(cm).∵GN≈17cm,CG=15cm,∴OH=24+15+17=56(cm).∵56>47.∴此时小强头部点E没有在洗漱盆AB中点O的正上方.∴OP=OH﹣PH=56﹣47≈9(cm).∴他应向前移动9cm.4.解:(1)过C作CF⊥AM于F,过C作CH⊥AD于H,则四边形AHCF是矩形,∴AF=CH,CF=AH.在Rt△BCF中,BC=1米,∠CBF=37°.∴BF=BC cos37°≈0.8(米),CF=BC sin37°≈0.6(米);答:点C到墙壁AM的距离为0.6米;(2)在Rt△BAE中,∠BEA=53°,∴AE=AB,在Rt△CDH中,∠CDH=45°,。

中考总复习解三角形三角函数专项练习(含解析)

中考总复习解三角形三角函数专项练习(含解析)

第121讲解三角形微课锐角三角函数题一:在Rt△ABC中,∠C=90°,AC=12,cos A=1213,则tan A等于( )A.513B.1312C.125D.512题二:△ABC中,∠A和∠B均为锐角,AC=6,BC=33,且sin A=3,则cos B的值为______. 题三:计算:cos245º+tan30º·sin60º=______.题四:计算:sin30°+cos30°•tan60°.题五:如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°题六:如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tan B的值是( )教育选轻轻·家长更放心页1教育选轻轻·家长更放心 页 2A .45B .35C .34D . 43第122讲 解三角形微课 解直角三角形题一:如图,在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为 ( ) A .4 B .25C .181313D .121313题二:如图,在Rt △ABC 中,∠C =90°,AB =2BC ,则sin B 的值为( )A .12B .22C .32D .1题三:把两块含有30°的相同的直角尺按如图所示摆放,连接AE ,若AC =6cm ,则△ADE 的面积是______.教育选轻轻·家长更放心页 3题四:把两块含有30°的相同的直角尺按如图所示摆放,连接CE 交AB 于D .若BC =6cm ,则①AB =____cm ;②△BCD 的面积S =______.题五:如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.(1)如果∠BCD =30º,求AC ;(2)如果tan ∠BCD = 1 3,求CD .教育选轻轻·家长更放心页 4题六:如图,在△ABC 中,∠ACB =90°,BC = 4,AC= 5,CD ⊥AB ,则sin ∠ACD 的值是______,tan ∠BCD 的值是______.教育选轻轻·家长更放心 页 5第123讲 解三角形微课 锐角三角函数的应用题一:如图,在塔AB 前的平地上选择一点C ,测出塔顶的仰角为30º,从C 点向塔底B 走100m 到达D 点,测出塔顶的仰角为45º,则塔AB 的高为( )A .503mB .1003mC .1003+1m D .10031-m题二:在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,已知小明距假山的水平距离BD 为12m ,他的眼睛距地面的高度为1.6m ,李明的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为( )A .(43+1.6)mB .(123+1.6)mC .(42+1.6)mD .43m教育选轻轻·家长更放心 页6题三:某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行32小时到达B 处,那么tan ∠ABP =( ) A. 21 B.2 C. 55 D. 552 题四:如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C 处位于北偏东65︒方向,然后,他从凉亭A 处沿湖岸向正东方向走了100米到B 处,测得湖心岛上的迎宾槐C 处位于北偏东45︒方向(点A 、B 、C 在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C 处与湖岸上的凉亭A 处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)教育选轻轻·家长更放心 页 7 第121讲解三角形微课 锐角三角函数题一:D详解:∵cos A =1213AC AB =,AC =12, ∴AB =13,BC =22AB AC -=5,∴tan A =512BC AC =. 故选D .题二:5. 详解:过点C 作CD ⊥AB 于点D .在Rt △ACD 中,AC =6,sin A =33, ∴CD =AC ×sin A =6×33=23. 在Rt △BCD 中,BC =33, ∴BD =22=15BC CD -.∴cos B =BD BC =53.题三:1教育选轻轻·家长更放心 页 8详解:cos 245º+tan30º·sin60º=223311122+⨯=+=(). 题四:2.详解:原式=131332222+⨯=+=. 题五:C.详解:由已知,根据锐角三角形函数定义对各选项作出判断:A 、由于在Rt △ABO 中∠AOB 是直角,所以B 到AO 的距离是指BO 的长. ∵AB ∥OC ,∴∠BAO =∠AOC =36°.在Rt △BOA 中,∵∠AOB =90°,AB =1,∴BO =AB sin36°=sin36°.故本选项错误.B 、由A 可知,选项错误.C 、如图,过A 作AD ⊥OC 于D ,则AD 的长是点A 到OC 的距离.在Rt △BOA 中,∵∠BAO =36°,∠AOB =90°,∴∠ABO =54°.∴AO =AB •sin54°= sin54°.在Rt △ADO 中, AD =AO •sin36°=AB •sin54°•sin36°=sin54°•sin36°.故本选项正确.D 、由C 可知,选项错误.故选C.题六:C.教育选轻轻·家长更放心页 9 详解:∵CD 是斜边AB 上的中线,CD =5,∴AB =2CD =10. 根据勾股定理,22221068BC AB AC -=-=. ∴63tan 84AC B BC ===.故选C. 第122讲 解三角形微课 解直角三角形题一:A.详解:∵cos B =23,∴23BC AB =. 又AB =6,∴2643BC=⨯=.故选A. 题二:C.详解:∵Rt △ABC 中,∠C =90°,AB =2BC ,∴sin A =122BC BC AB BC ==.∴∠A =30°.∴∠B =60°.∴sin B =o 3sin 602=.故选C. 题三:183cm 2.详解:∵AC =6cm ,∠ABC =30°,∴AB =12,∴BC 22126=63-=BE ,在△ADE 中,BE 是△ADE 的高,∴S △ADE =12×AD ×BE , ∵BD =6,AB =12,∴AD =6,∴S △ADE =12×AD ×BE =12×6×3=183cm 2.教育选轻轻·家长更放心页 10 题四:12; 63cm 2.详解:(1)∵△ABC 为直角三角形,∠BAC =30°,BC =6cm ,∴AB =sin BC BAC∠=12cm . (2)如图:过点D 作平行于AC 的直线交BC 于M ,交AE 于N .∵BC ∥AE ,∴△BCD ∽△AED ,△BDM ∽△ADN .∴BC AE =BD AD =DM DN =12, 又DM +DN =AC ,又AC 3DM 3∴△BCD 的面积S =12×BC ×DM =12×6×33cm 2. 题五:3310. 详解:(1)∵CD ⊥AB ,∴∠BDC =90°.∵∠DCB =30°,∴∠B =60°.在Rt △ACB 中,∠ACB =90°,∴tan60°=AC BC. ∵BC =1,∴31AC =,则AC =3(2)在Rt △BDC 中,tan ∠BCD =13BD CD =. 设BD = k ,则CD =3k ,教育选轻轻·家长更放心页 11 又BC =1,由勾股定理得:k 2+(3k )2=1,解得:k 10或k = 10(舍去). ∴CD =3k 310. 题六:54141;45详解:∵△ABC 中,∠ACB =90°,BC = 4,AC = 5,CD ⊥AB ,∴AB 2222=54=41AC BC ++在Rt △ABC 与Rt △ACD 中,∠A +∠B =90°,∠A +∠ACD =90°,∠ADC =∠ACB =90°. ∴∠B =∠ACD .Rt △ABC ∽Rt △ACD ,∠BCD =∠A .故sin ∠ACD =sin ∠B =AC AB =54141, tan ∠BCD = tan ∠A =BC AC =45. 第123讲 解三角形微课 锐角三角函数的应用题一:D详解:根据题意分析图形;本题涉及到两个直角三角形,由BC 3AB 和BC =AB +100求解即可求出答案在Rt △ABD 中,∵∠ADB =45°,∴BD =AB .在Rt △ABC 中,∵∠ACB =30°,∴BC 3AB .∵CD =100,∴BC =AB +100.∴AB 3AB ,解得AB 31-.故选D . 题二:A .教育选轻轻·家长更放心 页 12详解:如图,作AK ⊥CD 于点K ,∵BD =12米,李明的眼睛高AB =1.6米,∠AOE =60°,∴DB =AK =12米,AB =KD =1.6米,∠ACK =60°.∵tan AK ACK CK ∠=,∴o 121243tan tan 603AK CK ACK ====∠. ∴CD =CK +DK =43+1.6=(43+1.6)(米).故选A .题三:A .详解:∵灯塔A 位于客轮P 的北偏东30°方向,且相距20海里,∴PA =20.∵客轮以60海里/小时的速度沿北偏西60°方向航行23小时到达B 处, ∴∠APB =90° ,BP =60×23=40. ∴tan ∠ABP =201402AP BP ==.故选A .教育选轻轻·家长更放心页 13 题四:207米.详解:如图,作CD ⊥AB 交AB 的延长线于点D ,则∠BCD =45°,∠ACD =65°.在Rt △ACD 和Rt △BCD 中, 设AC =x ,则AD =x sin65°,BD =CD =x cos65°.∴100+x cos65°=x sin65°.∴o o100207sin 65cos65x =≈-(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.。

