21.2二次根式的乘除(第二课时)教案
数学:人教版九年级上 21.2 二次根式的乘除(教案)
课题:21.2二次根式的乘除一、教学目标1.经历二次根式乘法法则的形成过程,会进行简单的二次根式的乘法运算.2.会利用积的算术平方根的性质化简二次根式.二、教学重点和难点1.重点:二次根式的乘法法则.2.难点:二次根式的化简.三、教学过程(一)创设情境,导入新课师:前面我们学习了二次根式的概念和性质,从本节课开始我们要学习二次根式的乘除(板书课题:21.2二次根式的乘除),这节课我们先学习二次根式的乘法.(二)尝试指导,讲授新课师:,并指准)这是一个二次根式,这也是一个二次根式,这两个二次根式怎么相乘呢?(稍停)还是让我们先来看几个具体的例子.师:⨯⨯2等于3(边讲边板书:=2×3)⨯等于6(边讲边板书:=6).师:,等于什么?讲边板书:6(边讲边板书:=6).师:⨯66,⨯⨯.师:我们再来看一个例子.师:⨯⨯.(生计算)师:你算出的结果是什么?生:20.(多让几名同学回答)师:⨯等于45(边讲边板书:=4×5),20(边讲边板书:=20).师:等于什么?大家算一算.(生计算)师:你算出的结果是什么?生:20.(多让几名同学回答)师:)等于20(边讲边板书:=20).师:(指准等式)⨯等于20,也等于20,所以⨯⨯.师:⨯⨯,从这两个等式,你能发现什么规律?(让生思考一会儿)师:⨯=⨯等于什么?生:……(多让几名同学回答)师:(⨯⨯,也就是等于.师:⨯=⨯.)师:师:乘法法则).师:a是被开方数,所以a必须大于等于0;因为b也是被开方数,所以b也必须大于等于0(边讲边板书:(a≥0,b ≥0)).师:下面我们利用二次根式的乘法法则来做几个题目.(师出示例1)例1 计算:⨯;⨯(以下师边讲解边板书,解题过程如课本第7页所示)(三)试探练习,回授调节1.计算:⨯=⨯(四)尝试指导,讲授新课师:)刚才我们做的这个题目的结果是什么?简.怎么化简?师:),(边讲边板书:.师:再叫学生)生:……(让一两名学生发表看法)师:(指准式子),所以反过来,,所以化结果是.师:化简的目的是把被开方数中的因数开方后移到根号外,化简时要用到一个等式,这个等式.师:这个等式反过来得到的.师:下面我们来化简几个二次根式.(师出示例2)例2 化简:;(师边讲解板书,(1)(2)小题解题过程如课本第8页所示,(3)小题解题过程如下)((2)小题教学时,暂时不要说明本章字母都表示正数这个约定,以免使问题复杂化)(五)试探练习,回授调节2.化简:= == == == == =====(六)归纳小结,布置作业那个题)这就是二次根式乘法法则;运用法则后,如果得到的二次根式还可以化简,就要化简二次根式.化简的目的是把像4这样的因数或因式开方后移到根号外.(作业:P8练习1.2.)四、板书设计课题:21.2二次根式的乘除(第2课时)一、教学目标1.会进行二次根式的乘法运算.2.培养学生的运算能力.二、教学重点和难点1.重点:二次根式的乘法运算.2.难点:正确地进行乘法运算.三、教学过程(一)基本训练,巩固旧知1.(a≥0,b≥0)2.计算:⨯⨯3.化简:= == == == == == =(二)创设情境,导入新课(师出示下面的板书)≥0,b≥0)(a≥0,b≥0)师:上节课我们学习了二次根式的乘法法则和二次根式的化简.(指准板书),利用用这个等式可以化简二次根式.师:(指准板书)会运用乘法法则,会化简二次根式,就会做二次根式乘法了.为什么这么说?(稍停)因为做二次根式的乘法实际上就是做这两件事,一件事是运用乘法法则,一件事是化简二次根式.师:下面我们来做几个二次根式乘法的题目.