苏教版七年级数学试卷

合集下载

苏教版七年级数学上册试卷【含答案】

苏教版七年级数学上册试卷【含答案】

苏教版七年级数学上册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5厘米,那么它的面积是多少平方厘米?A. 10B. 20C. 25D. 305. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 任何一个偶数都能被2整除。

()2. 三角形的内角和是180度。

()3. 1是质数。

()4. 一个正方形的对角线长度等于它的边长的平方根。

()5. 0.3333是无限循环小数。

()三、填空题(每题1分,共5分)1. 9的平方根是______。

2. 两个质数相乘,其积一定是______。

3. 一个长方形的长是8厘米,宽是4厘米,那么它的面积是______平方厘米。

4. 下列哪个数是合数?______5. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释三角形内角和的概念。

3. 请简述偶数和奇数的区别。

4. 请解释正方形的对角线长度是如何计算的。

5. 请简述最简分数的概念。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。

2. 请找出30以内的所有质数。

3. 如果一个三角形的两个内角分别是60度和70度,请计算第三个内角的度数。

4. 请将分数2/4化简为最简分数。

5. 请计算下列各式的值:√25,√36,√49。

六、分析题(每题5分,共10分)1. 请分析并解释为什么质数在数学中非常重要。

2. 请分析并解释为什么三角形的内角和总是180度。

七年级数学苏教版月考试卷

七年级数学苏教版月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2B. 0C. 1.5D. -0.52. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形3. 若a=3,b=-2,则a+b的值为()A. 1B. -1C. 5D. -54. 下列方程中,正确的是()A. 2x+1=5B. 3x-2=0C. 4x=8D. 5x+3=05. 一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积是()A. 12cm²B. 16cm²C. 24cm²D. 32cm²6. 下列函数中,自变量x的取值范围是全体实数的是()A. y=x²B. y=x³C. y=x+1D. y=√x7. 下列分数中,最小的是()A. 1/2B. 2/3C. 3/4D. 4/58. 一个长方形的长是6cm,宽是4cm,那么它的对角线长是()A. 5cmB. 8cmC. 10cmD. 12cm9. 若a、b是方程2x²-5x+3=0的两个实数根,则a+b的值为()A. 1B. 2C. 3D. 510. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 平行四边形的对边相等C. 直角三角形的两条直角边相等D. 等边三角形的三个角都是直角二、填空题(每题3分,共30分)11. 0.3的倒数是__________。

12. 2/5与1/3的和是__________。

13. 若a=5,b=2,则a²+b²的值为__________。

14. 一个圆的半径是r,则其周长是__________。

15. 若x=2,则x²-3x+2的值为__________。

16. 一个等腰直角三角形的斜边长为10cm,则其直角边长是__________。

17. 下列函数中,函数y=kx+b(k≠0)的图像是一条直线的是__________。

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。

下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。

苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解.【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.【点评】本题考查了一元一次方程的解,解题的关键是理解方程的解的含义.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个【考点】线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.【分析】根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.【解答】解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.【点评】此题主要考查了线段的性质,平行公理.两点之间的距离,对顶角,关键是熟练掌握课本基础知识.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上【考点】规律型:数字的变化类.【分析】分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.【解答】解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.【点评】本题的数字的变换,解题的关键是根据图形得出每条射线上数的特点.二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣> ﹣0.4.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣ |= ,|﹣0.4|=0.4,∵ <0.4,∴﹣ >﹣0.4.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.计算: = ﹣.【考点】有理数的乘方.【分析】直接利用乘方的意义和计算方法计算得出答案即可.【解答】解:﹣(﹣ )2=﹣ .故答案为:﹣ .【点评】此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.13.若∠α=34°36′,则∠α的余角为55°24′.【考点】余角和补角;度分秒的换算.【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.【解答】解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.【点评】此题主要考查了余角,关键是掌握余角定义.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= 1 .【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.【解答】解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.【点评】本题考查同类项的定义、方程思想及负整数指数的意义,是一道基础题,比较容易解答.15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= 0 .【考点】实数与数轴.【专题】计算题.【分析】先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.【点评】此题主要看错了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是1 .【考点】代数式求值.【专题】计算题.【分析】先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.【解答】解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为 2 .【考点】同解方程.【分析】根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.【解答】解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.【点评】本题考查了同解方程,把同解方程的即代入第二个方程得出关于m的方程是解题关键.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= 13或7 cm.【考点】两点间的距离.【专题】计算题.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.【解答】解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM= AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC 的中点,则AM= AC=7cm.故答案为:13或7.【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为240 元.【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为 2.5 cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【考点】展开图折叠成几何体.【分析】利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.【解答】解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.【点评】本题考查了展开图折叠成几何体,解题的关键在于根据拼成棱柱的表面积与原图形的面积相等,从而判断出剪下的部分拼成的图形应该是棱柱的一个底面.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.【考点】有理数的混合运算.【分析】利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.【解答】解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣× ×6=﹣1﹣1=﹣2.【点评】本题考查的是有理数的运算法则.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.【考点】解一元一次方程.【分析】去分母,去括号,移项,合并同类项,系数化一.【解答】解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2) ,去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x= .【点评】本题考查解一元一次方程,关键知道去分母,去括号,移项,合并同类项,系数化一.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)原式合并后,根据代数式的值与字母x无关,得到x 一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.【解答】解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到直线OA 的距离,线段PC的长是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.【分析】(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA 的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?【考点】一元一次方程的应用.【分析】首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.【解答】解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为 .根据题意,得160x+300× =4020.解得:x=12.从而 =7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)【点评】此题主要考查了一元一次方程的应用,根据题意表示出双人豪华间数进而得出等式是解题关键.27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45 °,∠COD和∠AOB互余.【考点】余角和补角.【分析】(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.【点评】本题考查了余角和补角,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= 8 cm OB= 4 cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?【考点】一元一次方程的应用;数轴.【分析】(1)由于AB=12cm,点O是线段AB上的一点,OA=2OB,则OA+OB=3OB=AB=12cm,依此即可求解;(2)根据图形可知,点C是线段AO上的一点,可设CO的长是xcm,根据AC=CO+CB,列出方程求解即可;(3)①分0≤t<4;4≤t<6;t≥6三种情况讨论求解即可;②求出点P经过点O到点P,Q停止时的时间,再根据路程=速度×时间即可求解.【解答】解:(1)∵AB=12cm,OA=2OB,∴OA+OB=3OB=AB=12cm,解得OB=4cm,OA=2OB=8cm.故答案为:8,4;(2)设CO的长是xcm,依题意有8﹣x=x+4+x,解得x= .故CO的长是 cm;(3)①当0≤t<4时,依题意有2(8﹣2t)﹣(4+t)=4,解得t=1.6;当4≤t<6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8(不合题意舍去);当t≥6时,依题意有2(2t﹣8)﹣(4+t)=4,解得t=8.故当t为1.6s或8s时,2OP﹣OQ=4;②[4+(8÷2)×1]÷(2﹣1)=[4+4]÷1=8(s),3×8=24(cm).答:点M行驶的总路程是24cm.【点评】本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.注意(3)①需要分类讨论.。

苏教版数学初一试题及答案

苏教版数学初一试题及答案

苏教版数学初一试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -1答案:C2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 无法确定答案:C3. 根据乘法分配律,下列哪个等式是正确的?A. a(b+c) = ab + bcB. a(b-c) = ab - acC. a(b+c) = ab + acD. a(b-c) = ab + bc答案:A4. 一个数的平方根是它本身,这个数可能是:A. 1B. 0C. -1D. 4答案:B5. 若a > 0,b < 0,且|a| > |b|,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0也可能小于0D. 无法确定答案:A二、填空题(每题2分,共10分)6. 一个数的相反数是-8,这个数是______。

答案:87. 如果一个数的平方是36,那么这个数是______。

答案:±68. 一个数的立方是-27,这个数是______。

答案:-39. 一个数的绝对值是5,这个数可能是______或______。

答案:5或-510. 一个数的倒数是1/2,这个数是______。

答案:2三、计算题(每题5分,共20分)11. 计算下列各题:(1) (-3) × (-2) = ______;答案:6(2) (-4)² = ______;答案:16(3) √25 = ______;答案:5(4) 2³ - 3 × 2 = ______;答案:5四、解答题(每题15分,共30分)12. 某班有40名学生,其中男生比女生多5人。

求男生和女生各有多少人?答案:设女生人数为x,则男生人数为x+5。

根据题意,x + (x+5) = 40,解得x=17.5,但人数不能为小数,所以题目有误。

13. 某工厂生产一批零件,合格率为95%,已知不合格的零件有20个,求这批零件共有多少个?答案:设这批零件共有x个,不合格率为5%,即0.05x=20,解得x=400。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。

苏教版七年级数学上册第一章-有理数检测试卷(一)及答案

苏教版七年级数学上册第一章-有理数检测试卷(一)及答案

苏教版七年级数学上册第一章 有理数检测试卷(一)一、选择题1.下列说法中正确的是( )A.不带“-”的数都是正数B.不存在既不是正数,也不是负数的数C.如果a 是正数,那么a -一定是负数D.0C ︒表示没有温度2.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( )A.26-℃ B.22-℃ C.18-℃ D.16-℃3.a ,b 为有理数,且a >0,b<0,a <b ,则a ,b ,-a ,-b 的大小关系是( )A. b<-a <a <-bB. -a <a <b<-bC. -a <b<a <-bD. -b<-a <a <-b4.,451021)245321121(6-+-=+-⨯-这步运算运用了( ) A.加法结合律B.乘法结合律 5.绝对值大于2且不大于4的整数有( )A.3个B.4个C.5个6.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等。