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。

人教中考数学专题训练---锐角三角函数的综合题分类含答案

人教中考数学专题训练---锐角三角函数的综合题分类含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN , ∠NPE=900—∠BMN ,∴∠MBN=∠NPE . ∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.3.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.4.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】 【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH =EB•sin ∠OBC 5CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.7.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH ,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.8.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.9.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒ tan EFECF CF∴∠= 3123EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN 的长度为π3;(23P 的坐标为10(,);或230)或230();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】 【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=PQ ×AQ 3= 即重叠部分的面积为38. [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。

2023年中考九年级数学高频考点专题训练--锐角三角函数

2023年中考九年级数学高频考点专题训练--锐角三角函数

2023年中考九年级数学高频考点专题训练--锐角三角函数一、综合题1.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交∠O于E,D为BE延长线上一点,且∠DAE=∠FAE.(1)求证:AD为∠O切线;(2)若sin∠BAC=35,求tan∠AFO的值.2.如图,一个正方体木箱沿斜面下滑,正方体木箱的边长BE为2m,斜面AB的坡角为∠BAC,且tan∠BAC= 3 4.(1)当木箱滑到如图所示的位置时,AB=3m,求此时点B离开地面AC的距离;(2)当点E离开地面AC的距离是3.1m时,求AB的长.3.如图,在∠ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与∠ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.4.如图,以∠ABC的一边AB为直径的半圆O与边AC,BC的交点分别为点E,点D,且D是BE⌢的中点.(1)若∠A=80°,求∠DBE的度数.(2)求证:AB=AC.(3)若∠O 的半径为5cm,BC=12cm,求线段BE的长.5.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;(3)点M是抛物线对称轴上一点,且∠DAM和∠BCE相似,求点M坐标.6.如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC∠OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD∠OF于点D.(1)当AC的长度为多少时,∠AMC和∠BOD相似;(2)当点M恰好是线段AB中点时,试判断∠AOB的形状,并说明理由;(3)连结BC.当S∠AMC=S∠BOC时,求AC的长.7.如图1,在∠ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A 重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F,D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;,其他条件不(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= √6+√22变,求线段AM的长.8.(1)【基础巩固】如图1,在∠ABC中,D,E,F分别为AB,AC,BC上的点,DE∠BC,BF=CF,AF交DE于点G,求证:DG= EG.(2)【尝试应用】如图2,在(1)的条件下,连结CD,CG.若CG∠DE,CD=6,AE=3,求DEBC的值.(3)【拓展提高】如图3,在∠ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∠BD交AD于点G,EF∠EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.9.在锐角∠ABC中,AB=4,BC=5,∠ACB=45°,将∠ABC绕点B按逆时针方向旋转,得到∠DBE.(1)当旋转成如图①,点E在线段CA的延长线上时,则∠CED的度数是度;(2)当旋转成如图②,连接AD、CE,若∠ABD的面积为4,求∠CBE的面积;(3)点M为线段AB的中点,点P是线段AC上一动点,在∠ABC绕点B按逆时针方向旋转过程中,点P的对应点P′,连接MP′,如图③,直接写出线段MP′长度的最大值和最小值.10.如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么tan∠1tan∠2的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当∠DCG为等腰三角形时,求BE长.11.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=75°,∠D=85°,则∠C =.(2)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求对角线AC的长.(3)已知:如图2,在平面直角坐标系xOy中,四边形ABCD是“等对角四边形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣√3),点D在y轴上,抛物线y=ax2+bx+c(a<0)过点A、D,且当﹣2≤x≤2时,函数y=ax2+bx+c取最大值为3,求二次项系数a的值.12.如图,已知BC为∠O的直径,点D为CE⌢的中点,过点D作DG∠CE,交BC的延长线于点A,连接BD,交CE于点F.(1)求证:AD是∠O的切线;(2)若EF=3,CF=5,tan∠GDB=2,求AC的长.13.已知:如图,AB为∠O的直径,C是BA延长线上一点,CP切∠O于P,弦PD∠AB于E,过点B作BQ∠CP于Q,交∠O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3√3,求∠C的度数;(3)如图3,在(2)的条件下,PD=6 √3,连接QC交BC于点M,求QM的长.14.定义:一边上的中线与另一边的夹角为30°的三角形称作美妙三角形。

三角函数中考试题分类训练

三角函数中考试题分类训练

《三角函数》 【2 】常识点1.在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为:2.30°.45°.60°.90°特别角的三角函数值(主要)3.正弦.余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小. 4.正切的增减性:当0°<α<90°时,tan α随α的增大而增大.5.同角的三角函数关系:(︒︒<∠<900A )1cos sin 22=+A A ; AA Atan cos sin =互余两角的三角函数关系:B A cos sin =(B A sin cos =);1tan tan =⋅B A三角函数分解练习一.选择填空:1.如图1,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的竖直程度之间,论述准确的是( )A .sin A 的值越大,梯子越陡B .cos A 的值越大,梯子越陡C .tan A 的值越小,梯子越陡D .陡缓程度与A ∠的函数值无关2.已知α为锐角,且23)10sin(=︒-α,则α等于()A.︒50B.︒60 C.︒70 D.︒803.在△ABC 中,∠C =90°,AB =10cm,sinA =54,则BC 的长为___cm .4.在Rt ABC △中,90C ∠=°,a b c ,,分离是AB C ∠∠∠,,的对边,若2b a =,则tan A =. 5.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论准确的是()A .3sin 2A =B .1tan 2A =C .3cos 2B =D .tan 3B = 3 题6题7题6.如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是()A .23B .32C .34D .437.如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为()A.2B.22 C.63 D.338.在△ABC 中,∠C =90°,tan A =13,则sin B =()A .1010B .23C .34D .310109.如图,菱形ABCD 的边长为10cm,DE ⊥AB ,3sin 5A =,则这个菱形的面积=cm 2. 10. A (cos60°,-tan30°)关于原点对称的点A 1的坐标是()ACBD图1A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭,D .1322⎛⎫- ⎪ ⎪⎝⎭, 11.如图,前锋村预备在坡角为α的山坡上栽树,请求相邻两树之间的程度距离为5米,那么这两树在坡面上的距离AB 为() A. αcos 5 B. αcos 5 C. αsin 5 D. αsin 512.如图,小明要测量河内小岛B 到河畔公路l 的距离,在A 点测得30BAD ∠=°,在C点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为()米.A .25B .253C .10033D .25253+ 13.如图,一艘海轮位于灯塔P 的东北偏向,距离灯塔402海里的A 处,它沿正南偏向航行一段时光后,到达位于灯塔P 的南偏东30°偏向上的B 处,则海轮行驶的旅程AB 为海里(成果保留根号). 二、运用特别角的三角函数值盘算(1)242(2cos 45sin 60)4︒-︒+(2)2sin450+cos300·tan600—2)3(-(3)3-1+(2π-1)0-33tan30°-tan45°(4)0200912sin 603tan 30(1)3⎛⎫-++- ⎪⎝⎭°°三、三角函数的运用(先剖析,再选用适合的办法)1.如图,甲楼AB 的高度为123m,自甲楼楼顶A 处,测得乙楼顶端C 处的仰角为450,测得乙楼底部D 处的俯角为300,求乙楼CD 的高度(成果准确到0.1m,3取1.73).α 5米AB11题2.如图,海中有一灯塔P,它的四周8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°偏向上;航行40分钟到达B处,测得灯塔P在北偏东30°偏向上;假如海轮不转变航路持续向东航行,有没有触礁的安全?3.盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践运动中,先生请求测电视塔的高度AB.小明在D处用高1.5m的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔进步224m到达E处,又测得电视塔顶端A的仰角为60°.求电视塔的高度AB.(取1.73,成果准确到0.1m)3.为了对一棵竖直的古杉树AB进行破坏,需测量其长度.如图,在地面上拔取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(成果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.4.黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此结构出该岛的一个数学模子如图乙所示,个中∠A=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(成果保留整数,参考数据2 1.413 1.736 2.45≈≈≈ ,,) (2)求∠ACD 的余弦值.附加题:1.如图,不雅测点A.旗杆DE 的底端D.某楼房CB 的底端C 三点在一条直线上,从点A 处测得楼顶端B 的仰角为22°,此时点E 正好在AB 上,从点D 处测得楼顶端B 的仰角为38.5°.已知旗杆DE 的高度为12米,试求楼房CB 的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)2.如图,在一笔直的海岸线l 上有AB 两个不雅测站,A 在B 的正东偏向,AB=2(单位:km ).有一艘划子在点P 处,从A 测得划子在北偏西60°的偏向,从B 测得划子在北偏东45°的偏向. (1)求点P 到海岸线l 的距离;(2)划子从点P 处沿射线AP 的偏向航行一段时光后,到点C 处,此时,从B 测得划子在北偏西15°的偏向.求点C 与点B 之间的距离.(上述两小题的成果都保留根号)。