(三)尝试指导,讲授新课(师出示例题)例计算:⨯(2)⨯;⨯((1)(2)小题第一步运用法则,第二步化简;(3)小题第一步化简,第二步运用法则,第三步化简.教学时,师边讲解边板书,(1)(2)小题的解题过程如课本第11页所示,(3)小题的解题过程如下)⨯⨯=⨯=师:(指例题)我们做了三道二次根式的乘法,从这三道题目,哪位同学会归纳做二次根式乘法的步骤?生:……(让一两名好生归纳)师:(指准(3)小题)做二次根式的乘法,第一步:先看二次根式能不能化简,如果能化简先要化简;第二步:运用二次根式的乘法法则;第三步:再看所得的二次根式能不能化简,如果能化简还要化简.简单地说,就是化简——运用法则——再化简.(四)试探练习,回授调节4.计算:⨯= = = = = = = =(3)⨯⨯⨯= == == == =5.cm和,则这个矩形的面积为cm2.(五)归纳小结,布置作业师:本节课我们做了几道二次根式的乘法,请大家在脑子里想一想,做二次根式乘法的步骤是什么?(让生想一会儿)(作业:P12习题1.4.5.)四、板书设计课题:21.2二次根式的乘除(第3课时)一、教学目标1.知道二次根式的除法法则,会运用法则进行简单的二次根式的除法运算.2.会利用商的算术平方根的性质化简二次根式.二、教学重点和难点1.重点:二次根式的除法法则.2.难点:二次根式的化简.三、教学过程(一)基本训练,巩固旧知1.计算:= == ======(二)创设情境,导入新课师:前面我们学习了二次根式的乘法,这节课我们要学习二次根式的除法(板书课题:21.2二次根式的乘除)(三)尝试指导,讲授新课师:谁来说说二次根式的乘法法则?(板书:乘法法则)生:……(让一两名学生回答)≥0,b≥0)),这就是二次根式的乘法法则.师:二次根式的除法法则也是类似的(板书:除法法则).师:叫学生)生:……(让几名学生发表看法)=.师:(指等式)在这个等式中,a必须大于等于0,b必须大于0(边讲边板书:(a ≥0,b>0)).师:(指准板书)这是二次根式的乘法法则,这是二次根式的除法法则,两个法则是类似的,大家仔细看一看,对比对比(生观察对比).师:下面我们就利用除法法则来做几个题目.(师出示例1)例1 计算:÷(四)试探练习,回授调节2.计算:(2= == == =÷÷= == == == =(五)尝试指导,讲授新课师:÷)刚才我们做的这个题目的结果是什么?简.怎么化简?).师:生:……(让一两名学生发表看法)师:(指准式子)我们知道,.,所以化简结果是2(板书:=2).师:化简的目的是把被开方数的分母开方后移到根号外,化简时要用到一个等式,这个等式就.师:来得到的.师:下面我们利用这个等式来化简二次根式. (师出示例2) 例2 化简:; (师边讲解边板书,解题过程如课本第10页所示) (六)试探练习,回授调节 3.化简:= = = = = = (五)归纳小结,布置作业师:本节课我们学习了二次根式的除法法则,这个等式就是二次根式的除法法则,把这个等式反过来,(指等式),利用它可以化简二次根式.(作业:P12习题2.3.)四、板书设计课题:21.2二次根式的乘除(第4课时)一、教学目标1.会利用第二种方法(分母有理化)进行二次根式的除法运算.2.培养运算能力,渗透转化思想.二、教学重点和难点1.重点:利用第二种方法进行二次根式的除法运算.2.难点:两种方法的选择.三、教学过程(一)基本训练,巩固旧知1.填空:(1) (a≥0,b≥0);= (a≥0,b>0).(2)2.计算:= == == == =÷= == == == =(二)创设情境,导入新课师:≥0,b>0))这是二次根式的除法法则,上节课我们用这个法则做二次根式的除法.