依此类推,上午7:45应记为( )A 、3B 、-3C D7.把四位数x 先四舍五入到十位,所得的数y ,再四舍五入到百位,所得的数z ,再四舍五入到千位,恰好是2000,则四位数的最小值、最大值分别是( )A .1500,2400B .1450,2440C .1445,2444D .1444,24458.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是( ) D C B AA.点AB.点BC.点C二、填空题1.水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是_________。

初中七年级数学试卷苏教版

初中七年级数学试卷苏教版

1. 下列数中,负数是()A. -5B. 0C. 5D. 32. 下列各数中,有理数是()A. √2B. πC. 0.101001D. √93. 已知a=3,b=-2,则a-b的值是()A. 5B. -5C. 1D. -14. 如果a、b是方程2x-3=0的两个根,则a+b的值是()A. 3B. -3C. 0D. 65. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |1|6. 下列各式中,正确的是()A. 3x=0,则x=0B. 3x=0,则x≠0C. 3x=0,则x=±0D. 3x=0,则x=0或x=±07. 如果a+b=0,那么a和b互为()A. 相等B. 相反数C. 相邻整数D. 倍数8. 下列各数中,无理数是()A. √4B. √9C. √16D. √259. 下列各式中,正确的是()A. (-2)^2=4B. (-2)^2=1C. (-2)^3=-4D. (-2)^3=810. 下列各数中,是偶数的是()A. 2B. 3C. 4D. 511. 2的平方根是_________,3的立方根是_________。

12. 下列各数中,负整数是_________,正有理数是_________。

13. 如果a=5,b=-3,那么a-b的值是_________。

14. 下列各式中,绝对值最大的是_________。

15. 如果x是方程2x+3=0的解,那么x的值是_________。

16. 下列各数中,有理数是_________,无理数是_________。

17. 下列各式中,正确的是_________。

18. 如果a+b=0,那么a和b互为_________。

19. 下列各数中,偶数是_________,奇数是_________。

20. 下列各式中,正确的是_________。

三、解答题(共60分)21. (10分)计算下列各式的值:(1)(-3)^2 + (-2)^3(2)√16 - √25(3)2x^2 - 3x + 1,其中x=422. (15分)解下列方程:(1)2x - 5 = 0(2)3(x+2) - 4 = 2x + 623. (15分)已知一元二次方程x^2 - 5x + 6 = 0,求该方程的两个根,并判断它们的符号。

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)

苏教版七年级上数学代数式单元测试卷(含答案)七年级上数学代数式单元测试班级:______________ 姓名:______________一、选择题1.计算-2x2+3x2的结果是()A。

x2B。

5x2C。

-5x2D。

-x22.足球每个m元,篮球每个n元,XXX为学校买了4个足球,7个篮球共需要()A。

(7m+4n)元B。

28mn元C。

(4m+7n)元D。

11mn元3.已知代数式-3xy与yx是同类项,那么m,n的值分别是()A。

n=-3,m=-1B。

n=-3,m=-3C。

n=3,m=5D。

n=2,m=34.下列各组代数式中,是同类项的是()A。

11xy,2B。

-5xy,yxC。

5ax,yxD。

8,x5.下列式子合并同类项正确的是()A。

3x+5y=8xyB。

3y-y=3C。

15ab-15ba=D。

7x-6x=x6.同时含有字母a、b、c且系数为1的五次单项式有() A。

1个B。

3个C。

6个D。

9个7.右图中表示阴影部分面积的代数式是()A。

ab+bcB。

c(b-d)+d(a-c)C。

ad+c(b-d)D。

ab-cd8.圆柱底面半径为3cm,高为2cm,则它的体积为() A。

97πcm3B。

18πcm3C。

3πcm3D。

18πcm39.下面选项中符合代数式书写要求的是()A。

5xy与2½B。

ay×3a2bC。

4a÷bD。

a×b+c10.已知a,b两数在数轴上的位置如图所示,则化简代数式a+b-a-1+b+2的结果是()A。

1B。

2b+3C。

2a-3D。

-111.在排成每行七天的月历表中取下一个3×3方块(图所示)。

若所有日期数之和为189,则n的值为()A。

21B。

11C。

15D。

912.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A。

苏教版初中初一数学试卷

苏教版初中初一数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,负数是()。

A. -3B. 3C. 0D. -5.22. 如果a=2,那么-2a等于()。

A. -4B. 4C. 0D. 23. 在数轴上,-2和2两点之间的距离是()。

A. 4B. 2C. 0D. 14. 下列各数中,无理数是()。

A. πB. √4C. 0.5D. 35. 一个长方形的长是5厘米,宽是3厘米,它的周长是()。

A. 8厘米B. 10厘米C. 15厘米D. 18厘米6. 如果一个数的相反数是它本身,那么这个数是()。

A. 0B. 1C. -1D. 27. 下列各式中,正确的是()。

A. 2×3=6B. 2×(-3)=-6C. 2×3=-6D. 2×(-3)=68. 如果a=-3,那么|-a|的值是()。

A. 3B. -3C. 6D. 09. 下列各数中,质数是()。

A. 4B. 6C. 8D. 710. 一个圆的半径是r,那么它的直径是()。

A. 2rB. rC. 4rD. r/2二、填空题(每题3分,共30分)1. 有理数a和b,如果a+b=0,那么a和b互为()。

2. 一个数的绝对值是5,那么这个数可能是()或()。

3. 如果|a|=5,那么a的相反数是()。

4. 在数轴上,-3和3两点之间的距离是()。

5. 一个数的倒数是-1/3,那么这个数是()。

6. 下列各数中,有理数是()。

7. 下列各数中,无理数是()。

8. 一个长方形的长是8厘米,宽是4厘米,它的面积是()。

9. 一个圆的半径是3厘米,那么它的周长是()。

10. 下列各式中,正确的是()。

三、解答题(每题10分,共40分)1. 计算下列各式的值:(1)-3 + 5 - 2(2)2×(-3) + 4×2 - 12. 用数轴表示下列各数:(1)-2(2)53. 求下列各数的相反数:(1)3(2)-54. 判断下列各数是否为有理数,并说明理由:(1)√2(2)0.333...四、应用题(每题10分,共20分)1. 一辆汽车从甲地出发,以每小时60公里的速度行驶,3小时后到达乙地。

最新苏教版七年级数学上册4-6单元测试卷(共3个单元 附答案)

最新苏教版七年级数学上册4-6单元测试卷(共3个单元 附答案)

最新苏教版七年级数学上册4-6单元测试卷(共3个单元附答案)最新苏教版七年级数学上册4-6单元测试卷(共3个单元附答案)第四单元《一元一次方程》测试卷(附答案)一、选择题(每小题3分,共24分)1.方程2x-2=4的解是()A。

x=2 B。

x=3C。

x=4 D。

x=52.下列变形符合等式基本性质的是()A。

若2x-3=7,则2x=7-3B。

若3x-2=x+1,则3x+x=1+2C。

若-2x=5,则x=5/(-2)D。

若-1/3 x=1,则x=-33.在解方程x/(3x+1) - 1/6 = 1/2的过程中,下列去分母正确的是()A。

2x-3x+1=6-3(x-1)B。

2x-(3x+1)=6-3x+1C。

2x-(3x+1)=1-3(x-1)D。

2x-(3x+1)=6-3(x-1)4.若代数式x-7与-2x+2的值互为相反数,则x的值为()A。

3 B。

-3 C。

5 D。

-55.甲比乙大15岁,5年后甲的年龄是乙的年龄的2倍,则乙现在的年龄是A。

10岁 B。

15岁 C。

20岁 D。

30岁6.已知关于x的方程3x+2a=2的解是x=a-1,则a的值为()A。

1/5 B。

3/5 C。

1 D。

-17.已知方程x-2=2x+1的解与关于x的方程k(x-2)=(11/5)x+1/2的解相同,则k的值是()A。

-5/2 B。

-1/2 C。

2 D。

-28.XXX从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km,就会迟到5分钟。

他家到学校的路程是多少千米?设他家到学校的路程是x km,则依题意列出的方程是()x/15 - 1/6 = x/12 + 1/20二、填空题(每小题4分,共32分)9.如果数x的2倍减去7的差得36,则根据题意列方程为2x-7=36.10.方程5x-3=3x+11变形为5x-3x=11+3的依据是移项。

