一元线性回归方程概述

合集下载

1一元线性回归方程

1一元线性回归方程
Lyy = ∑(Yi −Y )
i =1 n
i =1 n
2
Lxy = ∑( Xi − X ) (Yi −Y )
i=1
ˆ ˆ β0 = Y − β1 X ˆ Lxy β1 = Lxx
二、OLS回归直线的性质 回归直线的性质
ˆ (1)估计的回归直线 Yi )
(2) )
ˆ ˆ = β 0 + β 1X i
前三个条件称为G-M条件 条件 前三个条件称为
§1.2 一元线性回归模型的参数估计
普通最小二乘法( Squares) 普通最小二乘法(Ordinary Least Squares) OLS回归直线的性质 OLS回归直线的性质 OLSE的性质 OLSE的性质
一、普通最小二乘法
对于所研究的问题, 对于所研究的问题,通常真实的回归直线 E(Yi|Xi) = β0 + β1Xi 是观 测不到的。可以通过收集样本来对真实的回归直线做出估计。 测不到的。可以通过收集样本来对真实的回归直线做出估计。
Y
55 80 100 120140 160
X
二、随机误差项εi的假定条件 随机误差项
为了估计总体回归模型中的参数,需对随机误差项作出如下假定: 为了估计总体回归模型中的参数,需对随机误差项作出如下假定: 假定1: 假定 :零期望假定:E(εi) = 0。 。 假定2: 假定 :同方差性假定:Var(εi) = σ 2。 假定3: 假定 :无序列相关假定:Cov(εi, εj) = 0, (i ≠ j )。 。 假定4: 假定 : εi 服从正态分布,即εi ∼ N (0, σ 2 )。 。
以下设 x 为自变量(普通变量 Y 为因变量(随机变 普通变量) 普通变量 随机变 量) .现给定 x 的 n 个值 x1,…, xn, 观察 Y 得到相应的 n 个 值 y1,…,yn, (xi ,yi) i=1,2,…, n 称为样本点 样本点. 样本点 以 (xi ,yi) 为坐标在平面直角坐标系中描点,所得到 的这张图便称之为散点图 散点图. 散点图

计量经济学【一元线性回归模型——回归分析概述】

计量经济学【一元线性回归模型——回归分析概述】

四、随机误差项的涵义
随机误差项是在模型设定中省略下来而又集体的
影响着被解释变量 Y 的全部变量的替代物。涵义如
下: 1、在解释变量中被忽略的因素的影响; 2、变量观测值观测误差的影响; 3、模型关系的设定误差的影响; 4、其它随机因素的影响。 设定随机误差项的主要原因: 1、理论的含糊性; 2、数据的欠缺; 3、节省的原则。
➢ 例如:
二、总体回归函数(方程)PRF Population regression function
由于变量间统计相关关系的随机性(非确定性),回归 分析关心的是根据解释变量的已知或给定值,考察被解 释变量的总体均值,即当解释变量取某个确定值时,与 之统计相关的被解释变量所有可能出现的对应值的平均 值。
样本回归函数的随机形式:
其中 为(样本)残差(Residual),可看成是随机误差项 的 的具体估计值。由于引入随机项,称为样本回归 模型。
总体回归线与样本回归线的基本关系
例2.1:一个假想的社区是由60户家庭组成的总体,要
研究该社区每月家庭消费支出Y 与每月家庭可支配收入 X 的关系;即知道了家庭的每月收入,预测该社区家庭
每月消费支出的 (总体) 平均水平。为达到此目的,将该 60户家庭划分为组内收入差不多的10组,以分析每一收 入组的家庭消费支出。
表2.1 某社区家庭每月收入与消费支出调查统计表
回归分析是研究因果相关,也就是有因果关系的相关关 系;既然回归分析是研究变量之间的因果关系,因此回归 分析对变量的处理方法存在不对称性,也就是说,回归分 析将变量区分为被解释变量和解释变量,其中被解释变量 是“结果”,解释变量是“原因”,并且回归分析方法认为作 为“原因”的解释变量属于非随机变量,作为“结果”的被解 释变量为随机变量;也就是说,作为“原因”的解释变量取 确定值时,作为“结果”的被解释变量取值是随机的。