实际上,利用法则只是做二次根式除法的第一种方法(板书:第一种方法),做二次根式的除法还有第二种方法(板书:第二种方法).师:那么,怎么用第二种方法做二次根式的除法呢?(三)尝试指导,讲授新课师:还可以怎么除?(稍停),分母成了2(边讲边板书:),讲边板书:=b).师:(指准板书)第二种方法是怎么做的呢?(稍停)第二种方法是通过分子分母同乘分母中的那个二次根式,来去掉分母中的根号,从而把二次根式的除法转化为二次根式的乘法.(如有必要可再讲一遍)师:下面我们就用第二种方法来做几个题目.(师出示例题)例计算:.(师边讲解边板书,解题过程如课本第10页所示)师:(指例题)做了几道题目,哪位同学能归纳用第二种方法做二次根式除法的步骤?生:……(让一两名好生归纳)师:(指准(2)小题)用第二种方法做二次根式的除法,一般有这么三步,第一步:个二次根式,去掉分母中的根号;第三步:做二次根式的乘法.师:按这样的步骤,下面请同学们自己来做几个题目.(四)试探练习,回授调节3.计算:(五)尝试指导,讲授新课师:(指准板书)做二次根式的除法有这么两种方法,一种是利用法则来做,一种是去掉分母中的根号,把二次根式的除法转化为乘法来做.可能有同学会问:做题的时候,用哪一种方法做会更简单呢?这要看具体的题目.师:(指准式子)被开方数24除以3,商是一个整数,用第一种方法比较简单.师:÷÷(指准式子)被开方数3 2除以118,商等于27,商也是一个整数,也是用第一种方法比较简单.师:我们再来看这个例题,3除以5,商不是整数,用第二种方法比较简单.同样,(指(2)(3)题)这两个小题也是用第二种方法比较简单.师:总之,两个二次根式相除,如果它们的被开方数的商是整数,一般用第一种方法比较简单;如果商不是整数,一般用第二种方法比较简单.÷一种方法比较简单.之所以这样说,只是为了教学上的方便)(以下师出示写有下面式子的卡片,让生判断用哪种方法比较简单)÷(六)归纳小结,布置作业师:好了,最后我们把这节课的内容来小结一下.师:(指准板书)做二次根式的除法有两种方法,一种方法是利用法则来做,一种方法是去掉分母中的根号,把二次根式的除法转化为乘法来做.对任何一个二次根式的除法题,两种方法都可以做,但有的题目用第一种方法比较简单,有的题目用第二种方法比较简单.所以,同学们要学会根据题目的特点来选择合适的方法.(作业:P12习题6)课外补充作业4.选择合适的方法计算:÷四、板书设计课题:21.2二次根式的乘除(第5课时)一、教学目标1.知道什么是最简二次根式,能把所给的二次根式化成最简二次根式.2.培养运算能力,发展数感. 二、教学重点和难点1.重点:最简二次根式. 2.难点:最简二次根式的概念. 三、教学过程(一)基本训练,巩固旧知1.计算:÷=(二)尝试指导,讲授新课师:刚才我们做了两道二次根式的除法,有同学是这样做的,大家看一看他做的对不对.师:(板书:÷÷(边讲边板书:.师:(板书:)第(2)讲边板书:. 师:这位同学做的如何,你有什么评论?(让生思考一会儿,再叫学生) 生:……(多让几名同学发表看法)师:这位同学利用法则计算,这有没有错?没错.问题出在什么地方?(稍停)问题出在他没有把结果化简..),等于(边讲边板书:=.师:(指准.讲边板书:,结果等于2讲边板书:=2.师:.师:所以它们不是最简二次根式,不能再化简了,所以它们是最简二次根式.从这两个例子,请大家想一想,什么样的二次根式是最简二次根式?(让生思考一会儿,再叫学生)生:……(多让几名同学发表看法)师:(指准被开方数28中含有能开得尽方的因数4.可见,最简二次根式首先要满足这样一个条件.