11.已知方程2x-3=m的解是关于x的一元一次方程,则m 的值为3.12.当x=4时,代数式2x与4x-8的值相等。

苏教版七年级数学(下)期末测试题及参考答案

苏教版七年级数学(下)期末测试题及参考答案

苏教版七年级数学(下)期末测试题及参考答案321.计算2x^2的结果是(。

)A.2xB.2xC.2xD.x2.下列命题中,(。

)是假命题.B.如果a<-1,那么ab<-b.3.满足不等式组{x-1≤1.2x>-4}的正整数解的和为(。

)C.24.已知等腰三角形的两条边长分别是7和3,则第三条边的长是(。

)C.45.如图,解二元一次联立方程式{8x+6y=3.6x-4y=5},得y =(。

)A.-11/26.三角形的下列线段中能将三角形的面积分成相等两部分的是(。

)B.角平分线7.甲、乙两种机器分别以固定速率生产一批货物,若4台甲机器和2台乙机器同时运转3小时的总产量,与2台甲机器和5台乙机器同时运转2小时的总产量相同,则1台甲机器运转1小时的产量,与1台乙机器运转3/2小时的产量相同.8.如图,若XXX,则∠B、∠C、∠E三者之间的关系是(。

)B.∠B+∠E-∠C=180°11.分解因式:x^2-y^2=(x+y)(x-y)12.“有两个角互余的三角形是直角三角形”的逆命题是“如果一个三角形是直角三角形,那么它有两个角互余。

”13.若a=2,a+b=3,则a^2+ab=1014.若x+y=3,xy=1,则x^2+y^2=715.如图,把一块直角三角板的直角顶点放在直线上,使斜边在直线上方,则斜边与直线的交点是直角三角形的(。

).D.E尺的一边上,如果角度1为25度,那么角度2为多少度?如果角度1等于角度2,那么以下哪些结论是正确的?(可以填写多个序号)17.XXX从点A出发,沿直线前进10米后向左转60度,再沿直线前进10米,又向左转60度……照这样走下去,XXX第一次回到出发点A,一共走了多少米?18.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元。

设购买了甲种票x张,乙种票y张,由此可列出以下方程组:三、解答题19.计算:(2m-3)(2m+3)20.对以下式子进行因式分解:a) x^3+3x^2y+2xy^2b) a^2-2a(b+c)+(b+c)^221.先化简,再求值:a) (3-4y)(3+4y)+(3+4y)^2,其中y=0.5b) (3a-b)^2-9a(a-b)-b^2,其中a=222.解下列方程组:a) x+y=3,2x-y=6b) 3x+2y+z=13,x+y+2z=7,2x+3y-z=1223.解不等式:x-1>2x,并把解集在数轴上表示出来。

苏教版七年级数学试卷打印

苏教版七年级数学试卷打印

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3.14B. -2C. $\sqrt{2}$D. $\frac{5}{6}$2. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆3. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. ab > 0D. a - b > 04. 在直角坐标系中,点P(-2,3)关于y轴的对称点坐标是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)5. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = 3x^2C. y = 4xD. y = 5x + 16. 若x = 2,则代数式x^2 - 3x + 2的值为()A. 1B. 2C. 3D. 47. 下列方程中,解为x = 2的是()A. x - 2 = 0B. 2x + 1 = 0C. x^2 - 4 = 0D. x^2 - 2x - 3 = 08. 若一个长方体的长、宽、高分别为a、b、c,则它的体积V可以表示为()A. V = abcB. V = ab + cC. V = a^2 + b^2 + c^2D. V = ab - c9. 下列几何图形中,面积最小的是()A. 正方形B. 矩形C. 菱形D. 平行四边形10. 下列计算正确的是()A. 2 + 3i = 5B. (a + b)^2 = a^2 + 2ab + b^2 + c^2C. (a - b)^2 = a^2 - 2ab + b^2D. (a + b)(a - b) = a^2 - b^2 + 2ab二、填空题(每题3分,共30分)11. 5的倒数是__________。

12. $\sqrt{9}$的值是__________。

13. 若x = -3,则代数式3x - 5的值为__________。

苏教版七年级数学第一单元检测试卷

苏教版七年级数学第一单元检测试卷

苏教版七年级数学第一单元检测试卷苏教版七年级数学第一单元检测试卷满分100分,时间90分钟一、精心选一选(每小题3分,共30分)1、下列结论中正确的是()A.既是正数,又是负数B.0是最小的正数C.是最大的负数D.既不是正数,也不是负数2.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a-b+c-d的值为()A.1B.3C.1或3D.2或-13.已知数轴上三点A、B、C分别表示有理数a、1、-1,那么|a+1|表示()A.A与B两点的距离B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和4.若|-a|+a=0,则()A.a>0B.a≤0C.a<0D.a≥05.甲、乙两人的住处与学校同在一条街道上,甲在离学校1千米的地方,乙在离学校2千米的地方,则甲、乙两人的住处相距()A.只能是1千米B.只能是2千米C.既可能是1千米,也可能是2千米D.在1千米与2千米之间6.下列叙述正确的是()A.若|a|=|b|,则a=bB.若|a|>|b|,则|a|>bC.若a<b,则|a|<|b|D.若|a|=|b|,则a=±b7、下列各组数中,互为相反数的是()A.1和-1B.2和-2C.3和4D.5和68.下列说法正确的是()A.无限小数是无理数;B.零是整数,但不是正数,也不是负数;C.分数包括正分数、负分数和零;D.有理数不是正数就是负数。

9.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边10.若x是不等于1的实数,我们把1/x称为x的差倒数,如2的差倒数是-1,-1的差倒数为1/-1= -1.现已知,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014的值为()A.-1B.1C.-2D.2二、用心填一填(每小题2分,共20分)11、填空:在-3,1,2/3,8.9,-6,11、-9这些有理数中,非正数有3个,整数有4个。

苏教版初中数学七上试卷

苏教版初中数学七上试卷

一、选择题(每题3分,共30分)1. 下列数中,属于有理数的是()A. √3B. πC. -2D. √-12. 已知数轴上点A表示的数是-3,点B表示的数是2,那么点A和点B之间的距离是()A. 1B. 5C. 3D. 43. 下列各式中,正确的是()A. (-3)² = -9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = 2434. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x²D. y = √x5. 在直角坐标系中,点P(2,-3)关于x轴的对称点是()A.(2,3)B.(-2,-3)C.(-2,3)D.(2,-3)6. 下列各式中,正确的是()A. 2/3 < 4/5B. 2/3 > 4/5C. 2/3 = 4/5D. 2/3 ≠ 4/57. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 24cmC. 28cmD. 30cm8. 在平面直角坐标系中,点A(-1,2)和点B(3,-4)之间的距离是()A. 5B. 7C. 9D. 119. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 梯形10. 下列数中,属于无理数的是()A. √9B. √16C. √25D. √-4二、填空题(每题3分,共30分)1. 已知a = -2,b = 3,那么a + b的值是______。