一元线性回归方程

一元线性回归方程

北京市城市居民家庭生活抽样调查表1 14 12 10 8 6 4 2 0 1976 1978 1980 1982 1984 1986 1988
Y: 人 均 收 入
x:年份
北京市城市居民家庭生活抽样调查图表 2 10 8 6 4 2 0 0 2 4 6 8
Y:人均食品支出
10 12 14 16 18
Fα (1,n-2),得否定域为F >Fα (1,n-2);
4.代入样本信息,F落入否定域则否定原假设, 线性关系显著;落入接受域则接受原假设, 线性关系不显著.
相关系数检验法: 相关系数检验法:
1.提出原假设:H0:b=0; lxy 2.选择统计量 R = lxxl yy 3.对给定的显著性水平α,查临界值rα (n-2), 得否定域为R >rα (n-2); 4.代入样本信息,R落入否定域则否定原假设,线性关 系显著;落入接受域则接受原假设,线性关系不显著.
第二节
一元线性回归方程
一 回归直线方程
两个变量之间的线性关系,其回归模型为: 两个变量之间的线性关系,其回归模型为:
yi = a + bxi + εi
ε 称为 y称为因变量,x称为自变量,
随机扰动,a,b称为待估计的回归参 数,下标i表示第i个观测值。
对于回归模型,我们假设:
εi ~ N( 0,σ ),i = 1,2,⋯,n E( εiε j ) = 0,i ≠ j
pt
qt
概率 0.25 0.50 0.25 0.25 0.50 0.25 … 0.25 0.50 0.25
qt = 11 − 4 pt+ εt
其中
这时, 这时,方程的形式为
εt
为随机变量. 为随机变量

一元线性回归

一元线性回归

i
x )Yi
l xx
,
3
一元回归方程检验
⑴ F检验法:
当H0为真时,
SSE
SSE

2
2
~ 2 ( n 2),
2

~ (1);
且SSR与SSE相互独立;因此,当H0为真时,
SSR F ~ F (1, n 2), SSE ( n 2)
当F≥F1-α(1,n-2)时应该放弃原假设H0。
Y0的观测值y0的点预测是无偏的。
⑵ 当x=x0时,用适合不等式P{Y0∈(G,H)}≥ 1-α的统计量G和H所确定的随机区间(G,H) 预测Y0的取值范围称为区间预测,而(G,H)称 为Y0的1-α预测区间。 若Y与样本中的各Y相互独立,则根据 Z=Y0-(a+bx0)服从正态分布,E(Z)=0, 2 1 ( x0 x ) 2 D( Z ) (1 ), n l xx SSE 及 2 ~ 2 ( n 2), Z与SSE相互独立,
Q 2 ˆ 是 的无偏估计。 n2
2
2. 总体中未知参数的估计 根据最小二乘法的要求由
Q Q 0, 0, 得 a b
n
2 [ y i (a bx i )] 0, i 1 n 2 [ y i (a bx i )] x i 0, i 1
(2)t检验法:
b ~ N ( ,

2
l xx
),
SSE

2
~ 2 (n 2),
当H0为真时,
l xx t b ~ T (n 2), SSE (n 2)
当|t|≥t1-0.5α(n-2)时应该放弃原假设H0。
根据x与Y的观测值的相关系数 (3)r检验法:

一元线性回归方程

一元线性回归方程

一元线性回归方程
一元线性回归方程:当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程。

一元线性回归方程反映一个因变量与一个自变量之间的线性关系
一元线性回归方程反映一个因变量与一个自变量之间的线性关系,当直线方程Y'=a+bx的a和b确定时,即为一元回归线性方程。

经过相关分析后,在直角坐标系中将大量数据绘制成散点图,这些点不在一条直线上,但可以从中找到一条合适的直线,使各散点到这条直线的纵向距离之和最小,这条直线就是回归直线,这条直线的方程叫作直线回归方程。

注意:一元线性回归方程与函数的直线方程有区别,一元线性回归方程中的自变量X对应的是因变量Y的一个取值范围。

1. 根据提供的n对数据在直角坐标系中作散点图,从直观上看有无成直线分布的趋势。

即两变量具有直线关系时,才能建立一元线性回归方程。

2. 依据两个变量之间的数据关系构建直线回归方程:Y=a+bx。

简单线性回归(Simple linear regression)也称为一元线性回归,是分析一个自变量(x)与因变量(y)之间线性关系的方法,它的目的是拟合出一个线性函数或公式来描述x与y之间的关系。