三角函数中考集锦带答案

三角函数中考集锦带答案

三角函数1. (2011湖南衡阳,9,3分)如图所示,河堤横断面迎水坡AB的坡比是1BC=5m,则坡面AB的长度是()A.10m B.C.15m D.【答案】A2. (2011山东东营,8,3分)河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:BC与水平宽度AC之比),则AC的长是()A.B.10米C.15米D.【答案】A3.(2011宁波市,9,3分)如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长l为A.hsin a B.htan a C.hcos a D.h·sin a【答案】A4. (2011山东潍坊,10,3分)身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁【答案】D5. (2011四川绵阳10,3)周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A 处测得她看塔顶的仰角α为45°,小丽站在B 处测得她看塔顶的仰角β为30°.她们又测出A 、B 两点的距离为30米。

假设她们的眼睛离头顶都为10cm ,则 可计算出塔高约为(结果精确到0.01,参考数据:2=1.414,3=1.73)A.36.21 米B.37. 71 米C.40. 98 米D.42.48 米 【答案】D6. (2010湖北孝感,10,3分)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞船距离地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.sin R α,180R πα B.sin RR α-,()90180R απ- C.sin RR α-,()90180R απ+ D. cos R R α-,()90180R απ- 【答案】B 二、填空题1. (2011山东济宁,15,3分)如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .【答案】tan tan m n αα-⋅2. (2011浙江衢州,13,4分)在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B C 、两地相距 m.【答案】2003. (2011甘肃兰州,17,4分)某水库大坝的横断面是梯形,坝内斜坡的坡度i =1坝外斜坡的坡度i =1∶1,则两个坡角的和为 。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

中考 数学专练11(三角函数大题)(30题)(老师版)

中考 数学专练11(三角函数大题)(30题)(老师版)