2. 如果一个数的平方是4,那么这个数是______。

3. 在数轴上,点A表示的数是-5,那么点A到原点的距离是______。

4. 已知一个等边三角形的边长是6cm,那么这个三角形的周长是______。

5. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点是______。

6. 下列各式中,正确的是______。

7. 已知一个圆的半径是5cm,那么这个圆的直径是______。

数学苏教版七年级下册期末测试试卷经典及答案解析

数学苏教版七年级下册期末测试试卷经典及答案解析

数学苏教版七年级下册期末测试试卷经典及答案解析一、选择题1.下列各式中,计算正确的是()A.(a3)2=a5B.a2+a3=a5C.( ab2)3=ab6D.a2•a3=a5答案:D解析:D【分析】直接利用积的乘方运算法则,合并同类项的法则,幂的乘方运算法则、同底数幂的乘法运算法则分别计算即可答案.【详解】解:A、(a3)2=a6,故此选项错误,不合题意;B、a2+a3,无法合并,故此选项错误,不合题意;C、(ab2)3=a3b6,故此选项错误,不合题意;D、a2•a3=a5,故此选项正确,符合题意.故选:D.【点睛】本题考查幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,解题关键是掌握相关运算法则.2.如图,直线a、b 被直线c 所截,下列说法不正确的是()A.∠1 和∠4 是内错角B.∠2 和∠3 是同旁内角C.∠1 和∠3 是同位角D.∠3 和∠4 互为邻补角答案:A解析:A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、1∠不是内错角,此选项符合题意;∠和4∠是同旁内角,此选项不符合题意;B、2∠和3∠是同位角,此选项不符合题意;C、1∠和3D 、3∠和4∠是邻补角,此选项不符合题意;故选A .【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.3.数轴上三个点表示的数分别为 p 、r 、s .若 p - r =5,s - p =2,则 s - r 等于( ) A .3 B .- 3 C .7 D .- 7答案:C解析:C【详解】试题分析:利用已知将两式相加进而求出答案.解:∵p ﹣r=5,s ﹣p=2,∴p ﹣r+s ﹣p=5+2则s ﹣r=7.故答案为7.考点:数轴.4.若a b >,则下列不等式中一定成立的是( )A .0a b -<B .0ab >C .a b ->-D .11a b +>- 答案:D解析:D【分析】根据不等式的基本性质解答即可.【详解】解:∵a >b ,∴a-b >0,故A 错误;由于不能确定a 与b 是否同号,所以ab 的符号不能确定,故B 错误;-a <-b ,故C 错误;a+1>b+1,故D 正确.故选:D .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.5.如果点(), 21P m m -在第三象限,那么m 的取值范围是( )A .12m >B .102m <<C .0m <D .102m -<< 答案:C解析:C【分析】第三象限的符号特征为(-,-),据此列不等式组解答.【详解】∵ P (m ,2m -1)在第三象限,∴ m 02m-10⎧⎨⎩<<,解得:m 0<, 故选C .【点睛】本题考查象限的符号特征和不等式组的应用,熟练掌握第三象限符号为(-,-)是关键.6.在下列命题中:①同旁内角互补;②两点确定一条直线;③两条直线相交,有且只有一个交点;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等.其中属于真命题的有( )A .1个B .2个C .3个D .4个答案:B解析:B【分析】根据有关性质与定理,正确的命题叫真命题,错误的命题叫做假命题,分别对每一项进行判断即可.【详解】①两直线平行,同旁内角互补,是假命题;②两点确定一条直线;是真命题;③两条直线相交,有且只有一个交点,是真命题;④若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补,是假命题. 其中属于真命题的有2个.故选B .【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.7.电影院第一排有m 个座位,后面每排比前一排多2个座位,则第n 排的座位数为( ) A .2m n + B .()21m n +- C .2mn + D .2m n += 答案:B解析:B【分析】依题意,电影院第一排有m 个座位,第n 排与第一排相差1n -排,又后面每排比前排多2个座位,所以第n 排比第一排多的座位为:2(1)n -,即可;【详解】解:由题知,电影院第一排有m 个座位;又后面每排比前排多2个座位;第n 排与第一排相差:1n -排,∴第n 排比第一排多的座位为:2(1)n -;∴第n 排的座位为:2(1)m n +-;故选:B【点睛】本题考查规律的使用,关键在规律的总结和巧妙使用,此处重在归纳总结;8.在长方形ABCD 内,将两张边长分别为a 和()b a b >的正方形纸片按如图,如图两种方式放置(如图,如图中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设如图1中阴影部分的面积为1S ,如图2中阴影部分的面积为2S .当3AD AB -=时,21S S -的值为( )A .0B .33a b -C .3aD .3b答案:D解析:D【解析】【分析】利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差.【详解】解:∵S 1=(AB-a )•a+(CD-b )(AD-a )=(AB-a )•a+(AB-b )(AD-a ),S 2=AB (AD-a )+(a-b )(AB-a ),3AD AB -=∴S 2-S 1=AB (AD-a )+(a-b )(AB-a )-(AB-a )•a -(AB-b )(AD-a )=(AD-a )(AB-AB+b )+(AB-a )(a-b-a )=b•AD -ab-b•AB+ab=b (AD-AB )=3b .故选D .【点睛】本题考查列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题9.计算:223x x________.解析:6x 3【分析】根据单项式乘单项式的计算法则进行计算求解.【详解】解:原式=6x 3,故答案为:6x 3.【点睛】本题考查单项式乘单项式,掌握计算法则是解题基础.10.“若a b =,则22a b =”的逆命题是_____________命题.(填“真”或“假”)解析:假【分析】把一个命题的条件和结论互换就得到它的逆命题,再判断命题的真假即可.【详解】解:根据题意得:命题“如果a =b ,那么a 2=b 2”的条件是如果a =b ,结论是a 2=b 2”, 故逆命题是如果a 2=b 2,那么a =b ,我们知道如果a 2=b 2,那么a =±b ,所以该命题是假命题.故答案为:假.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.11.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是___边形. 解析:六【分析】n 边形的内角和可以表示成(n ﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6,故答案为:六.【点睛】本题主要考查了多边形的内角和和外角和,解题的关键在于能够熟练掌握多边形内角和与外角和的知识.12.已知224m n -=,则2202024m n -+=____________.解析:2012【分析】把224m n -=看作一个整体,进一步将原式分解代入求得答案即可.【详解】解:2202024m n -+=220202(m 2n)--∵224m n -=∴原式=2020-2×4=2012.故答案为2012.【点睛】此题考查因式分解的实际运用,整体代入是解决问题的关键.13.已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________. 解析:12±【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根.【详解】 将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得 27264m n m n +=⎧⎨-=⎩, 解得51m n =⎧⎨=⎩. 所以114m n =- 所以1m n-的平方根为12± 故答案为:12± 【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.14.如图,相邻两线段互相垂直,甲、乙两人同时从点A 处出发到点C 处,甲沿着“A →B →C ”的路线走,乙沿着“A →D →E →F →C →H →C 的路线走,若他们的行走速度相同,则甲、乙两人谁先到C 处?_____.答案:A解析:甲、乙两人同时达到【分析】根据平移的性质可知;AD +EF +GH =CB ,DE +FG +HI =AB ,从而可得出问题的答案.【详解】由平移的性质可知:AD +EF +GH =CB ,DE +FG +HI =AB ,∴AB +BC =AD +EF +GH +DE +FG +HI ,∴他们的行走的路程相等,∵他们的行走速度相同,∴他们所用时间相同,故答案为甲、乙两人同时达到.【点睛】本题考查了平移的性质,利用平移的性质发现AD +EF +GH =CB ,DE +FG +HI =AB 是解题的关键.15.已知a ,b ,c 为△ABC 的三边长,b ,c 满足2(2)|3|0b c -+-=,且a 为方程42a -= 的解,则△ABC 的周长为___________.答案:7【分析】利用绝对值的性质以及偶次方的性质得出b ,c 的值,进而利用三角形三边关系得出a 的值,进而求出△ABC 的周长即可.【详解】解:∵,∴,∴,即,∵,∴或,∵,∴,∴△ABC解析:7【分析】利用绝对值的性质以及偶次方的性质得出b ,c 的值,进而利用三角形三边关系得出a 的值,进而求出△ABC 的周长即可.【详解】解:∵2(2)|3|0b c -+-=,∴2,3b c ==,∴3232a -<<+,即15a <<, ∵42a -=,∴6a =或2a =,∵15a <<,∴2a =,∴△ABC 的周长为2237++=,故答案为:7.【点睛】本题主要考查三角形三边关系及绝对值和偶次方的性质,解题关键是熟练掌握三角形三边关系.16.如图,已知24ABC S =,点D ,E ,F 分别为AB ,CD ,AE 的中点,则EFC S =______.答案:3【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点D 是的中点,∴,∵点E 是的中点,∴,∵点F 是的中点,∴.故答案为:3.【点睛】本题考查了三解析:3【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点D 是AB 的中点, ∴11224122ACD ABC S S ∆∆===⨯,∵点E 是CD 的中点, ∴1126212ACE ACD S S ∆∆=⨯==,∵点F 是AE 的中点, ∴321216EFC AEC S S ∆∆=⨯==.故答案为:3.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.17.计算或化简(1)101202132-⎛⎫+-- ⎪⎝⎭(2)()()253422x x x ⋅-+- (3)2(2)()()x y y x y x +-+-答案:(1)0;(2);(3)【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据乘法公式计算即可;【详解】(1)原式,.(2)原式,.(3解析:(1)0;(2)82x ;(3)254x xy +【分析】(1)算出零指数幂、负指数幂和绝对值计算即可;(2)根据幂的运算性质计算即可;(3)根据乘法公式计算即可;【详解】(1)原式123=+-,0=.(2)原式8824x x =-+,82x =.(3)原式()222244x xy y y x =++--,254x xy =+.【点睛】本题主要考查了整式混合运算,准确利用零指数幂、负指数幂、绝对值、乘法公式进行计算是解题的关键.18.因式分解:(1)x 3﹣16x ;(2)﹣2x 3y +4x 2y 2﹣2xy 3.答案:(1)x (x+4)(x ﹣4);(2)﹣2xy (x ﹣y )2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(解析:(1)x(x+4)(x﹣4);(2)﹣2xy(x﹣y)2.【分析】(1)先提公因式,再利用平方差公式;(2)先提公因式,再利用完全平方公式.【详解】解:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=﹣2xy(x2﹣2xy+y2)=﹣2xy(x﹣y)2.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法. 19.解方程组:(1)263536x yx y+=⎧⎨-=⎩(2)34332(1)20x yx y⎧+=⎪⎨⎪--=⎩答案:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.【详解】解:(1),①+②×2得:12x=15,解得:x=,把x=代入①得解析:(1)54112xy⎧=⎪⎪⎨⎪=⎪⎩;(2)83xy=⎧⎨=⎩.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组变形后,利用加减消元法求出解即可.【详解】解:(1)263 536x yx y+=⎧⎨-=⎩①②,①+②×2得:12x=15,解得:x=54,把x=54代入①得:52+6y=3,解得:y=1 12,则方程组的解为54112xy⎧=⎪⎪⎨⎪=⎪⎩;(2)34332(1)20x yx y⎧+=⎪⎨⎪--=⎩整理得:34363218x yx y+=⎧⎨-=⎩①②,①-②得:6y=18,解得:y=3,把y=3代入②得:3x-6=18,解得:x=8,则方程组的解为83xy=⎧⎨=⎩.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解关于x的不等式1132(1)5 xxx+⎧->⎪⎨⎪-≤⎩答案:【分析】先求出每个不等式解集,再求出不等式组的解集即可.【详解】解:解不等式,得:解不等式,得:所以不等式组的解集为.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基解析:31 2x-≤<-【分析】先求出每个不等式解集,再求出不等式组的解集即可.【详解】解:解不等式113xx+->,得:1x<-解不等式2(1)5x -≤,得:32x ≥- 所以不等式组的解集为312x -≤<-. 【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.三、解答题21.如图,已知AF 分别与BD 、CE 交于点G 、H ,∠1=50°,∠2=130°.(1)求证:BD ∥CE ;(2)若∠A =∠F ,探索∠C 与∠D 的数量关系,并证明你的结论.答案:(1)见解析;(2)∠C=∠D ,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明;(2)先根据BD//CE 可得∠C=∠ABG,再由∠A=∠F 得解析:(1)见解析;(2)∠C=∠D ,理由见解析.【分析】(1)根据对顶角相等可得∠DGH=∠1,再根据同旁内角互补、两直线平行即可证明; (2)先根据BD//CE 可得∠C=∠ABG,再由∠A=∠F 得出AC//DF 可得∠D=∠ABG ,最后等量代换即可解答.【详解】(1)证明:∵∠DGH=∠1=50°,∠2=130°∴∠DGH+∠2=180°∴BD//CE ;(2)∠C=∠D ,理由如下:∵BD//CE∴∠C=∠ABG∵∠A =∠F∴AC//DF∴∠D=∠ABG∴∠C=∠D .【点睛】本题考查的是平行线的判定与性质,灵活运用平行线的性质定理和判定定理是解答本题的关键.22.某市启动“城市公园”建设,计划对面积为3600m 2的区域进行绿化,经投标由甲、乙两个工程队来完成,已知甲工程队完成绿化360m 2的面积与乙工程队完成绿化240m 2的面积所用时间相同,若甲工程队每天比乙工程队多完成绿化30m 2,(1)求甲、乙两工程队每天各能完成多少面积的绿化?(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用是0.5万元,要使这次绿化的总费用不超过45万元,则至少应安排乙工程队绿化多少天?答案:(1)甲工程队每天能完成90m2,乙工程队每天能完成60m2;(2)10天【分析】(1)设乙工程队每天完成绿化面积,则甲工程队每天完成绿化面积为,由“甲工程队完成绿化的面积与乙工程队完成绿化的面解析:(1)甲工程队每天能完成90m 2,乙工程队每天能完成60m 2;(2)10天【分析】(1)设乙工程队每天完成绿化面积x 2m ,则甲工程队每天完成绿化面积为2(30)x m +,由“甲工程队完成绿化2360m 的面积与乙工程队完成绿化2240m 的面积所用时间相同”列出方程可求解;(2)设应安排乙工程队绿化y 天,由“要使这次绿化的总费用不超过45万元”列出方程,可求解.【详解】解:(1)设乙工程队每天能完成x 2m 的绿化, 由题意得36024030x x=+. 解得60x =.经检验60x =是原方程的解且满足题意.30603090x +=+=.答:甲工程队每天能完成290m ,乙工程队每天能完成260m ;(2)设应安排乙工程队绿化y 天, 由题意,得3600600.5 1.24590y y -+⨯. 解得10y .∴应至少安排乙工程队绿化10天. 【点睛】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.23.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则a b+的值可能是()A.2019 B.2020 C.2021 D.2022(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?答案:(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片20解析:(1)竖式长方体铁容器100个,横式长方体铁容器538个;(2)B;(3)19个【分析】(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,根据加工的两种长方体铁容器共用了长方形铁片2014张、正方形铁片1176张,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设竖式纸盒c个,横式纸盒d个,由题意列出方程组可求解.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,由铁板的总数量及所需长方形铁片的数量为正方形铁皮的2倍,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值,取其整数部分再将剩余铁板按一张铁板裁出1个长方形铁片和2个正方形铁片处理,即可得出结论.【详解】解:(1)设可以加工竖式长方体铁容器x个,横式长方体铁容器y个,依题意,得:43201421176x yx y+=⎧⎨+=⎩,解得:100538xy=⎧⎨=⎩,答:可以加工竖式长方体铁容器100个,横式长方体铁容器538个.(2)设竖式纸盒c个,横式纸盒d个,根据题意得:432c d ac d b+=⎧⎨+=⎩,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍数,可能是2020,故选B;(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:35 324m nm n+=⎧⎨=⨯⎩,解得:525116911mn⎧=⎪⎪⎨⎪=⎪⎩,∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程(组).24.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)答案:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN 中,用三角形内角和定理即可求出;(2)由∠BON =30°,∠N =30°可得MN ∥CB ,再根据两直线平行,同旁内角互补即可求出∠CEN 的度数.(3)画出图形,求出在MN ⊥CD 时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN 中,∠CEN =180°-∠ECN -∠CNE =180°-45°-30°=105°;(2)∵∠BON =30°,∠N =30°,∴∠BON =∠N ,∴MN ∥CB .∴∠OCD +∠CEN =180°,∵∠OCD =45°∴∠CEN =180°-45°=135°;(3)如图,MN ⊥CD 时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN 恰好与直线CD 垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM 放在四边形DOMF 中,用四边形内角和求解,第二种情况是用周角减去∠DOM 的度数.25.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.答案:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.。