计量经济学第二章一元线性回归模型

计量经济学第二章一元线性回归模型
第二章 经典单方程计量经济学模型: 一元线性回归模型
回归分析概述 一元线性回归模型的参数估计 一元线性回归模型的检验 一元线性回归模型的预测 实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF)
2020/3/6
LOU YONG
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 Y 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530
2020/3/6
LOU YONG
20
• 该样本的散点图(scatter diagram):
分i。
2020/3/6
LOU YONG
17
上式称为总体回归函数(PRF)的随机 设定形式。表明被解释变量除了受解释 变量的系统性影响外,还受其他因素的 随机性影响。
由于方程中引入了随机项,成为计量经 济学模型,因此也称为总体回归模型。
2020/3/6
LOU YONG
18
随机误差项主要包括下列因素 在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 模型关系的设定误差的影响; 其他随机因素的影响。
回归系数(regression coefficients)。
2020/3/6
LOU YONG
15
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。
但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。
称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。

⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。

⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。

该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。

式(1)称为变量y对x的⼀元线性回归理论模型。

⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。

ε表⽰其他随机因素的影响。

⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。

E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。

一元线性回归方程

一元线性回归方程

n
n
避免其偏离差(有正误差、负误差)相互抵消,采用偏离差平方和 Q(a ,b) ( yi yi )2
i 1
i 1
( yi a bxi )2(也称残差平方和)来刻画观测值(xi ,yi )与直线 y a bx 的偏离程度 . 一般
所说的回归直线就是使 Q(a ,b) 最小的直线,求所需回归直线的截距和斜率,就转化成了求使
Lxx (4)写出回归(估计)方程 y a bx .
一元线性回归方程
1.2 线性相关关系的显著性检验
从以上建立回归直线方程的过程不难看出,用最小二乘法所建立的回归直线方程,只是通 过一组样本观察值 (xi ,yi ) (i 1,2 , ,n) 来建立的 . 变量 x 与 y 之间是否存在线性关系,或者 其线性关系是否显著,还需进行检验.常用的线性相关关系的显著性检验有两种方法,即 F 检 验法和相关系数检验法 . 在此仅介绍相关系数检验法 .
0, 0.
即nan b a i1 xi
n
n
xi yi ,
i 1
i 1
n
n
b xi2 xi
i 1
i 1
yi
,取
x
y
1 n 1 n
n
i 1 n
i 1
xi , yi .
一元线性回归方程
n
n
n
n xi yi xi yi
n
xi yi nx y
b
解之得
i 1

即Q(a ,b) Lyy (1 R2 ) .
一元线性回归方程
n
n
因为Q(a ,b) ( yi yi )2 0 ,Lyy ( yi y)2 0 ,
i 1

一元线性回归方程

一元线性回归方程

2.F检:是对全部回归系数进行一次性显著性检验
(方程显著性检验)
其 表 达 式 为 :F

Hale Waihona Puke S余S回 / m/(n m 1)
回归模型显著性检验步骤为:
(1) 根据α以及分子(m)和分母(n-m-1)的自由度,查
F分布表得临界值Fc ;
(2)作出判断
①当F>Fc(α,m,n-m-1),
则回归模型具有显著水平,x和y之间的变化是符
年 份
人均收入(元) 人均消费(元)
1980
480
420
1984
640
580
1981
510
450
1985
780
620
1982
545
490
1986
760
680
1983
590
530
在表中,x—人平均收入,y—人平均消费支出。
从表中可知,x和y呈现线性规律,设回归线性方程为:
ŷi=a+bx
(1)
由(1)可得到x和y之间的定量关系表示为:
其中:x xi —自变量的平均值; n
y yi —因变量的平均值。 n
(8)
五、可靠性检验
为了避免误差过大,确定a和b之后,在允许误差
的情况,进行可靠性检验。
1.R检验
检验x 与y之间的线性相关的程度。
其数学表达式为: R
n xy- x y
n x2 ( x)2 n y2 ( y)2
三、回归参数估计
由一组观察值 画出散点图,如右图所
示,这样的直线可画出很多条,而回归直 线只有一条,因为只有回归直线最接近 实际观察值。要拟合一条最理想的回归 直线,就要确定a和b。确定a和b的 方法有多种,其中应用最多的是最小二 乘法。