2022中考考点必杀500题专练11(三角函数大题)(30道)1.(2022·浙江绍兴·一模)如图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点,,B E D 均为可转动点,现测得20cm AB BE ED CD ====,经多次调试发现当点,B E 都在CD 的垂直平分线上时(如图3所示)放置最平稳.(1)求放置最平稳时灯座DC 与灯杆DE 的夹角的大小;(2)当A 点到水平桌面(CD 所在直线)的距离为42cm 43cm -时,台灯光线最佳,能更好的保护视力.若台灯放置最平稳时,将ABE ∠调节到105︒,试通过计算说明此时光线是否为最佳.(参考数据:sin150.26,cos150.97,tan15 1.73︒=︒=︒==)【答案】(1)灯座DC 与灯杆DE 的夹角为60°(2)此时光线最佳【解析】(1)解:延长BE 交DC 于点F ,则由题可知EF ⊥CD 且FD =12CD =10cm ; ⊥1cos 2DF D DE ∠== ⊥⊥D =60° 即灯座DC 与灯杆DE 的夹角为60°;(2)解:作AM ⊥DC 于点M ,作BG ⊥AM 于点G ,则四边形GMFB 是矩形⊥⊥GBF=90°⊥sin=⋅,EF DE D⊥2037.3cm=+=+≈,GM BE EF⊥⊥ABE =105°,⊥⊥ABG =15°⊥sin15 5.2=⋅=cmAG AB⊥AM=37.3+5.2=42.5cm⊥此时光线最佳.【点睛】本题主要考查了解直角三角形的实际应用,线段垂直平分线的性质,正确作出辅助线构造直角三角形是解题的关键.2.(2022·安徽·东至县教育体育局教学研究室一模)如图1,某游乐场建造了一个大型摩天轮,工程师介绍:若你站在摩大轮下某处(A点)以30的仰角恰好可以看到摩天轮圆轮的底部(C点),可测得AC的长度为30m,以63︒的仰角可以看到摩天轮圆轮的最上方(D点),如图2,设摩天轮圆轮的直径CD垂地面于点B,点A,B在同一水平面上.(人的身高忽略不计, 1.73,sin630.89,cos630.45,tan63 1.96≈︒≈︒≈︒≈,结果精确到个位)(1)求AB的长;(2)求摩天轮的圆轮直径(即CD的长).【答案】(1)26m ;(2)36m【解析】(1)解:根据题意知30,30,90=∠=∠︒︒=AC CAB B ,⊥cos 30cos303026(m)=⋅∠=⨯=︒≈AB AC CAB . 答:AB 的长约为26m .(2)解:根据题意知30,30,90,63=∠=︒∠︒=︒∠=AC CAB B DAB , ⊥1sin 30sin303015(m)2=⋅∠=⨯︒=⨯=BC AC CAB . 由(1)知26AB =, ⊥tan ,∠=DB DAB AB ⊥tan 26tan 6326 1.9651(m)=⋅∠=⨯︒≈⨯≈DB AB DAB⊥511536()=-=-=CD DB BC m .答:摩天轮的圆轮直径约为36m .【点睛】本题考查了解直角三角形的应用,熟练运用三角函数解直角三角形是解题的关键.3.(2021·陕西渭南·二模)西安汉城湖景区巨大的汉武帝塑像背北朝南,一手执剑安边,广布王道与蛮夷;一手樾泽众生,推行儒术与天下,展示了汉武帝一统江山、胸怀万里的豪迈气概(如图1).小明想利用所学知识测量汉武帝塑像的高度BE ,测量方法如下:如图2,在地面上的点C 处测得塑像顶端E 的仰角为37︒,从点C 走到点D ,测得24CD =米,从点D 测得塑像底端B 的仰角为26.5︒,已知A ,B ,E 在同一条垂直于地面的直线上,点C 、D 、A 在一条直线上,7AB =米,请你根据题中提供的相关信息,求塑像BE 的高度(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin26.50.45︒≈,cos26.50.89︒≈,tan26.50.50︒≈)【答案】塑像BE 的高度约为21.5米.【解析】解:由题意知,在Rt ABD △中,26.5ADB ∠=︒,7AB =米, ⊥714tan 26.50.5AB AD =≈=︒(米), ⊥24CD =米,⊥142438AC AD CD =+=+=(米),在Rt ACE △中,37ACE ∠=︒,⊥38tan37380.7528.5AE =⨯︒≈⨯=(米),⊥7AB =米,⊥28.5721.5BE AE AB =-=-=(米),答:塑像BE 的高度约为21.5米.【点睛】本题考查的是解直角三角形的应用,掌握“利用锐角三角函数求解直角三角形的边长”是解本题的关键. 4.(2022·陕西·武功县教育局教育教学研究室二模)风筝起源于中国,最早的风筝是由古代哲学家墨翟制造的,中国风筝问世后,很快被用于传递信息,飞跃险阻等军事需要,唐宋以后传入民间,成为人们休闲娱乐的玩具.上周末,小伟和爸爸一起去野外放风筝,不慎,两个风筝在空中P 处缠绕在一起,如图,小伟在地面上的A 处测得点P 的仰角为30°,爸爸在距地面2米高的C 处(即2BC =米)测得点P 的仰角为60°,已知A 、B 、D 在一条直线上,PD AD ⊥,CB AD ⊥,160AB =米,求此时风筝P 处距地面的高度PD .(结果保留根号)【答案】风筝P 处距地面的高度PD 为()1米.【解析】解:过点C 作CE PD ⊥于点E ,如图,根据题意可得90CEP D ∠=∠=︒,四边形BCED 为矩形,⊥2DE BC ==米,CE BD =,设BD CE x ==米,则()160AD AB BD x =+=+米,在Rt PCE △中,tan 60PE CE =⋅︒=米,⊥)2PD PE DE =+=+米.在Rt PAD △中,tan tan30PD A AD =︒==⊥AD =,即)1602x +=+,解得80x =-⊥(8021PD +=(米).即此时风筝P 处距地面的高度PD 为()1米.【点睛】本题主要考查了三角函数解决实际问题,解题关键是根据题意构建直角三角形并利用三角函数求解. 5.(2022·陕西·一模)如图,学校一幢教学楼AB 的顶部竖有一块写有校训的宣传牌AC ,小同在M 点用测倾器测得宣传牌的底部A 点的仰角为31︒,他向教学楼前进7米到达N 点,测得宣传牌顶部C 点的仰角为45︒,已知广告牌AC 的高度为3米,测倾器 1.5DM EN ==米,点B 、M 、N 在同一水平面上,不考虑其他因素,求教学楼AB 的高度.(结果保留整数,参考数据sin310.52︒≈,cos310.86︒≈,tan310.61︒≈)【答案】17【解析】连接DE并延长交BC于F,⊥DM⊥MB,EN⊥MB,⊥DM⊥EN,⊥DM=EN,⊥四边形DMNE是矩形,⊥BM⊥DF,DE=MN=7⊥DF⊥CB, 1.5DM EN BF===设AF=x,⊥CF=3+x,在Rt△BCF中,⊥⊥CEF=45°,⊥EF=FC=x+3,⊥DF=EF+DE=x+3+7=x+10,在Rt△AED中,tan⊥ADF=AF DF,⊥tan 31x DF︒=, ⊥tan 31x DF =︒⊥0.6101x DF x ==+ 解得15.6x ≈⊥AB =AF +BF =15.6 1.517+≈,答:教学楼AB 的高度是17米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,结合图形利用三角函数解直角三角形是解答此题的关键.6.(2022·河南·西峡县基础教育教学研究室一模)数学兴趣活动小组的同学们利用课余时间测量一栋教学楼的高度.如图,在C 点测得楼顶A 点的仰角为45°,从C 点经斜面CE 到达高台上E 点测得A 点的仰角为22°,测得CD =16米,EF =3米.已知斜面CE 的坡度1:6.5i =,⊥CDF =90°,EF //CD ,点B 、C 、E 在同一平面内,且点B 、C 、D 在同一条直线上.求楼高AB .(参考数据:sin22°≈0.38,cos22°≈0.93,tan22°≈0.40)【答案】楼高AB 约为12米【解析】解:如图所示,延长FE 交AB 于G ,过点E 作EH ⊥BD ,则四边形EFDH 和四边形BGEH 都是矩形, ⊥BG =EH ,DH =EF =3米,GE =BH ,⊥CH =13米⊥斜面CE 的坡度1:6.5i =, ⊥1:6.5EH CH=, ⊥BG =EH =2米,设AB =x 米,则()2AG AB BG x =-=-米,⊥⊥ACB =45°,⊥ABC =90°,⊥⊥BAC =45°=⊥ACB ,⊥BC =AC =x 米,⊥()13EG BH BC CH x ==+=+米, ⊥tan AG AEG GE ∠=, ⊥2tan 220.413x x -=︒≈+, ⊥20.4 5.2x x -=+,⊥12x =,⊥楼高AB 约为12米.【点睛】本题主要考查了解直角三角形的实际应用,等腰直角三角形的性质与判定,矩形的性质与判定等等,正确作出辅助线构造直角三角形是解题的关键.7.(2022·辽宁锦州·一模)某数学兴趣小组测量一栋高层住宅楼AB 的高度,在住宅楼AB 对面的多层洋房CD 的楼底C 处,测得住宅楼AB 楼顶A 的仰角为63.4︒(即63.4ACB ∠=︒),在多层洋房CD 的楼顶D 处测得住宅楼AB 楼底B 的俯角为11.3︒(即11.3BDE ∠=︒),已知10m CD =,求高层住宅楼AB 的高度.(结果保留整数,测量工具的高度忽略不计.参考数据:sin 63.40.894︒≈,cos63.40.448︒≈,tan 63.4 1.997︒≈,sin11.30.196︒≈,cos11.30.981︒≈,tan11.30.200︒≈)【答案】高层住宅楼AB 的高度为100m【解析】解:依题意,得//BC ED ,⊥11.3CBD BDE ∠=∠=.在Rt BCD 中,90BCD ∠=,10m CD =⊥tan CD CBD BC ∠=, ⊥100.200BC≈ ⊥()50.00m BC =在Rt ABC 中,90ABC ∠=,63.4ACB ∠= ⊥tan AB ACB BC ∠=, ⊥1.99750.0AB = ⊥()100m AB ≈答:高层住宅楼AB 的高度为100m【点睛】本题考查了解直角三角形的应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.8.