数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析

数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析

数学苏教版七年级下册期末综合测试试卷(比较难)及答案解析一、选择题1.下列计算正确的是( )A .448a a a +=B .4416a a a ⋅=C .422a a a ÷=D .()448a a = 答案:C解析:C【分析】分别利用合并同类项、同底数幂的乘法、除法以及幂的乘方法则进行计算,即可得出结论.【详解】解:A 、 4442a a a +=,故此选项计算错误,不符合题意;B 、448a a a ⋅=,故此选项计算错误,不符合题意;C 、422a a a ÷=,,故此选项计算正确,符合题意;D 、()1446a a =,故此选项计算错误,不符合题意; 故选:C .【点睛】此题考查了合并同类项、同底数幂的乘法、除法及幂的乘方的运算,熟练掌握相关运算法则并能灵活运用其准确求解是解题的关键.2.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠ 答案:A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.3.不等式250x -≤的正整数解有( )A .4个B .3个C .2个D .1个答案:C解析:C【分析】根据解一元一次不等式的方法可以解答本题.【详解】解:250x -≤,解得x <52∴正整数解为1、2,故选:C .【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法,利用不等式的性质解答.4.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”( )A .56B .66C .76D .86答案:C解析:C【分析】利用“神秘数”定义判断即可.【详解】解:∵76=38×2=(20+18)(20-18)=202﹣182,∴76是“神秘数”,而其余各数均不能表示为两个连续偶数的平方差,故选:C .【点睛】此题考查了平方差公式,正确理解“神秘数”的定义是解本题的关键.5.已知关于x 的不等式组13x m x m >⎧⎨+≤⎩有且只有两个整数解,则m 的取值范围是( ) A .413m <≤ B .413m ≤< C .4533m <≤ D .4533m ≤< 答案:D解析:D【分析】本题两个整数不明确,因而一般化设为n ,n +1,再利用m 这个量的交叉传递,得到n 的值,从而求解.【详解】解:不等式组整理得31x m x m >⎧⎨≤-⎩, 令整数的值为n ,n +1,则有:n -1≤m <n ,n +1≤3m -1<n +2, 故12333n m n n n m -≤<⎧⎪++⎨≤<⎪⎩, ∴n -1<33n +且23n +<n , ∴1<n <3,∴n =2, ∴124533m m ≤<⎧⎪⎨≤<⎪⎩, ∴4533m ≤<. 故选:D .【点睛】本题考查不等式组的解法及整数解的确定,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.下列命题中假命题的是( )A .两直线平行,内错角相等B .三角形的一个外角大于任何一个内角C .如果a ∥b ,b ∥c ,那么a ∥cD .过直线外一点有且只有一条直线与这条直线平行答案:B解析:B【分析】根据平行线的性质、三角形的外角性质、平行公理判断.【详解】解:A 、两直线平行,内错角相等,A 是真命题;B 、三角形的一个外角大于与它不相邻的任何一个内角,B 是假命题;C 、如果a ∥b ,b ∥c ,那么a ∥c ,C 是真命题;D 、过直线外一点有且只有一条直线与这条直线平行,D 是真命题;故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数为( )3 a b c -12 … A .3 B .2 C .0 D .-1答案:A解析:A【分析】首先由已知和表格求出a 、b 、c ,再观察得出规律求出第2020个格子中的数.【详解】解:已知其中任意三个相邻格子中 所填整数之和都相等,则3+a +b =a +b +c ,a +b +c =b +c −1,所以a =−1,c =3,按要求排列顺序为,3,−1,b ,3,−1,b ,…,再结合已知表可知:b =2,所以每个小格子中都填入一个整数后排列为:3,−1,2,3,−1,2,…,即每3个数一个循环,因为2020÷3=673…1,所以第2020个格子中的数为3.故选:A .【点睛】此题考查的是数字的变化类问题,解题的关键是先由已知求出a 、b 、c ,再找出规律求出答案.8.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤ 答案:A解析:A【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;∵AC ∥DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故③正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②③④⑤.故选:A .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.二、填空题9.计算:(﹣3ab 2)3•(a 2b )=______.解析:5727a b -【分析】先算乘方,再利用单项式乘单项式法则计算即可得到结果.【详解】解:32236257=32727=ab a b a b a b a b ﹣.故答案为:5727a b -.【点睛】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.命题“若22a b =,则a=b”是__________命题(填“真”或“假”)解析:假【分析】根据22a b =可得a b =,即可判断.【详解】∵22a b = ∴a b =,即a b =±∴原命题为假命题,故答案为:假.【点睛】本题考查真假命题的判断,熟练掌握平方根的基本概念是解题的关键.11.如图,△ABC ,△DBE 均为直角三角形,且D ,A ,E ,C 都在一条直线上,已知∠C =25°,∠D =45°,则∠EBC 的度数是_____.答案:D解析:20°.【分析】先根据三角形的内角和定理得:∠DEB =45°,最后根据三角形外角的性质可得结论.【详解】解:Rt △DBE 中,∵∠D =45°,∠DBE =90°,∴∠DEB =90°-45°=45°,∵∠C =25°,∴∠EBC =∠DEB ﹣∠C =45°-25°=20°,故答案为:20°.【点睛】本题考查三角形内角和和外角和定理,熟练掌握其性质是解题的关键.12.若 x ﹣y=5,xy=6,则12x 2y ﹣12xy 2 =_________;解析:15【分析】直接将原式变形,提取公因式,进而分解因式得出即可.【详解】∵x ﹣y=5,xy=6, ∴()22111165152222x y xy xy x y -=-=⨯⨯=. 故答案是15.【点睛】本题主要考查了因式分解的提取公因式法,运用公式是解题的关键.13.已知方程组4,5ax by bx ay +=⎧⎨+=⎩的解是1,2,x y =⎧⎨=⎩那么+a b 的值是__________. 解析:3【分析】把12x y =⎧⎨=⎩代入方程组4,5ax by bx ay +=⎧⎨+=⎩中可以得到关于a 、b 的方程组,解这个方程组即可求解.【详解】解:把12x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得关于a、b的方程组2425a bb a+=⎧⎨+=⎩,解得:21ab=⎧⎨=⎩,∴a+b=3,故答案为:3.【点睛】本题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.14.如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC上(不与点A,C重合)移动,则线段BP最短时的长为_________________.答案:B解析:24 5【分析】根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,利用面积法即可求出此时BP的长.【详解】解:根据垂线段最短可知,当BP⊥AC时,BP最短,∵S△ABC=12×BC×AD=12×AC×BP,∴6×4=5BP,∴PB=245,即BP最短时的值为:245.故答案为:245.【点评】此题考查了垂线段最短,三角形的面积,熟练掌握线段的性质是解本题的关键.15.小华用三根木棒搭一个三角形,其中两根木棒的长度分别为10cm和2cm,第三根木棒的长度为偶数,则第三根的长度是_____________cm.答案:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.解析:10【分析】首先根据三角形的三边关系求得第三根木棒的取值范围,再进一步根据偶数这一条件分析.【详解】解:根据三角形的三边关系,得10-2<第三根木棒<10+2,即8<第三根木棒<12.又∵第三根木棒的长选取偶数,∴第三根木棒的长度只能为10cm.故答案为:10.【点睛】本题主要考查了三角形的三边关系以及偶数的定义,难度适中.△沿着AD翻折得到AED,若16.如图,在ABC中,点D在BC上,将ABD∠+∠的度数为______.∠=︒,则ABD BAD20CDE答案:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,∵又∴∵∴∴∴故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性解析:80°【分析】根据三角形外角的性质和翻折的性质解答即可.【详解】解:由翻折得,ADB ADE ∠=∠∵ADE ADC CDE ∠=∠+∠又20CDE ∠=︒∴20ADE ADB ADC ∠=∠=∠+︒∵180ADB ADC ∠+∠=︒∴20180ADC ADC ∠+︒+∠=︒∴80ADC ∠=︒∴80ABD BAD ∠+∠=︒故答案为:80°.【点睛】本题主要考查了翻折的性质,三角形外角的性质以及平角的定义,求出80ADC ∠=︒是解答本题的关键.17.计算:(1)1022021--(2)()2354·3x x x + 答案:(1);(2)【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式(2)原式【点睛】本题主要解析:(1)12-;(2)810x 【分析】(1)根据零指数幂和分式的负指数幂法则进行运算;(2)根据同底数幂的乘法以及幂的乘方和积的乘方运算法则即可求解.【详解】解:(1)原式11122=-=-(2)原式888910x x x =+=【点睛】本题主要考查了同底数幂的乘法以及幂的乘方和积的乘方运算,熟练掌握运算法则是解题的关键.18.因式分解:(1)34x x -;(2)()()269a b a b ++++;(3)222xy x y ---;(4)()222416x x +-. 答案:(1);(2);(3);(4).【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公解析:(1)()()22x x x +-;(2)()23a b ++;(3)()2x y -+;(4)()()2222x x +-. 【分析】(1)先提公因式,再用平方差公式因式分解即可;(2)利用完全平方公式因式分解即可;(3)先提符号,在用完全平方公式因式分解即可;(4)先利用平方差公式因式分解,再用完全平方公式因式分解即可【详解】解:(1)()()()324422x x x x x x x -=-=+-;(2)()()()()2226933a b a b a b a b ++++=++=++⎡⎤⎣⎦;(3)()()2222222x xy y x y y xy x -=-++=-+--; (4)()()()()()2222222416444422x x x x x x x x ⎡⎤⎡⎤+-=+++-=+-⎣⎦⎣⎦. 【点睛】本题考查因式分解,掌握因式分解的方法与技巧是解题关键.19.解方程组(1)21365x y y x -=⎧⎨=-⎩(2)414314312x y x y +=⎧⎪-⎨-=⎪⎩ 答案:(1);(2).(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)将②代入①,得解得:将代入②,得原方程组的解为:;解析:(1)217x y =-⎧⎨=-⎩;(2)62x y =⎧⎨=⎩. 【分析】(1)方程组利用代入消元法求解即可;(2)方程组整理后,方程组利用加减消元法求解即可.【详解】解:(1)21365x y y x -=⎧⎨=-⎩①②将②代入①,得()26513x x --=解得:2x =-将2x =-代入②,得()62517y =⨯--=-∴原方程组的解为:217x y =-⎧⎨=-⎩; (2)方程组化简为:4143410x y x y +=⎧⎨-=⎩①② ①+②,得424x =解得:6x =将6x =代入①得,6414y +=解得:2y =∴原方程组的解为:62x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.