(师出示下面的板书)(1)被开方数中不含能开得尽方的因数或因式;师:(指板书)被开方数不含能开得尽方的因数或因式.师:这是一个条件,下面我们来看第二个条件.师:32中含有分母.可见,最简二次根式要满足的第二个条件是:(师出示下面的板书)(2)被开方数不含分母.师:(指准板书)被开方数不含分母.师:(指准板书)我们把同时满足这样两个条件的二次根式叫做最简二次根式.师:6不含能开得尽方的因数,而且被开方数6.师:下面我们来看一道例题.(师出示例题)例下列二次根式中,哪些不是最简二次根式,并把它们化成最简二次根式:(生让生尝试,然后师边讲解边板书,解题过程如下)不是最简二次根式.=2==a=5(三)试探练习,回授调节2.下列二次根式中,哪些不是最简二次根式,并把它们化成最简二次根式:3.把下列各式化成最简二次根式:(1)(2)x=(四)归纳小结,布置作业师:本节课我们学习了最简二次根式,什么是最简二次根式?从字面上讲,最简二次根式就是化得最简的二次根式,换句话说,就是不能再化简的二次根式.这种二次根式有两个特点,(指准板书)第一个特点是,被开方数中不含能开得尽方的因数或因式;第二个特点是,被开方数不含分母.师:知道了什么是最简二次根式,对我们做二次根式的乘法和除法有很大的帮助.有什么帮助?(稍停)它可以帮助我们判断题目有没有做完,如果结果是最简二次根式,说明题目做完了;如果结果不是最简二次根式,说明题目还没有做完,还要继续化简,直到化成最简二次根式为止.(作业:P11练习2.P12习题7.)四、板书设计。
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案教学目标:1. 理解二次根式乘除的运算性质和法则。
2. 掌握二次根式相乘、相除的运算方法。
3. 能够熟练地进行二次根式的乘除运算。
教学重点:1. 二次根式乘除的运算性质和法则。
2. 二次根式相乘、相除的运算方法。
教学难点:1. 二次根式乘除的运算规律。
2. 如何在实际运算中灵活运用运算性质和法则。
教学准备:1. 教师准备PPT教案,包括二次根式乘除的运算性质和法则,以及相关例题和练习题。
2. 学生准备笔记本,用于记录教学内容和练习题。
教学过程:一、导入(5分钟)1. 复习上节课的内容,回顾二次根式的定义和基本性质。
2. 提问:同学们,上节课我们学习了二次根式的加减运算,今天我们将学习二次根式的乘除运算,你们认为二次根式的乘除运算会是什么样的呢?二、新课讲解(20分钟)1. 讲解二次根式乘除的运算性质和法则。
2. 通过PPT展示例题,讲解二次根式相乘、相除的运算方法。
3. 强调在实际运算中灵活运用运算性质和法则的重要性。
三、课堂练习(15分钟)1. 学生独立完成PPT上的练习题。
2. 教师挑选部分学生的作业进行讲解和点评。
四、总结与反思(5分钟)1. 学生总结本节课所学内容,分享自己的学习心得。
2. 教师对学生的学习情况进行点评,并对后续学习提出要求。
五、课后作业(课后自主完成)1. 根据课堂所学,完成课后作业。
2. 复习本节课的内容,为下一节课做好铺垫。
教学评价:1. 学生课堂参与度。
2. 学生课堂练习的正确率。
3. 学生课后作业的完成情况。
4. 学生对二次根式乘除运算的掌握程度。
六、教学活动设计(20分钟)1. 设计具有代表性的例题,让学生通过独立思考、讨论交流的方式,探索二次根式乘除的运算方法。
2. 设计不同难度的练习题,让学生在练习中巩固所学知识,提高运算能力。
3. 设计互动环节,让学生分享自己的解题思路和方法,互相学习,共同进步。
七、教学策略(15分钟)1. 采用问题驱动的教学方法,引导学生主动探究二次根式乘除的运算规律。