线性回归分析

线性回归分析
系数(或判定系数),用r2表示,显然,0≤r2≤1。
r 2 SSR / SST 1 SSE / SST L2xy Lxx Lyy

两个变量之间线性相关的强弱可以用相关系数r(Correlation
coefficient)度量。
❖ 相关系数(样本中 x与y的线性关系强度)计算公式如下:
❖ 统计学检验,它是利用统计学中的抽样理论来检验样本 回归方程的可靠性,具体又可分为拟合程度评价和显著 性检验。
1、拟合程度的评价
❖ 拟合程度,是指样本观察值聚集在估计回归线周围的紧密 程度。
❖ 评价拟合程度最常用的方法是测定系数或判定系数。 ❖ 对于任何观察值y总有:( y y) ( yˆ y) ( y yˆ)
当根据样本研究二个自变量x1,x2与y的关系时,则有
估计二元回归方程: yˆ b0 b1x1 b2 x2
求估计回归方程中的参数,可运用标准方程如下:
L11b1+L12b2=L1y
L12b1+L22b2=L2y b0 y b1 x1 b2 x2
例6:根据表中数据拟合因变量的二元线性回归方程。
21040
x2
4 36 64 64 144 256 400 400 484 676
2528
练习3:以下是采集到的有关女子游泳运动员的身高(英寸)和体
重(磅)的数据: a、用身高作自变量,画出散点图 b、根据散点图表明两变量之间存在什么关系? c、试着画一条穿过这些数据的直线,来近似身高和体重之间的关 系
测定系数与相关系数之间的区别
第一,二者的应用场合不同。当我们只对测量两个变量之间线性关系的 强度感兴趣时,采用相关系数;当我们想要确定最小二乘直线模型同数据符 合的程度时,应用测定系数。

一元线性回归方程式

一元线性回归方程式

一元线性回归方程式为:y=a+b x
b=n∑xy−∑x∑y n∑x2−(∑x)2
a=y̅−bx̅
其中a、b都是待定参数,可以用最小二乘法求得。

(最小平方法)b表示直线的斜率,又称为回归系数。

n表示所有数据的项数。

∑x表示所有x的求和
∑y表示所有y的求和
∑xy表示所有xy的求和
∑x2表示所有x2的求和
(∑x)2表示∑x的平方,即所有x的求和再求平方。

x̅表示所有x的平均数
y̅表示所有y的平均数
答题解法如下:
解:(答:)相关数据如下表:
根据公式b=n∑xy−∑x∑y
n∑x2−(∑x)2
得:
b=6∗1481−21∗426
6∗79−212=8886−8946
474−441
=−60
33
=-1.82
根据公式a=y̅−bx̅得:
a=71−(−1.82)∗3.5=71-(-6.37)=71+6.37=77.37
代入方程式y=a+b x得:
y=77.37+(-1.82)x=77.37-1.82 x
已知7月份产量为7000件,则x=7(千件),代入得:
y=77.37-1.82 x=77.37-1.82*7=77.37-12.74=64.63(元)
根据一元回归方程(最小乘法或最小平方法),当7月份产量为7000件时,其单位成本为64.63元。

一元线性回归方程检验

一元线性回归方程检验
一元线性回归方程检验
回归方程的概念是在统计学中被广泛使用的概念,它用于预测和解释变量之 间的关系。
一元线性回归方程的定义
回归方程
一元线性回归方程是描述两个变量之间线性关系的数学模型。
变量关系
它表示一个变量如何随着另一个变量的变化而变化。
斜率和截距
通过回归方程的斜率和截距可以计算两个变量之间的线性关系。
归方程是否显著。
3
计算F统计量
通过计算F统计量,可以评估整个回归方 程的显著性。
拒绝或接受
根据F统计量的大小和显著性水平,可以 拒绝或接受回归方程的显著性。
使用t检验进行回归方程的参数估计
t检验
t检验可用于估计回归方程的参数,并检验这些参数 的显著性。
参数估计
通过t检验可以得到一元线性回归方程的截距和斜率 的估计值。
回归方程的假设检验
1 零假设
回归方程的假设检验需要 建立一个零假设,来测试 回归方程参数的显著性。
2 显著性水平
根据显著性水平确定的临 界值,可以判断回归方程 的参数估计是否符合显著 性要求。
3 统计检验
使用统计检验方法,如t检 验,对回归方程进行显著 性检验。
检验回归方程的显著性