求不等式组513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩的正整数解. 答案:不等式组的正整数解为2,3,4先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】解:解不等式①得:解不等式②得:原不等式组的解集为则不等式组的正整解析:不等式组的正整数解为2,3,4【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出其整数解即可.【详解】 解:513(1)131722x x x x -≥+⎧⎪⎨-≤-⎪⎩①② 解不等式①得:2x ≥解不等式②得:4x ≤∴原不等式组的解集为24x ≤≤则不等式组的正整数解为2,3,4.【点睛】本题主要考查了解一元一次不等式组合求不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.已知:如图,ABC ∆中,在CA 的延长线上取一点E ,作EG BC ⊥于点G (1)如图①,若AD BC ⊥于点,3D E ∠=∠,那么AD 是BAC ∠的平分线吗?若是,请说明理由.请完成下列证明并在下面的括号内填注依据解:是,理由如下:,AD BC EG BC ⊥⊥(已知)4590︒∴∠=∠=(垂直定义)//AD EG ∴( )1E ∴∠=∠(两直线平行,同位角相等)2∠= ( )3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠( )(2)如图②,若ABC ∆中90,BAC ABC CEG ︒∠=∠∠、的角平分线相交于点H . ①求证:180C BFE ︒∠+∠=②随着C ∠的变化,BHE ∠的大小会发生变化吗﹖如果有变化,请直接写出BHE ∠与C ∠的数量关系;如果没有变化,请直接写出BHE ∠的度数.答案:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C+∠GEC=90°,∠C解析:(1)同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义;(2)①见详解;②90BHE ∠=︒.【分析】(1)根据题意及平行线的性质可直接进行求解;(2)①由题意易得∠C +∠GEC =90°,∠CEG +∠EFA =90°,则有∠C =∠EFA ,然后问题可求证;②连接CH 并延长,由题意易得11,22HEC CEG HBC ABC ∠=∠∠=∠,然后由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,进而根据角的和差关系可进行求解.【详解】(1)解:由题意得:,AD BC EG BC ⊥⊥(已知)4590∴∠=∠=︒(垂直定义)//AD EG ∴(同位角相等,两直线平行)1E ∴∠=∠(两直线平行,同位角相等)2∠=∠3(两直线平行,内错角相等)3E ∠=∠(已知)12∠∠∴=(等量代换)AD ∴平分BAC ∠(角平分线的定义)故答案为同位角相等,两直线平行;3,两直线平行,内错角相等;角平分线的定义; (2)①证明:∵90,BAC EG BC ∠=︒⊥,∴90BAE EGC BAC ∠=∠=∠=︒,∴∠C +∠GEC =90°,∠CEG +∠EFA =90°,∴∠C =∠EFA ,∵180EFB EFA ∠+∠=︒,∴180C BFE ∠+∠=︒;②90BHE ∠=︒,理由如下:连接CH 并延长,如图所示:∵ABC CEG ∠∠、的角平分线相交于点H , ∴11,22HEC CEG HBC ABC ∠=∠∠=∠, 由三角形外角的性质可得,EHM HEC HCE BHM HBC HCB ∠=∠+∠∠=∠+∠,∵∠FEA +∠EFA =∠BFG +∠FBG =90°,∠EFA =∠BFG ,∴∠FEA =∠FBG ,∵,EHB EHM BHM ACB HCE HCB ∠=∠+∠∠=∠+∠, ∴119022BHE GEC ABC ACB GEC ACB ∠=∠+∠+∠=∠+∠=︒. 【点睛】本题主要考查直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义,熟练掌握直角三角形的性质、三角形外角的性质、平行线的性质及角平分线的定义是解题的关键.22.某地上网有两种收费方式,用户可以任选其一:(A )计时制:2.8元/时;(B )包月制:60元/月;此外,每一种上网方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种上网方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种上网方式合算?(3)请你为用户设计一个方案,使用户能合理地选择上网方式.答案:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t=小时,两种方式一样合算;当上网时间t<小时,选用A 种方式合算;当上网时间t>小时,选用B 种方式合算【分析】(1)设用户上解析:(1)选择A 种方式比较合算;(2)选择B 种方式比较合算;(3)上网时间t =1507小时,两种方式一样合算;当上网时间t <1507小时,选用A 种方式合算;当上网时间t >1507小时,选用B 种方式合算 【分析】(1)设用户上网的时间为t 小时,分别用t 表示出两种收费方式,代入时间20小时,分别计算,对比分析即可.(2)将120分别代入两种收费方式的表达式中,求得各自的时间,对比分析即可. (3)令两种方式的关系式分别相等,大于或小于,分类讨论即可.【详解】解:(1)设用户上网的时间为t 小时,则A 种方式的费用为2. 8t +1.2t =4t 元;B 种方式的费用为(60 +1.2t )元,当t =20时,4t =80,60+1.2t =84,因为80< 84,所以选择A 种方式比较合算;(2)若用户有120元钱上网,由题意:14120t =,260 1.2120t +=分别解得1=30t ,2=50t因为30 <50,所以用户选择B 种方式比较合算;(3)当两种方式费用相同时,即460 1.2t t =+,解得t =1507,所以此时选择两种方式一样合算; 令460 1.2t t <+,解得1507t <,所以当上网时间t <1507时,选用A 种方式合算; 令460 1.2t t >+,解得1507t >,所以当上网时间t >1507时,选用B 种方式合算. 【点睛】本题考察一元一次不等式与一次函数在方案类问题中的实际应用,根据题意列出函数关系并讨论是解题重点.23.某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案.答案:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000解析:(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【分析】(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价=单价⨯数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)设购进甲种钢笔m支,则购进乙种钢笔1(100)2m-支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m,1(100)2m-均为正整数,即可得出进货方案的数量.【详解】解:(1)设购进甲种钢笔每支需x元,购进乙种钢笔每支需y元,依题意得:100501000 5030550x yx y+=⎧⎨+=⎩,解得:510xy=⎧⎨=⎩.答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元.(2)5801060⨯+⨯400600=+1000=(元).答:需要1000元.(3)设购进甲种钢笔m支,则购进乙种钢笔100051(100)102mm-=-支,依题意得:16(100)218(100)2m mm m⎧-⎪⎪⎨⎪-⎪⎩,解得:150160m.又m,1(100)2m-均为正整数,m∴可以为150,152,154,156,158,160,∴该文具店共有6种购进方案.【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于m的一元一次不等式组.24.已知AB CD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.(1)若点E的位置如图1所示.①若∠ABE=60°,∠CDE=80°,则∠F= °;②探究∠F与∠BED的数量关系并证明你的结论;(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是.(3)若点E的位置如图3所示,∠CDE为锐角,且,设∠F=α,则α的取值范围为.答案:(1)①70;②∠F=∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A∠BED,证明见解析;(2)2∠F+∠BED=360°;(3)解析:(1)①70;②∠F=12【分析】(1)①过F作FG//AB,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70︒,即可求解;②分别过E、F作EN//AB,FM//AB,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED与∠BFD之间的数量关系;(3)通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得.【详解】(1)①过F作FG//AB,如图:∵AB∥CD,FG∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;∠BED,②∠F=12理由是:分别过E、F作EN//AB,FM//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分别是∠CDE的角平分线与∠ABE的角平分线,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∠BED;∴∠F=12(3)2∠F+∠BED=360°.如图,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如图,∵∠CDE为锐角,DF是∠CDE的角平分线,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案为:.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.25.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,则∠EAD的度数为;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC 于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)答案:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.解析:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为1302n-︒;(4)∠D1F1A﹣∠AF1C的值为14n.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形内角和定理构建方程求出x即可解决问题.(3)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再结合三角形内角和定理解决问题即可.(4)设∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再结合三角形内角和定理解决问题即可.【详解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=12(180°-n),∵∠AFC=∠FCG-∠FAC=12(180°-n)-x=90°-12n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-12n,∴∠DFE-∠AFC=12n-30°.(4)设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°-(180°-n-32y)=n+32y-90°,∠AF1C=180°-32y-n-14(180°-n)=135°-32y-34n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32y-34n)=74n+3y-225°,∵2y+30°+n=180°,∴y=75°-12n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32x-34n)=74n+225°-32n-225°=14n.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,本题有一定的难度.。