2022年华师大版《二次根式的乘法》公开课教案
21.2 二次根式的乘除1.掌握二次根式乘法法那么;(重点)2.会进行二次根式的乘法运算.(重点、难点)一、情境导入 小颖家有一块长方形菜地,长6m ,宽3m ,那么这个长方形菜地的面积是多少?二、合作探究探究点:二次根式的乘法【类型一】 二次根式的乘法法那么成立的条件 式子x +1·2-x =〔x +1〕〔2-x 〕成立的条件是( )A .x ≤2B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0,解得 -1≤x ≤2.应选C.方法总结:运用二次根式的乘法法那么:a ·b =ab (a ≥0,b ≥0),必须注意被开方数均是非负数这一条件.【类型二】 二次根式的乘法运算计算:(1)3×5;(2)14×64; (3)627×(-33); (4)3418ab ·⎝⎛⎭⎫-2a 6b 2a . 解析:有理式的乘法运算律及乘法公式对二次根式同样适用,计算时注意最后结果要化为最简形式.解:(1)3×5=3×5=15;(2)14×64=14×64=16=4; (3)627×(-33)=-1827×3=-1881=-18×9=-162;(4) 3418ab ·⎝⎛⎭⎫-2a 6b 2a = -34·2a ·18ab ·6b 2a =-32a ·36×3b 3= -32a ·6b 3b =-9b a 3b . 方法总结:在运算过程中要注意根号前的因数是带分数时,必须化成假分数,如果被开方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.三、板书设计在教学安排上,表达由具体到抽象的认识过程.对于二次根式的乘法法那么的推导,先利用几个二次根式的具体计算,归纳出二次根式的乘法运算法那么.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,这样安排有助于学生缜密思考和严谨表达,更有助于学生合作精神的培养.第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。
21.2二次根式的乘除(二)
12a , 18, x 9 , 5 x y , 27abc,
2 3
×
×
√
×
×
ab 3 xy 2 2 2 x y, , , 5(a b ) 2 5
2
√
× √
√
分母有理化
2 2 3 6 6 2 3 3 3 3 ( 3)
2 3 2 3 3 3 2 6 2 8 2 2 2 2 2
解:(1)
2 1 (2) 3 18
2 1 3 18
2 18 3
12 2 3
练习
计算:
32 (1) 2 50 (2) 10
1 1 (4)2 1 5 2 6
1 7 (3) 4 5 10
如果根号前有系数,就把系数相 除,仍旧作为二次根号前的系数。
探究2
a b
a b
2 2 23 6 6 6 2 2 3 3 3 3 3 3 3 为了去掉分母中的根号 解法二:
2 2 3 6 6 2 3 3 3 3 ( 3)
2 3 2 3 3 3 2 6 (2) 8 2 2 2 2 2 2 27 27 3x 9 x 3 x (3) 3x x 3x 3x 3x
在二次根式的运算中, 最后结果一般要求 (1)分母中不含有二次根式.
(2)最后结果中的二次根式要求写成最简的二次 根式的形式.
最简二次根式
1、被开方数不含分数或小数; 2、被开方数中不含能开得尽方的因 数或因式。 我们把满足上述两个条件的二次根 式,叫做最简二次根式。
探究
下列根式中,哪些是最简二次根式?