1
F分布
2
将F统计量与F分布进行比较,以确定回
数据分析
通过数据分析,计算回归方程的 参数估计和回归方程的显著性。
假设检验
使用假设检验方法,对回归方程 的参数进行显著性检验。
对一元线性回归方程做显著性检验
假设检验
使用t检验对回归方程的截距 和斜率进行显著性检验,以 确定其是否显著。
计算标准误差
通过计算标准误差,可以评 估回归方程的参数估计的可 靠性。

一元线性回归

一元线性回归

一、一元线性回归(一)基本公式如果预测对象与主要影响因素之间存在线性关系,将预测对象作为因变量y,将主要影响因素作为自变量x,即引起因变量y变化的变量,则它们之间的关系可以用一元回归模型表示为如下形式:y=a+bx+e其中:a和b是揭示x和y之间关系的系数,a为回归常数,b为回归系数e是误差项或称回归余项。

对于每组可以观察到的变量x,y的数值xi,yi,满足下面的关系:yi =a+bxi+ei其中ei是误差项,是用a+bxi去估计因变量yi的值而产生的误差。

在实际预测中,ei是无法预测的,回归预测是借助a+bxi得到预测对象的估计值yi。

为了确定a和b,从而揭示变量y与x之间的关系,公式可以表示为:y=a+bx公式y=a+bx是式y=a+bx+e的拟合曲线。

可以利用普通最小二乘法原理(ols)求出回归系数。

最小二乘法基本原则是对于确定的方程,使观察值对估算值偏差的平方和最小。

由此求得的回归系数为:b=[∑xiyi—x∑yi]/∑xi2—x∑xia=-b式中:xi、yi分别是自变量x和因变量y的观察值,、分别为x和y的平均值.=∑xi/ n ; = ∑yi/ n对于每一个自变量的数值,都有拟合值:yi’=a+bxiyi’与实际观察值的差,便是残差项ei=yi一yi’(二)一元回归流程三)回归检验在利用回归模型进行预测时,需要对回归系数、回归方程进行检验,以判定预测模型的合理性和适用性。

检验方法有方差分析、相关检验、t检验、f检验。

对于一元回归,相关检验与t检验、f检验的效果是等同的,因此,在一般情况下,通过其中一项检验就可以了。

对于多元回归分析,t检验与f检验的作用却有很大的差异。

1.方差分析通过推导,可以得出:∑(yi—y-)2= ∑(yi—yi’)2+∑(yi—y-)2其中:∑(yi—y-)2=tss,称为偏差平方和,反映了n个y值的分散程度,又称总变差。