苏科版初一上学期数学试卷及解答参考

苏科版初一上学期数学试卷及解答参考

苏科版数学初一上学期复习试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题干:一个长方形的长是12厘米,宽是5厘米,那么它的周长是多少厘米?选项:A、30厘米B、35厘米C、40厘米D、45厘米2、题干:一个圆的半径是6厘米,那么它的直径是多少厘米?选项:A、12厘米B、18厘米C、24厘米D、36厘米3、小华有5个苹果,小明比小华多2个苹果,那么小明有多少个苹果?A. 3个B. 4个C. 5个D. 7个4、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?A. 18厘米B. 24厘米C. 30厘米D. 40厘米5、()一个长方形的长是10厘米,宽是6厘米,那么这个长方形的面积是 ____ 平方厘米。

A. 60B. 96C. 100D. 1206、一个班级有48名学生,其中男生占40%,那么这个班级男生的人数是 ____ 人。

A. 18B. 24C. 36D. 487、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A. 20厘米B. 25厘米C. 30厘米D. 40厘米8、下列分数中,分子大于分母的是:A.34B.54C.23D.129、小明在做一道数学题时,错误地将被减数和减数的位置颠倒,导致计算错误。

如果正确的差是20,错误的差是-40,那么原来的被减数和减数分别是多少?A. 被减数是30,减数是10B. 被减数是40,减数是20C. 被减数是20,减数是0D. 被减数是10,减数是30 10、在数轴上,点A表示的数是-5,点B表示的数是3。

若点C在数轴上,且AC的长度是2,那么点C表示的数可能是以下哪个选项?A. -7B. 1C. 5D. -3二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方体的长、宽、高分别为3cm、2cm、4cm,那么它的体积是____cm³。

2、在下列各数中,最小的负数是 ____ 。

-3、-1、0、-2、33、一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的对角线长度是 ______cm。

苏教版七年级数学上册期末考试卷【带答案】

苏教版七年级数学上册期末考试卷【带答案】

苏教版七年级数学上册期末考试卷【带答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,在OAB和OCD中,AC BD交于点M,连OA OB OC OD OA OC AOB COD,连接,,,,40AMB;③OM平分BOC;④MO 接OM.下列结论:①AC BD;②40平分BMC.其中正确的个数为().A.4 B.3 C.2 D.13.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.如图所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为()A .1°B .2°C .4°D .8°6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.满足方程组35223x y m x ym的x ,y 的值的和等于2,则m 的值为().A .2B .3C .4D .59.已知23a b (a ≠0,b ≠0),下列变形错误的是()A .23abB .2a=3bC .32b aD .3a=2b10.已知正多边形的一个外角为36°,则该正多边形的边数为().A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.式子3x在实数范围内有意义,则 x 的取值范围是________.3.已知80AOB,40BOC,射线OM 是AOB 平分线,射线ON 是BOC 平分线,则MON________ .4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C ,的位置.若65EFB,则AED 等于________.5.64的立方根是___________.6.若关于x,y的二元一次方程组59x y kx y k的解也是二元一次方程236x y的解,则k的值为____________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y2.已知关于x,y的方程组54522x yax by与2180x yax by有相同的解,求a,b的值.3.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、x≥33、60°或20°4、50°5、26、3 4三、解答题(本大题共6小题,共72分)1、21 xy2、12 ab.3、(1)证明见解析(2)2-14、36平方米5、(1)40;(2)72;(3)280.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。

苏教版七年级数学上册期末试卷及答案-江苏初一数学试卷

苏教版七年级数学上册期末试卷及答案-江苏初一数学试卷

苏教版七年级数学上册期末试卷及答案:江苏初一数学试卷第一学期期末考试题初一数学(本试卷满分100分,在90分钟内完成)题号一二三四总分1234567得分一.填空题:(第1-----11题每空1分,第12—15题每空2分,共25分)1.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有.2.用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是.3.深圳市某天早晨的温度是12°C,中午上升了9°C,夜间下降了6°C,则这天夜间的温度是.4.+8与互为相反数,请赋予它实际意义:5.用科学记数法表示:xxxx=.6.甲、乙争论“和哪个大(是有理数)”.甲:“一定比大”.乙:“不一定”.又说:“你漏掉了两种可能.”BAOCD请问:乙说的是什么意思?答:;.7.的平方的3倍与-5的差,用代数式表示为,当时,代数式的值为.8.如图,是按照某种规律排列的多边形:第20个图形是边形,第41个图形的颜色是色.9.如图:∠AOB=∠COD=90°,∠AOD=130°,则∠BOC的度数是.10.数轴的A点表示-3,让A点沿着数轴移动2个单位到B点,B点表示的数是;线段BA上的点表示的数是.11.北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是.12.如图,A点表示数,B点表示数,在中正数是.01-1-2AB。