(2022·重庆渝中·二模)2021年7月,央视财经频道献礼建党100周年大型纪录片《大国建造》第二集《栋梁之材》中专门报道了重庆来福士塔楼.王老师为了测量来福士塔楼的高度,他在江北嘴嘉陵江边A 处沿坡角为22°的斜坡AC 走了80米到达点C ,此时正好与江对岸的朝天门广场D 及来福士塔楼底部E 在同一水平线上.点C 处测得观景台F 的仰角为24°,测得塔楼最高点G 的仰角为32.2°(A ,B ,C ,D ,E ,F ,G 在同一平面).据央视报道可知250EF =米.(参考数据:sin 220.37︒≈,cos220.93︒≈,tan220.40︒≈;sin 240.41︒≈,cos240.91︒≈,tan 240.45︒≈;sin32.20.53︒≈,cos32.20.85︒≈,tan32.20.63︒≈.)(1)求朝天门广场D 与嘉陵江江面AB 的垂直距离;(结果取整数)(2)求塔楼高度GE 的值.(结果取整数)【答案】(1)30米(2)350米【解析】(1)过C 作CM ⊥AB 于M⊥C 正好与江对岸的朝天门广场D 及来福士塔楼底部E 在同一水平线上⊥朝天门广场D 与嘉陵江江面AB 的垂直距离即为CM 的长度,在Rt ⊥CAM 中,22,80CAM AC ∠=︒=,sin CM CAM AC∠= ⊥sin 80sin 22800.3729.630CM AC CAM =⋅∠=⨯︒≈⨯=≈⊥朝天门广场D 与嘉陵江江面AB 的垂直距离为30米;(2)Rt ⊥CEF 中,24,250ECF EF ∠=︒=,tan EF ECF CE ∠=⊥2502505000tan tan 240.459EF CE ECF ==≈=∠︒ Rt ⊥CEG 中,500032.2,9ECG CE ∠=︒=,tan GE ECG CE∠= ⊥50005000tan tan 32.20.6335099GE ECG GE =∠⋅=︒⨯≈⨯=(米). 【点睛】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.9.(2022·浙江台州·一模)如图所示是国际标准的篮球架,某兴趣小组想知道篮筐中心A 到地面的高度,现测得如下数据:CD 垂直于地面,255cm CD =,90cm BC =,AB 平行于地面,145ABC ∠=︒,请你利用学过的知识帮他们求出该高度.(结果精确到1cm ,参考数据:sin350.57︒=,cos350.82︒=,tan350.70︒=)【答案】306cm【解析】解⊥如图,过点B作BH⊥EF于点H,过点C作CG⊥BH于点G,过点A作AK⊥EF于点K,根据题意得:AB⊥EF,⊥⊥ABH=⊥BHF=⊥AKH=⊥CGH=⊥CGH=⊥CDH=90°,⊥四边形ABHK和CDHG是矩形,⊥AF=BH,GH=CD=255cm,⊥145ABC∠=︒,⊥⊥BCG=35°,在Rt⊥BCG中,sinBGBCGBC∠=,90cmBC=,⊥sin900.5751.3cmBG BC BCG=⋅∠≈⨯=,⊥AF=BH=BG+GH=51.3+255≈306cm,答:篮筐中心A到地面的高度为306cm.【点睛】本题主要考查了解直角三角形的实际应用,根据题意,准确构造直角三角形是解题的关键.10.(2022·云南·云大附中模拟预测)某工程队计划测量一信号塔OC的高度,由于特殊原因无法直接到达信号塔OC底部,因此计划借助坡面高度来测量信号塔OC的高度;如图,在信号塔OC旁山坡坡脚A处测得信号塔OC顶端C的仰角为70°,当从A处沿坡面行走13米到达P处时,测得信号塔OC顶端C的仰角刚好为45°.已知山坡的坡度i=1:2.4,且O,A,B在同一直线上.(1)求点P 到水平地面OB 的距离.(2)求信号塔OC 的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.7.)【答案】(1)5米(2)27.0米【解析】(1)解:如图,过点P 作PE ⊥OB 于点E ,PF ⊥OC 于点F ,⊥i =1:2.4,13AP =, ⊥15tan 2.412PE PAE AE ∠===, ⊥设PE =5x ,则AE =12x ,在Rt ⊥AEP 中,由勾股定理得:(5x )2+(12x )2=132,解得:1x =或1x =-(舍去),⊥PE =5,则AE =12,⊥点P 到水平地面OB 的距离为5米.(2)解:⊥⊥CPF =⊥PCF = 45°,⊥CF PF =,设CF =PF =m 米,则OC = (m +5) 米,OA =(m -12)米,在Rt ⊥AOC 中,5tan 7012OC m OA m +︒==-,即:()5tan7012m m +=︒⋅-,解得:22.0m ≈,⊥22.0527.0OC ≈+=(米)⊥信号塔OC 的高度约为27.0米.【点睛】本题考查的是解直角三角形的应用,仰角、坡度的定义,解题的关键是要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2022·新疆乌鲁木齐·一模)如图,小明在红山塔前的平地上选择一点A ,用测角仪测得塔顶G 的仰角为37°,在A 点和塔之间选择一点B ,测得塔顶G 的仰角为45°,又测得3AB =米,已知测角仪的高 1.5AF =米,请你帮小明计算出塔CG 的高度.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)【答案】10.5米【解析】如图,延长FE ,交GC 于点H ,由題意可知HC =EB = F A =1.5,EF =AB =3,⊥GEH =45°,⊥GFH =37°,设GH =x 米,在Rt △GHE 中,⊥GHE =90°,⊥GEH =45,.⊥HE =GH =x ,在Rt △GHF 中,tan⊥GFH =GH HF , 即tan 37°=3x x +, ⊥343x x =+, 解得x =9,⊥CG =GH + HC =10.5(米).答:塔的高度为10.5米.【点睛】本题考查的是解直角三角形的应用—仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.(2022·河南平顶山·二模)2020年12月26日,“最美无背锁斜拉桥”鹰城大桥正式通车,作为全省唯一一座跨高铁的大型立交桥,通车后将极大缓解该区域的交通压力.某数学兴趣小组到现场测量塔AB 的高度AD .如图,他们选取的测量点C 与塔底部B 在同一条水平线上,测得塔AB 与BC 所在水平线的夹角为57°,在C 点处测得塔顶A 的仰角为45°,已知塔底B 到测量点C 的距离为20.76米,求塔高AD .(结果精确到0.1米.参考数据:sin570.84︒≈,cos570.54︒≈,tan57 1.54︒=)【答案】塔的高度AD 约为59.2米.【解析】解:由题意可知,⊥ABD =57°,⊥ACD =45°,BC =20.76米,在RtACD 中,由于⊥ACD =45°,⊥AD =CD ,设AD =x 米=CD ,则BD =(x -20.76)米,在RtABD 中, ⊥tan57°=AD BD, ⊥1.54(x -20.76)=x ,解得x ≈59.2(米),答:塔的高度AD 约为59.2米.【点睛】本题考查解直角三角形,掌握直角三角形的边角关系是解决问题的前提,理解两个直角三角形的边角之间的关系是正确解答的关键.13.(2022·河南濮阳·一模)国家“十四五规划”减少化石能源的消耗,减少碳排放作为今后的重要任务之一,各地响应国家号召都在大力发展风电.某学校数学活动小组去实地对风电塔进行测量.如图1风电机组主要由塔杆和叶片组成,图2是由图1画出的平面图.假设站在A 处测得塔杆顶端C 的仰角是55°,沿F A 方向水平前进25米到达坡底E 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、F 在同一直线上)的仰角是45°,已知叶片的长度为20米(塔杆与叶片连接处的长度忽略不计),坡高BE 为10米,BE EF ⊥,CF EF ⊥,求塔杆CF 的长(参考数据:tan55 1.4︒≈,tan350.7︒≈,sin550.8︒≈,sin350.6︒≈).【答案】52.5米【解析】解:过点B 作BG DF ⊥于点G ,设塔杆CF 的长为x 米,则()20DF x =+米,⊥BE EF ⊥,CF EF ⊥,⊥四边形BEFG 是矩形.⊥坡高BE 为10米,⊥10FG =米,⊥()10DG DF FG x =-=+米.在Rt BDG △中,45DBG ∠=︒,⊥()10BG DG x ==+米,⊥()10EF x =+米.⊥25AE =米,⊥()15AF EF AE x =-=-米.在Rt ACF 中,55CAF ∠=︒, ⊥tan 1.415CF x CAF AF x ∠==≈-,解得52.5x =. 答:塔杆CF 的长为52.5米.【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形. 14.(2022·辽宁抚顺·二模)如图,小明为了测量小河对岸大树BC 的高度,他在点A 测得大树顶端B 的仰角为45°,沿斜坡走13米到达斜坡上点D ,在此处测得树顶端点B 的仰角为31°,且斜坡AF 的坡度为1:2.4.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)大树BC 的高度约为多少米?(参考数据:sin 31°=0.52,cos 31°=0.86,tan 31°≈0.60)【答案】(1)小明从点A 到点D 的过程中,他上升的高度为5米(2)大树的高度约为30.5米【解析】(1)解:作DH ⊥AE 于H ,如图所示:在Rt ⊥ADH 中, ⊥12.4DH AH =, ⊥5AH =12DH ,⊥AH 2+DH 2=AD 2,⊥DH=5,⊥AH=12.