∑(yi—yi’)2=rss,称为回归平方和,反映了x对y线性影响的大小,又称可解释变差。

一元一次回归方程english_概述说明以及解释

一元一次回归方程english_概述说明以及解释

一元一次回归方程english 概述说明以及解释1. 引言1.1 概述在统计学和机器学习中,回归分析是一种常见的数据分析方法,用于探索变量之间的关系。

其中,一元一次回归方程是最简单、常用的回归模型之一。

它描述了自变量X对因变量Y的线性影响,并可以通过拟合直线来预测或解释观测数据。

本文将全面介绍一元一次回归方程,包括定义、原理、建立过程以及求解方法。

我们还将通过应用举例分析,展示如何收集和处理数据,并建立与拟合模型。

最后,我们会探讨该模型在实际应用中的局限性,并提出改进方法。

1.2 研究背景回归分析被广泛应用于各个领域,如经济学、社会科学、医学等。

无论是预测市场需求还是研究药物效果,研究人员都需要有效地建立模型,并通过对数据进行分析来获得有价值的信息和结论。

随着技术和计算能力的发展,机器学习和人工智能已成为热门话题。

在这个背景下,了解和掌握一元一次回归方程的基本知识,对于从事相关研究和工作的专业人士至关重要。

1.3 研究目的本文旨在介绍一元一次回归方程的基本概念和原理,并通过实例分析展示其应用方法和解释结果。

具体目标如下:- 提供一元一次回归方程的定义,明确其适用范围和假设条件;- 解释建立过程,包括数据准备、变量选择等步骤;- 探讨常见的求解方法,如最小二乘法;- 通过实际案例,演示数据收集、模型建立与拟合的过程;- 对结果进行解释与评估,引导读者理解模型预测能力与可靠性;- 讨论该模型在实际应用中的局限性,并提出改进方法;- 总结关键要点并展望未来发展方向。

通过深入研究与分析一元一次回归方程,我们希望读者能够全面了解该模型的原理和应用方法,同时认识到其局限性以及可能的改进方向。

这将为读者在日后的研究与实践中提供有益指导。

2. 一元一次回归方程:2.1 定义和原理:一元一次回归方程是统计学中常用的线性回归模型。

它描述了一个自变量(x)和相应的因变量(y)之间的线性关系。

这种关系可以用数学表达式y = a + bx表示,其中a是截距,b是斜率。

EXCEL一元线性回归

EXCEL一元线性回归

EXCEL一元线性回归一、概述在数据分析中,对于成对成组数据的二、一元线性回归基本概念➢一元线性回归方程的建立回归系数ˆˆˆiiy x αβ=+αβˆi yˆi i i e y y=-[]222111ˆ(,)()()nnniii ii i i i Q eyyyx αβαβ=====-=-+∑∑∑(,)Q αβ,αβ,αβ1111222111()()()()ˆ()()n n i i n ni i i i i i xy i i nnxxii ni i ii x y x x y y x y L n L xx x xnβ=======---===--∑∑∑∑∑∑∑ˆˆy xαβ=-根据最小二乘法,可以得到一组正规方程组,对方程组求解,即可得到回归系数, 的计算式:ˆαˆβ三、软件(EXCEL)实现过程本功能需要使用Excel扩展功能,如果Excel尚未安装数据分析,需加载“分析数据库”。

加载成功后,可以在“数据”菜单中看到“数据分析”选项汽车马力(HP)每加仑汽油行驶里程(MPG)4965.455565555.970495346.57046.25545.46259.26253.38043.47341.49240.99240.97340.46639.67339.37838.99238.87838.29042.29240.97440.79540散点图直线拟合分析结果SUMMARY OUTPUT回归统计Multiple R 0.789925583R Square 0.623982426Adjusted R Square0.619282206标准误差6.174780275观测值82方差分析df SS MS F Significance F 回归分析15061.709525061.709523132.75601341.13931E-18残差803050.2329238.12791145总计818111.94244Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限95.0%上限95.0%Intercept 50.07566277 1.5696920531.90158406 2.94532E-4746.951876153.199449446.951876153.19944943X Variable 1-0.1390738520.01207031-11.521979581.13931E-18-0.163094531-0.1150532-0.163094531-0.115053172Y=-0.1391+50.075和前面散点图直线拟合的结果一致“回归”工具为我们提供残差图、线性拟合图:线性拟合图谢谢!请批评指正!。

一元线性回归方程式的相关系数定义涉及的变量的相关信息

一元线性回归方程式的相关系数定义涉及的变量的相关信息

一元线性回归方程式的相关系数定义涉及的变量的相关信息一元线性回归是一种统计分析方法,用于确定两个变量之间的相关关系。

它假设有一个自变量x 和一个因变量y,并尝试找到一条能够最好地描述这种关系的直线。

相关系数是一种度量两个变量之间相关关系强度的统计量。

它被记为r,取值范围在-1 到1 之间。

如果r 的绝对值接近于1,则表示两个变量之间存在较强的线性关系;如果r 的绝对值接近于0,则表示两个变量之间存在较弱的线性关系;如果r 的绝对值等于0,则表示两个变量之间没有线性关系。