13.A、B、C是直线上的三点,BC=AB,若BC=6,则AC的长等于.14.一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则该彩电的标价为元.15.某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水吨.二.选择题(每题2分,共20分,将答案直接填在下表中)题号12345678910答案1.下面的算式:①.-1-1=0;②;③(-1)2004=2004;④-42=-16;⑤⑥,其中正确的算式的个数是A.1个B.2个C.3个D.4个2.下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A.①,②B.②,③C.③,④D.④,①3.下列图形中,是正方体的展开图是:①②③④A.①②B.③④C.③D.④4.在8:30这一时刻,时钟上的时针和分针之间的夹角为A.85°B.75°C.70°D.60°5.与是同类项,那么等于A.-2B.-1C.0D.16.下列说法正确的是:A.经过一点可以作两条直线;B.棱柱侧面的形状可能是一个三角形;C.长方体的截面形状一定是长方形;D.棱柱的每条棱长都相等.7.下列算式正确的是:A..B..C..D.8.下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度;②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3, (10)把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片.④元旦节这一天刚好是1月1日.A.①,②B.①,③C.①,④D.③,④9.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A.教室地面的面积.B.黑板面的面积.C.课桌面的面积.D.铅笔盒盒面的面积10.下列说法,正确的是①.用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X米,则可列方程为2(X+X-1)=10.②.小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③.X表示一个两位数,把数字3写到X 的左边组成一个三位数,这个三位数可以表示为300+X.④.甲、乙两同学从学校到少年宫去,甲每小时走4千米,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程A.①,②B.①,③C.②,④D.③,④三.计算题(要求写出详细的计算过程,不准用计算器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(A )(C )(D )(B )A . B . C . D .初一数学提优试题(难题)1.下列图形中,不能通过其中一个四边形平移得到的是( )2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°, ∠2=50°,则∠3的度数等于( ) A .50° B .30° C .20° D .15°3.关于x 、y 、z 的方程组123x y a y z a z x a+=⎧⎪+=⎨⎪+=⎩中,已知a 1>a 2>a 3,那么将x 、y 、z 从大到小排起来应该是( )。

A .x>y>zB .y>x>zC .z>x>yD .无法确定4、若方程组⎩⎨⎧-=++=+a y x ay x 13313的解满足y x +=0,则a 的取值是( ) A 、a =-1 B 、a =1 C 、a =0 D 、a 不能确定5.画△ABC 中AC 边上的高,下列四个画法中正确的是( )6.如图, 已知AB ∥CD ,则∠A 、∠E 、∠D 之间的数量关系为 .7.如图,把一块含45︒角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30︒,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为( ) A .10°B .15°C .30︒D .35°A CDBA . ACD B B .ACD B C .ABC DD .a b218.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,已知∠BEF=30︒,则∠CMF=________︒.9.如图,直角△ABC沿点B到点C的方向平移到△DEF的位置,若AB=6,DH=2,平移距离为3,则阴影部分DHCF 的面积等于.10、如图,两个完全一样的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,EH=7,平移距离是5,则图中阴影部分的面积为________________.(第16题图)11、如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=80º,则∠BFD=________。

12、已知在△ABC中,已知点D、E、F分别为BC、AD、CE的中点,且S△ABC=4cm2,则S△BEF 的值为______________cm2.13.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则与和之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是A.B.C.D.14.如图,将一个长方形纸条折成如图的形状,若已知∠1=130︒,则∠2= ︒.12ACBEFDGHN M(第17题图)DABFE(第18题图)C第13题15在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 变换为点A′,点B ′、C ′分别是B 、C 的对应点.(1)请画出平移后的△A ′B ′C ′.并求△A ′B ′C ′的面积.(2)若连接AA ′,CC ′,则这两条线段之间的关系是________.16. (7分)在△ABC 中(1)若∠A=60°,AB 、AC 边上的高CE 、BD 交于点O 。

求∠BOC 的度数。

(如图)(2分)(2)若∠A 为钝角,AB 、AC 边上的高CE 、BD 所在直线交于点O ,画出图形,并用量角器量一量∠BAC+∠BOC=____ __°,再用你已学过的数学知识加以说明。

(4分)(3)由(1)(2)可以得到,无论∠A 为锐角还是钝角,总有∠BAC+∠BOC=__ __°。

(1分) 17.(6分)如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F .∠1=∠2,且∠3=115°,求∠ACB 的度数.18.(本题共5分)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知AB ∥CD ,BE 、CF 分别平分∠ABC 和∠DCB ,求证:BE ∥CF . 证明:∵AB ∥CD ,(已知)∴∠_____=∠_____.( ) ∵ ,(已知)AB CDFE ABC A′第(18)题321GFE D CBA∴∠EBC =12∠ABC .(角的平分线定义) 同理,∠FCB = . ∴∠EBC =∠FCB .(等式性质)∴BE ∥CF .( )19.(本题共7分) 如图,已知△ABC 中,AD 是高,AE 是角平分线. (1)若∠B =20︒,∠C =60︒,则∠EAD =_______︒;(2)若∠B =a ︒,∠C =b ︒(b >a ),试通过计算,用a 、b 的代数式表示∠EAD 的度数;(3)特别地,当△ABC 为等腰三角形(即∠B =∠C )时,请用一句话概括此时AD 和AE 的位置关系:______________________________.20.(本题共8分)小玲只画了下图就得出“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等”这个论断,你是否认同小玲的观点?如果认同,则给出证明;如果不认同,则画出所有可能的情况,猜想相应的结论,并给出证明.21(1)已知AB ∥CD ,EF ∥MN ,且∠BOH=110°,求∠DHF 和∠CGN 的度数. (2)请你观察(1)中的结果,找出其中的规律,并用文字表述出来.(3)根据(2)中的结论,若两个角的两边分别平行,且其中一个角的度数是另一个角的2倍,求这两个角的度数.A BECDFAC DE B22.(本题共8分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图,∠FDC 与∠ECD 分别为△ADC 的两个外角,试探究∠A 与∠FDC +∠ECD 的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图,在△ADC 中,DP 、CP 分别平分∠ADC 和∠ACD ,试探究∠P 与∠A 的数量关系.探究三:若将△ADC 改为任意四边形ABCD 呢?已知:如图,在四边形ABCD 中,DP 、CP 分别平分∠ADC 和∠BCD ,试利用上述结论探究∠P 与∠A +∠B 的数量关系.探究四:若将上题中的四边形ABCD 改为六边形ABCDEF 呢? 请直接写出∠P 与∠A +∠B +∠E +∠F 的数量关系:_______________________________.23.某地生产一种绿色蔬菜,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但这两种加工方式不能同时进行.因受季节等条件影响,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,为此,公司研制了三种可行方案:ADC F EADPDC BAEDCBA ZYXCBA 291DG G G CBA ...方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的到市场直接销售;方案二:将一部分蔬菜进行粗加工,其余部分进行精加工,并恰好用15天完成. 你认为选择哪种方案获利最多?为什么?24附加题: (20分)如图(1)所示的图形,像我们常见的学习用品——圆规。

我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题: ()1观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由;图(1)(2)请你直接利用以上结论......,解决以下三个问题: ①如图(2),把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX +∠ACX =__________°;图(2) 图(3) 图(4)②如图(3)DC 平分∠ADB , EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图(4),∠ABD ,∠ACD 的10等分线相交于点G 1、G 2 、G 9,若∠BDC =140°, ∠BG 1C =77°,求∠A 的度数.24.(本题10分)已知平面内有n (n ≥3,且n 为整数)个点,其中无任何三点在同一条直线上.过其中任意两点画线段,可得n a 条线段;以其中任意三点为顶点画三角形,可得n b 个三角形.(1)请你依照题意,在图③、图④中完成作图; (2)观察图形,完成下表:n 3 4 5 6 示意图 图① 图② 图③ 图④ n a 3 6 n b14(3)照此规律,=n a ;1n n b b --= .25. (本题8分)如图:将△ABC 纸片沿DE 折叠成图①,此时点A 落在四边形BCDE 内部,则∠A 与∠1、∠2之间有一种数量关系保持不变, (1)请找出这种数量关系并说明理由.(2)若折成图②或图③,即点A 落在BE 或CD 上时,分别写出∠A 与∠2;∠A 与∠1之间的关系;(不必证明)(3)若折成图④,写出∠A 与∠1、∠2之间的关系式;(不必证明);若折成图⑤,写出∠A 与∠1、∠2之间的关系式.(不必证明)(第25题)F DDAB CEDEAB C AB CC B A 图②图③ 图④图①。

相关文档
最新文档