答:小明从点A到点D的过程中,他上升的高度为5米.(2)延长BD交AE于点G,设BC=xm,由题意得,⊥G=31°,⊥5250603DHGHtan G.=≈=∠,⊥AH=2.4,DH=12,⊥GA=GH+AH=253+12=613,在Rt⊥BGC中,tan⊥G=BC GC,⊥50603BC xCG xtan G.=≈=∠,在Rt⊥BAC中,⊥BAC=45°,⊥AC=BC=x.⊥GC-AC=AG,⊥561 33x x-=,解得:x=30.5.答:大树的高度约为30.5米.【点睛】本题考查了解直角三角形的实际应用,根据题意作出辅助线是解题的关键.15.(2022·河南商丘·二模)2022年,中国举办了一个史无前例的冬奥会,民众对冰上运动的热情高涨.某滑雪场设计了一条滑雪道,该滑雪道由直道和停止区两部分组成.如图所示,AB为平台部分,AC为该滑道的直道部分,其与水平滑道之间均可视为平滑相连,滑道AC的坡角30ACF∠=,AC长为120米,滑雪道的停止区EC长为80米.为增加安全性,滑雪场修改方案,将滑道坡度减缓,新设计另一滑道AD,其坡角23ADF ∠=︒.问:新设计的滑道停止区ED 的长度为多少米?(结果精确到0.1米,参考数据:sin230.391≈,cos230.92l ≈,tan230,424≈ 1.732)【答案】新设计的滑道停止区ED 的长度约为42.4米.【解析】解:过点A 作AG ⊥EF ,垂足为G ,如图:在直角⊥ACG 中,120AC =,30ACF ∠=︒,⊥cos30120CG AC =⨯︒==1sin 30120602AG AC =⨯︒=⨯=,⊥80EG EC CG =+=+在直角⊥ADG 中,60AG =,⊥23ADG ∠=︒, ⊥141.51tan 23AG DG ≈︒=,⊥80141.5142.4142.4ED EG DG =-=+=≈(米)答:新设计的滑道停止区ED 的长度约为42.4米.【点睛】本题考查了解直角三角形的应用,解直角三角形,解题的关键是正确的作出辅助线,利用解直角三角形进行计算.16.(2022·四川成都·二模)第31届世界大学生运动会将于2022年6月26日在成都举行,主火炬塔位于东安湖体育公园,亮灯之夜,塔身通体透亮,10余道象征太阳光芒的螺旋线全部点亮,璀璨绚丽,流光溢彩(如图1).小杰同学想要通过测量及计算了解火炬塔CD 的大致高度,当他步行至点A 处,测得此时塔顶C 的仰角为42°,再步行20米至点B 处,测得此时塔顶C 的仰角为65°(如图2所示,点A ,B ,D 在同一条直线上),请帮小杰计算火炬塔CD 的高.(sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,结果保留整数)【答案】火炬塔CD 的高31米【解析】解:设CD =x , 则tan 2.14CD x BD CBD ==∠ ,tan 0.90CD x AD CAD ==∠, ⊥AB =AD -BD , ⊥200.90 2.14x x -= , 解得x =31,故CD =31(米),答:火炬塔CD 的高31米.【点睛】本题考查了解直角三角形的应用-仰角和俯角问题,解题的关键是理解仰角和俯角的定义.17.(2022·山西阳泉·一模)2022年2月20日,举世瞩目的北京冬奥会圆满落下帷幕. 北京冬奥会为绿色办奥、科技办奥贡献了中国样本和中国智慧,让奥运精神点亮更多人的冰雪梦想,并以冰雪运动和奥林匹克精神为纽带,凝聚更团结的力量. 图⊥,图⊥分别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED 与斜坡AB 垂直,大腿EF 与斜坡AB 平行,G 为头部,假设,,G E D 三点共线,若大腿弯曲处与滑雪板后端的距离EM 长为0.9m ,该运动员大腿EF 长为0.4m ,且其上半身GF 长为0.8m ,35EMD ∠=︒.(1)求此刻滑雪运动员的身体与大腿所成的夹角GFE ∠的度数;(2)求此刻运动员头部G 到斜坡AB 的高度. (结果精确到0.1m ,参考数据:sin350.57︒≈,cos350.82︒≈,tan350.70︒≈ 1.73≈)【答案】(1)此刻滑雪运动员的身体与大腿所成的夹角60GFE ∠=︒(2)此刻运动员头部G 到斜坡AB 的高度约为1.2m【解析】(1)如图,连接GE ,⊥EF AB ∥,ED AB ⊥,,,G E D 三点共线,⊥90GEF EDM ∠=∠=︒⊥04m,0.8m EF GF ==, ⊥0.41cos 0.82EF GFE GF ∠===. ⊥60GFE ∠=︒.(2)由(1)得60GFE ∠=︒⊥在Rt GFE 中,sin 0.80.69m GE GF GFE =⋅∠=≈. 在Rt EDM 中,35,0.9m EMD EM ∠=︒=,⊥sin 0.9sin350.51m ED EM EMD =⋅∠=⋅︒≈.⊥0.690.51 1.2m GD GE ED =+≈+=.答:此刻运动员头部G 到斜坡AB 的高度约为1.2m【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数定义,将实际问题转化为数学问题是解题的关键.18.(2022·河南开封·一模)北京2022年冬奥会自由式滑需和单板滑雪比赛的场地首钢滑大跳台,又称“雪飞天”,从远处看就像一只绝美的“水晶鞋”.某数学活动小组准备测量大跳台主体AB 的垂直高度,如图,选取的测量点C ,D 与AB 的底部B 在同一水平线上.测得CD 的长度为15m .在C ,D 处测得跳台顶部A 的仰角分别为37.5°、45°,求跳台AB 的高度(结果精确到1m .参考数据:sin37.50.609cos37.50.793tan37.50.767︒≈︒≈︒≈,,)【答案】49 m【解析】 解:AB BC ⊥,45ADB ∠=︒设AB x =m ,则BD AB x ==,CD 的长度为15m15BC x ∴=+在Rt ABC △中,tan 0.767AB C BC == 即0.76715x x =+ 解得49x ≈答:跳台AB 的高度为49 m .【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.19.(2022·河南·模拟预测)郑州二七纪念塔位于郑州市二七广场,是为纪念京汉铁路工人大罢工中牺牲的烈士,发扬“二七”革命传统而修建的纪念性建筑.如图,某综合实践小组为测量塔顶旗杆的高度,在马路对面建筑物楼下选取了与二七塔的底部C 在同一水平线上的测量点D ,在建筑物楼上选取测量点E ,DE CD ⊥.已知,塔身BC 高63m ,18m ED =,在D 处测得旗杆顶部A 的仰角为58°,在E 处测得旗杆底部B 的仰角为45°,求旗杆的高度(参考数据sin580.85︒≈,cos580.53︒≈, tan58 1.6︒≈).【答案】9m【解析】解:过E 作EF AC ⊥交于点F ,如图:由题意可知:四边形CDEF 为矩形,⊥18m CF ED ==,⊥631845m BF =-=⊥45BEF ∠=︒⊥45m=BF EF CD ==⊥58ADC ∠=︒ ⊥tan 58= 1.6AC CD︒= ⊥=1.6 1.64572m AC CD ⨯=⨯=⊥旗杆高度:=72639m AC BC --=.【点睛】本题考查解直角三角形,解题的关键是构造Rt BEF △,求出45m=BF EF CD ==,利用tan 58= 1.6AC CD︒=求出AC .20.(2022·山东潍坊·一模)某移动公司为了提升网络信号,在坡度1:2.4i =的山坡AD 上加装了信号塔PQ (如图所示),信号塔底端Q 到坡底A 的距离为3.9米.为了提醒市民,在距离斜坡底A 点5.4米的水平地面上立了一块警示牌MN ,当太阳光线与水平线所成的夹角为53︒时,信号塔顶端P 的影子落在警示牌上的点E 处,且EN 长为3米.(1)求点Q 到水平地面的铅直高度;(2)求信号塔PQ 的高度大约为多少米?(参考数据:sin530.8,cos530.6,tan53 1.3︒≈︒≈︒≈)【答案】(1)1.5米(2)13.2米【解析】(1)解:作QH AB ⊥,垂足为H ,由1:2.4i =,可得:5:12=QH HA ,设5=QH x ,则12=HA x ,在Rt AQH △中,由勾股定理可得222+=QH AH AQ ,⊥222(5)(12) 3.9+=x x解得0.3x =,⊥5 1.5==QH x (米),所以,点Q 到水平地面的铅直高度是1.5米.(2)解:作⊥ES PQ ,垂足为S ,则120.3 5.49,53=+=⨯+=∠=︒ES HA AN PES ,⊥在Rt PES 中,tan ∠=PS PES ES ,即tan539︒=PS . ⊥9 1.311.7≈⨯=PS (米),⊥11.73 1.513.2=+-=+-=PQ PS EN QH (米)所以,信号塔PQ 的高度大约为13.2米.【点睛】此题考查了解直角三角形的应用——坡度坡角问题,解决本题的关键是熟练掌握坡度坡角的概念. 21.(2022·北京市燕山教研中心一模)疫情防控过程中,很多志愿者走进社区参加活动.如图所示,小冬老师从A 处出发,要到A 地北偏东60︒方向的C 处,他先沿正东方向走了200m 到达B 处,再沿北偏东30方向走,恰能到达目的地C 处,求A ,C 两地的距离. 1.414 1.732≈≈)【答案】346m【解析】解:⊥120ABC ∠=︒⊥30CAB ACB ∠=∠=︒⊥200AB CB ==过点C 作垂线交AB 延长线于点D ,⊥30BCD ∠=︒.在Rt BDC 中,200CB =⊥100BD =⊥DC =又在Rt DCA △中,30ACB ∠=︒.⊥346AC =⊥A ,C 两地的距离是346m .【点睛】本题考查了解直角三角形的应用-方向角问题,正确理解题意并作出辅助线是解题的关键.22.(2022·山东青岛·一模)一架无人机沿水平方向飞行进行测绘工作,在点P 处测得正前方水平地面上某建筑物AB 的顶端A 的俯角为24︒.