当r 大于0 时,表示两个变量之间存在正相关关系,即x 增大时y 也会增大;当r 小于0 时,表示两个变量之间存在负相关关系,即x 增大时y 会减小。

一元线性回归方程式是一种形式为y = ax + b 的方程,其中a 和b 是常数。

通过计算自变量x 和因变量y 的平均值和标准差,可以使用最小二乘法求出a 和b 的值。

一元线性回归分析可以帮助我们了解两个变量之间的相关关系,并预测因变量y 的值。

但是,这种方法假设存在线性关系,并且假设自变量x 和因变量y 之间没有其他因素的影响。

因此,在使用一元线性回归分析时,应确保自变量x 和因变量y 之间存在线性关系,并尽量减少其他因素的影响。

此外,也应注意相关系数的绝对值只能反映两个变量之间的线性关系强度,并不能反映其他类型的相关关系。

一元线性回归模型及参数估计

一元线性回归模型及参数估计

步骤:收集数据、建立模型、 计算参数、评估模型
优点:简单易行,适用于线 性回归模型
最大似然估计法
定义:最大似然 估计法是一种基 于概率的参数估 计方法,通过最 大化样本数据的 似然函数来估计
参数。
原理:利用已知 样本数据和概率 分布函数,计算 出样本数据出现 的概率,然后选 择使得概率最大 的参数值作为估
参数估计的性质
无偏性
定义:参数估计量是 无偏估计时,其期望 值等于参数的真实值。
性质:无偏性是线性 回归模型参数估计的 最基本性质之一,是 评价估计量优劣的重 要标准。
证明:可以通过数学 推导证明无偏性,具 体过程可以参考相关 教材或论文。
应用:在回归分析中, 无偏性可以保证估计 的参数具有最小误差, 从而提高预测的准确 性和可靠性。
计值。
优点:简单易行, 适用于多种分布 类型的数据,具
有一致性。
局限:对样本数 据的要求较高, 当样本数据量较 小或分布不均时, 估计结果可能不
准确。
最小绝对误差准则
定义:最小化预测值与实际值之间的绝对误差
优点:对异常值不敏感,能够更好地处理数据中的噪声和异常值
缺点:可能导致模型过于复杂,过拟合数据 应用场景:适用于预测连续变量,尤其是当因变量和自变量之间的关系是 非线性的情况
行处理。
处理方法:包括 删除不必要的自 变量、合并相关 性较高的自变量、 使用其他模型等
方法。
模型预测与决策应用
预测未来趋势
利用一元线性回 归模型预测未来 趋势
模型参数估计的 方法和步骤
预测结果的解读 与决策应用
模型预测的局限 性及改进方法
制定决策依据
利用回归方程进行 预测
ห้องสมุดไป่ตู้
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我们可以通过建立一个如下的关于Y和X的方程来解决上述三个问 题
总体回归模型
Y= 0 + 1 X+ u
其中: Y——被解释变量; X——解释变量; u——随机误差项;表示除X之外其他影响Y的因素,一元回 归分析 将除X之外的其他所有影响Y的因素都看成了无法观测 的因素
0,1—回归系数(待定系数或待估参数) 1是斜率系数,是主要的研究对象 0 是常数项,也被称作截距参数,很少被当做分析的核心
根据上面的假定对原模型取期望得: E(Y|X)=E[(0+1X+u)|X] =0+1X+E(u|X)= 0+1X
总体回归函数 (直线)
E(Y|Xi) = 0+1X
总体回归函数E(Y|X)是X的
一个线性函数,它表示Y中可以 由X解释的部分,线性意味着X 变化一个单位,Y的期望改变β1 个单位。对于任意给定的X值, Y的分布都是以E(Y|X)为中心的。
(估计的)样本回归函数:
ˆ ˆX ˆ Y i 0 1 i
(估计的)样本回归模型:
ˆ ˆ X e Yi 0 1 i i
其中ei是第i次观测的残差
Y1
u2 e1
e2
ˆ ˆX ˆ Y i 0 1 i
u3
Y3
e3
u1
Xi
三、参数估计——最小二乘法
对于所研究的经济问题,通常总体回归直线 E(Yi|Xi) = 0 + 1Xi 是 观测不到的。可以通过收集样本来对总体(真实的)回归直线做出估计。
通常总体回归函数E(Y) = 0+ 1X是观测不到的,利用样本得到的是
对它的估计,即对0和1的估计。令{(Xi,Yi):i=1,…,n}表示从总体中抽取 的一个样本容量为n的随机样本,对于每个i,可以写出:
Yi ห้องสมุดไป่ตู้0 1 X i ui
其中ui是第i次观测的误差项
Yi
Y2
E(Y|Xi) = 0 + 1 Xi
被预测变量(predicted variable) 回归子(regressand)
控制变量(control variable)
预测变量(predictor variable) 回归元(regressor)。
回归分析中的因果关系和其他条件不变的概念
在多数对经济理论的检验中(包括对公共政策的评价),经济 学家的目标就是要退订一个变量(比如受教育程度)对另一个 变量(如犯罪率或工人的生产率)具有因果效应(causal effect)。有时可能会很简单就能发现两个或多个变量之间存 在很强的联系,但除非能得到某种因果关系,否则这种联系很 难令人信服。
回归的现代释义
回归分析用于研究一个变量关于另一个(些)变量的具 体依赖关系的计算方法和理论。
inflation a b 1 unem ploymnt e
商品需求函数: Q a bP 生产函数:
ln Q ln A ln K ln L
菲利普斯曲线:
2 Tax a b ( TR ) 拉弗曲线:
为解决上面提到的第三个问题,及如何在忽略其他因素的同时, 又得到其他因素不变情况下X对Y的影响呢?这需要我们对无法观测 的u和X之间的关系加以约束,并且只有如此,才能从一个随机样本 数据中获得β0和β1的可靠估计量。 E(u)=0 即无法观测的因素的平均值为零,不会对结果产生影响 E(u|X)=0 根据X的不同把总体划分为若干部分,每个部分中无法 观测的因素都具有想通的平均值,且这个共同的平均值 必然等于整个总体中u的平均值,即u是均值独立的。


其他条件不变(ceteris paribus):意味着“其他(相关因 素保持不变)”的概念,它在因果分析中有重要的作用。
这个概念看似简单,但是除非在极为特殊的条件下,很难实现 多数经验研究中的一个关键问题是:要做出一个因果推断,是 否能使其他足够多的因素保持不变呢? 只要方法得当,用计量经济方法可以模拟一个其他条件不变的 实验——通过对模型进行假定。
第二章 一元线性回归模型
回归的含义 一元回归模型的建立 参数估计——最小二乘法 随机误差项的古典假定 最小二乘估计量的性质 最小二乘估计量的概率分布 回归系数的显著性检验与置信区间 用样本可决系数检验回归方程的拟合优度 案例分析
一、回归的含义
回归概念的提出
Francis Galton最先使用“回归(regression)”。 F.加尔顿是达尔文的表弟,是研究智力的先驱者之一,他非常严肃, 非常聪明,但也有些疯狂,他出生在一个贵格教徒家庭中,祖上是著名 的和平主义者,有趣的是,他家的名下却有生产枪支的企业。高尔顿是 个申通,6岁便能阅读和背诵莎士比亚的作品,他在更小的时候已经会 说了希腊语和拉丁语。他似乎对什么事情都感兴趣,成年后的高尔顿在 气象学、心理学、摄影学,甚至是刑事司法领域都有所建树(他倡导使 用指纹分析的科学方法来确定罪犯身份)。此外,他还发明了“标准差” 这一统计概念及线性回归法,并用这些数学工具来研究人类的行为。 父母高,子女也高;父母矮,子女也矮。给定父母的身高,子女 平均身高趋向于“回归”到 全体人口的平均身高。
回归的现代释义

等式左边的变量被称为 被解释变量(explained variable) 因变量 (dependent variable)

等式右边的变量被称为 解释变量(explanatory variable) 自变量(independent variable)
响应变量(response variable)
样本回归模型:
ˆ ˆ X e Yi 0 1 i i
ˆ ˆX ˆ 样本回归直线: Y i 0 1 i
二、一元线性回归模型
回归分析都是从如下假设前提开始的:Y和X是代表某个总
体的变量,我们感兴趣的是“用X解释Y”或“研究Y如何随 X而变化”在写出用X解释Y的模型时,面临三个问题
Y和X的函数关系是怎么样的?
如何考虑其他影响Y的因素呢?
我们如何才能确信我们得到的是,是在其他条件不变情况下
的Y和X之间的关系?
相关文档
最新文档