无人机保持飞行方向不变,继续飞行48米到达点Q 处,此时测得该建筑物底端B 的俯角为66︒.已知建筑物AB 的高度为36米,求无人机飞行时距离地面的高度.(参考数据:2sin 245≈,9cos 2410︒≈,9tan 2420︒≈,9sin 6610︒≈,2cos665︒≈,9tan 664︒≈)【答案】无人机飞行时距离地面的高度为72米【解析】解:如图,延长BA 交PQ 的延长线于点C ,由题意可得,PC ⊥BC ,在Rt⊥PCA 中,tan24°=48AC AC AC PC PQ QC QC ==++≈920, 可得20489QC AC =-, 在Rt⊥BCQ 中,tan66°=3694BC AC QC QC +=≈, QC =4169AC +, ⊥20489AC -=4169AC +, 解得AC =36,⊥BC =BA +AC =36+36=72(米)即无人机飞行时距离地面的高度为72米.【点睛】本题考查锐角三角函数的实际应用—仰俯角问题,准确作出辅助线构造直角三角形是解题的关键. 23.(2022·浙江金华·模拟预测)如图是一种手机三脚架,它通过改变锁扣C 在主轴AB 上的位置调节三脚架的高度,其它支架长度固定不变,已知支脚DE =AB .底座CD ⊥AB ,BG ⊥AB ,且CD =BG ,F 是DE 上的固定点,且EF :DF =2:3.(1)当点B ,G ,E 三点在同一直线上(如图1所示)时,测得tan⊥BED =2.设BC =5a ,则FG =__(用含a 的代数式表示);(2)在(1)的条件下,若将点C 向下移动24cm ,则点B ,G ,F 三点在同一直线上(如图2),此时点A 离地面的高度是__cm .【答案】52a 19+【解析】解:(1)如图1中,连接DG ,EG ,过点F 作FH ⊥BE 于H ,则四边形CDGB 是矩形.⊥BC =DG =5a ,在Rt⊥DEG 中,tan⊥DEB =DG EG=2,⊥52a EG =,DE =, ⊥FH ⊥DG ,⊥23EF EH DF GH ==, ⊥⊥EFH ⊥⊥EDG ,⊥25EF EH DE EG ==,⊥2255EF DE ===,⊥DF ,EH =25EG =2552a ⨯=a ,HG =EG ﹣EH =52a ﹣a =32a ,⊥2FH a ==,⊥52FG a =; (2)如图1中,连接DG ,EG ,过点F 作FH ⊥BE 于H ,则四边形CDGB 是矩形.设BC =DG =2xcm , 在Rt⊥DEG 中,tan⊥DEB =DG EG=2, ⊥EG=x (cm ),DE ==(cm ), ⊥FH ⊥DG ,⊥23EF EH DF GH ==,⊥DF (cm ),EH =25x (cm ),HG =35x (cm ),⊥45FH x ==(cm ),⊥ FG x =(cm ),如图2中,连接DG .⊥DF 2=DG 2+FG 2,⊥()222224x x ⎪=⎫-⎪+⎝⎭,解得15x =+15x =-,⊥(15AB DE ===+cm ,作EJ ⊥BF 交BF 的延长线于J .则EJ =EF •sin⊥EFJ =(cm ,⊥点A 离地面的高度=AB +EJ =(cm .【点睛】本题考查解直角三角形的应用,涉及到相似三角形的判定及其性质、勾股定理、正切等,解题的关键是正确解读题意,学会利用参数构建方程解决问题.24.(2022·安徽·一模)某通信公司准备逐步在合肥大蜀山上建设5G 基站.如图,某处斜坡CB 的坡度(或坡比)为1:2.4i =,通讯塔AB 垂直于水平地面CF ,在C 处测得塔顶A 的仰角45ACF ∠=︒,在D 处测得塔顶A 的仰角53ADE ∠=︒,D 到水平地面的距离10DM =米,求基站AF 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)【答案】66米【解析】解:根据题意得:EF =DM =10米,DE =MF ,⊥斜坡CB 的坡度1:2.4i =, ⊥12.4DM CM =, ⊥CM =24米,设AE =x 米,则AF =(x +10)米,⊥45ACF ∠=︒,AF ⊥CF ,⊥⊥CAF =⊥ACF =45°,⊥AF =CF =(x +10)米,⊥DE =MF =x +10-24=(x -14)米,⊥53ADE ∠=︒, ⊥tan 53AE DE=︒,即4143x x ≈-, 解得:x =56,⊥AF =66米,答:基站AF 的高度为66米.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.25.(2022·安徽淮北·一模)某市为了加快5G 网络信号覆盖,在市区附近小山顶部架设信号发射塔,如图所示.为了知道发射塔的高度,小兵从地面上的一点A 测得发射塔顶端P 点的仰角是45︒,向山前走60米到达B 点测得P 点的仰角是60︒,测得发射塔底部Q 点的仰角是30.请你帮小兵计算出信号发射塔PQ 的高度. 1.7)【答案】94米【解析】⊥⊥P AC =45°,⊥PCA =90°,⊥AC =PC ,⊥⊥PBC =60°,⊥QBC =30°,⊥PCA =90°,⊥⊥BPQ =⊥PBQ =30°,⊥BQ =PQ ,CQ =12BQ ,设BQ =PQ =x ,则CQ =12BQ =12x ,根据勾股定理可得BC , ⊥AB +BC =PQ +QC ,即=x +12x解得:606020 1.794x =+≈+⨯=,⊥PQ 的高度为94米.【点睛】本题考查了等腰三角形的性质,勾股定理,含30度角的直角三角形的性质,找出等量关系是解题关键. 26.(2022·四川·岳池县教研室二模)2022年春节期间,成都的夜景出圈了!一场场灯光秀不仅让本地人饱了眼福,也让外地游客流连忘返.在成都交子金融城双子塔,一场流光溢彩、璀璨夺目的视觉盛宴更是刷爆了朋友圈(如图1).如图2,小玲想利用所学的数学知识,测金融城双子塔AB 的高度.她先在C 处用高度为1.3米的测角仪CD 测得AB 上一点E 的仰角22EDF ∠=︒,接着她沿CB 方向前进50米到达G 处,测得塔顶A 的仰角45AHF ∠=︒.若110AE =米,求双子塔AB 的高度.(结果精确到1米;参考数据:sin 220.37︒≈,cos220.93︒≈,tan220.40︒≈)【答案】双子塔AB 的高度约为218米【解析】解:由题意可得四边形DCGH 和四边形DCBF 都是矩形,则 1.3BF CD ==米,50DH CG ==米.设EF x =米,则(110)AF AE EF x =+=+米.在Rt AFH △中,45AHF ∠=︒,45FAH ︒∴∠=,FAH AHF ∴∠=∠,(110)HF AF x ∴==+米,(160)DF DH HF x ∴=+=+米.在Rt DFE △中,22EDF ∠=︒,tan tan 22EF EDF DF ∴∠=︒=,即0.40160x x ≈+, 解得320106.73x =≈,经检验符合题意, 110106.7 1.3218AB AE EF BF ∴=++≈++=(米).答:双子塔AB 的高度约为218米.【点睛】本题考查了解直角三角形的应用,解题的关键是能借助仰角构造直角三角形并解直角三角形.27.(2022·四川成都·二模)2022年,武侯区继续开展“武侯文化大讲堂”活动,某中学数学组以此为契机,在望江楼公园开展“感受武侯文化,领略古建风韵”的综合实践活动,测量望江楼AB 的高度.如图,已知测倾器的高度为1.2米,在测点C 处安置侧倾器,测得点A 的仰角45ADE ∠=︒,在与点C 相距10米的测点F 处安置侧倾器,测得点A 的仰角58AGE ∠=︒(点C ,F 与B 在一条直线上),求望江楼AB 的高度.(结果精确到0.1米,参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈)【答案】望江楼AB 的高度为27.9米【解析】解:延长DG 与AB 交于H ,由题意可知:四边形DCFG ,四边形GFBH ,四边形DCBH 为矩形,则10DG CF == , 1.2BH CD == ,设AH =x ,在Rt ADH 中,45ADH ∠=︒ ,tan 1AH ADH DH ∴∠== , DH AH x ∴== ,10GH DH DG x ∴=-=- ,在Rt AGH △ 中,tan AH AGH GH ∠=, 58AGH ∠=︒, 1.6010x x ∴≈- , 解得:26.67x ≈ ,经检验:符合题意,27.8727.9AB AH BH ∴=+≈≈ ,⊥望江楼AB 的高度为27.9米.【点睛】本题考查的是锐角三角函数,仰角的定义,解直角三角形的应用,能正确构造直角三角形是解题的关键.28.(2022·山西晋中·一模)受新冠疫情影响,部分县市课堂教学从“线下”转到了“线上”,我市教育局承担组织全区“空中课堂”优秀课例的录制工作,手机成为学生线上学习的主要工具.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到⊥BAE=60°,⊥ABC=50°时,观看比较适宜,试求此时点C到AE的距离.(结果保留小数点后一位,参考数据:sin50°≈0.766,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【答案】点C到AE的距离约为6.3cm.【解析】解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM于D,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数中考试题分类训练
《三角函数》知识点
1、在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为:
2、30°、45°、60°、90°特殊角的三角函数值(重要)
3 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

4、正切的增减性:
当0°<α〈90°时,tan α随α的增大而增大。

5、同角的三角函数关系:(︒︒<∠<900A ) 1cos sin 22=+A A ;
A A
A
tan cos sin = 互余两角的三角函数关系:
B A cos sin =(B A sin cos =);1tan tan =⋅B A
三角函数综合训练
一、选择填空:
1、如图1,梯子(长度不变)跟地面所成的锐角为A ,关于A ∠的三角函数值与梯子的倾斜程度之间,叙述正确的是( )
A .sin A 的值越大,梯子越陡
B .cos A 的值越大,梯子越陡
C .tan A 的值越小,梯子越陡
D .陡缓程度与A ∠的函数值无关
2、已知α为锐角,且2
3
)10sin(=
︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80
图1
3、在△ABC 中,∠C =90°,AB =10cm ,sinA =
5
4
,则BC 的长为___cm 。

4、在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .
5、如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )
A .3sin 2A =
B .1
tan 2
A = C .3cos 2
B = D .tan 3B = 3 题
6题
7题
6、如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )
A .
23
B .
32 C .34 D .43
7、如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )
A.2 B 。

22 C.63 D.33
8、在△ABC 中,∠C =90°,tan A =
1
3
,则sin B =( ) A .
1010 B .23
C .
3
4
D .
310
10
9、如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5
A =
,则这个菱形的面积= cm 2
. 10、 A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )
A .1323⎛⎫- ⎪ ⎪⎝⎭,
B .3323⎛⎫- ⎪ ⎪⎝⎭,
C .1323⎛⎫
-- ⎪ ⎪⎝⎭
, D .1322⎛⎫- ⎪ ⎪⎝⎭, 11、如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ) A. αcos 5 B 。

αcos 5
C. αsin 5
D. αsin 5
12、如图,小明要测量河内小岛B 到河
边公
路l 的距离,在A 点测得
30BAD ∠=°,在C 点测得
A
C
B
D
α
5米 A
B
60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.
A .25
B .253
C .
1003
3
D .25253+
13、如图,一艘海轮位于灯塔P 的东北方向,距离灯塔402海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则海轮行驶的路程AB 为 海里(结果保留根号).
二、利用特殊角的三角函数值计算
(1)
24
2(2cos 45sin 60)4︒-︒+
(2)
2sin450+cos300·tan600-2)3(-
(3) 3-1
+(2π-1)0
-33tan30°-tan45° (4)0
200912sin 603tan 30(1)3⎛⎫
-++- ⎪⎝⎭
°°
三、三角函数的应用(先分析,再选用合适的方法)
1.如图,甲楼AB 的高度为123m,自甲楼楼顶A 处,测得乙楼顶端C 处的仰角为450
,测得乙楼底部D 处的俯角为300
,求乙楼CD 的高度(结果精确到0。

1m ,3取1.73).
2、如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A 处测
得灯塔P 在北偏东60°方向上;航行40分钟到达B 处,测得灯塔P 在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?
3、盐城电视塔是我市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB .小明在D 处用高1.5m 的测角仪CD ,测得电视塔顶端A 的仰角为30°,然后向电视塔前进224m 到达E 处,又测得电视塔顶端A 的仰角为60°.求电视塔的高度AB .(取1.73,结果精确到0。

1m )
3、为了对一棵倾斜的古杉树AB 进行保护,需测量其长度.如图,在地面上选取一点C ,测得∠ACB=45°,AC=24m,∠BAC=66。

5°,求这棵古杉树AB 的长度.(结果取整数)
参考数据:≈1.41,sin66。

5°≈0。

92,cos66。

5°≈0.40,tan66。

5°≈2。

30.
4、黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:
(1)求该岛的周长和面积;(结果保留整数,参考数据2 1.413 1.736 2.45≈≈≈ ,
,) (2)求∠ACD 的余弦值.
附加题:
1、如图,观测点A 、旗杆DE 的底端D 、某楼房CB 的底端C 三点在一条直线上,从点A 处测得楼顶端B 的仰角为22°,此时点E 恰好在AB 上,从点D 处测得楼顶端B 的仰角为38.5°。

已知旗杆DE 的高度为12米,试求楼房CB 的高度.(参考数据:sin22°≈0。

37,cos22°≈0.93,tan22°≈0。

40,sin38。

5°≈0。

62,cos38.5°≈0.78,tan38.5°≈0。

80)
2、如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)。

相关文档
最新文档