-4 2 7 -4 14 -4 2 = () = ; 解: 1 3 7 7 21 3 7
§21.2.2-二次根式的除法
1. 二次根式的除法有两种常用方法:
(1)利用公式:
a a (a 0,b 0) bb
(2)把除法先写成分式的形式,再进行分母有理化运算。
a= a
b
b
a 0,b 0
2.最简二次根式、分母有理化及有理化因式的概念;
注意: 在进行分母有理化之前,可以先观察把能化 简的二次根式先化简,再考虑分母有理化。
那么2 a - 3 b和2 a + 3 b互为有理化因式。
一般地,a x与 x互为有理化因式; a x + b y与a x - b y互为有理化因式。
练一练:
1、化简下列各式(分母有理化):
(1)-8 3 8
(2)3 2 27
(3) 5a 10a
(4)2y 2 4xy
说明;1、在进行分母有理化之前,可以先观察把 能化简的 二次根式先化简,再考虑如何化去分母 中的根号。
作业本: 第12页习题21.2 第2、 3、6题
练习本: 第11页练习 第1、2、3题 选作:第12页习题21.2 第7、8、9题
3、如图,在Rt△ABC中,∠C=900,∠A=300,
AC=2cm,求斜边AB的长
B
解:设BC x,因为在RtΔABC中,
C 900,A 300,所以,AB 2x A
解:原式 64 64 8 11 49 49 7 7
辨析训练
判断下列各等式是否成立。
× √ (1) 16 9 4 3( )(2) 3 3 ( ) 22
× × (3) 41 2 1 ( 22
)(4) 2
52 99
5(
)
(5) 4 4 4 4( √ )(6)5 5 5 5 ( √)
21.2二次根式的乘除(共4课时)
21.2二次根式的乘除(共四课时)第一课时:二次根式的乘法例1.计算(1)×(2)×(3)×(4)×分析:直接利用·=(a≥0,b≥0)计算即可.例2 化简(1)(2)(3)(4)分析:利用=·(a≥0,b≥0)直接化简即可.三、比一比谁最强(每组一个代表展示)1.化简:(1)612⨯;(2)15432⨯;(3)aba216⋅.2.化简:(1)12149⨯;(2)289;(3)28y;(4)4364zxy.(5)3.一个矩形的长和宽分别是10cm和cm22,求这个矩形的面积.四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正: (1)(2)×=4××=4×=4=8课堂小结(1) ·==(a ≥0,b ≥0),=·(a ≥0,b ≥0)及其运用.求这个等边三角形的面积六、课后练习 1.计算:(1)57⨯; (2)2731⨯;(3)155⨯; (4)8423⨯. 2.化简: (1)3227yx ;(2)aba 1832⋅.3.等边三角形的边长是3,第二课时:二次根式的除法例1.计算: (1)(2)(3)(4)练习1.例2 化简.例3 计算 .;1050(2) ; 232)1(()1075143÷6152112)4(÷()()2925210031;yx ()()()a283;27232;531练习把下列各式化简:课堂小结1.利用商的算术平方根的性质化简二次根式. 2.二次根式的除法常用方法. 3.化简二次根式的常见方法. 四、课堂知识反馈1.在横线上填写适当的数或式子使等式成立. ()()()()()()()()6234113105522481=-=⨯-=⨯=⨯a a2.把下列各式的分母有理化:()()()()xyyaa 42410532723283812-3.计算: ()()⎪⎪⎭⎫⎝⎛-÷÷-41223481929519173241-)(b a 22+)(a40323)(第三课时:最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重点:最简二次根式的运用.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1,(2),(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1 km,•那么它们的传播半径的比是_________.h2二、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是..例1.(1) ;例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.三、巩固练习教材P11练习2、3四、应用拓展例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:==-1,==-,同理可得:=-,……从计算结果中找出规律,并利用这一规律计算(+++……)(+1)的值.五、归纳小结本节课应掌握:最简二次根式的概念及其运用.六、课后练习一、选择题A C1(y>0)是二次根式,那么,化为最简二次根式是( ).A (y>0)B y>0)C yy>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A .. 3.在下列各式中,化简正确的是( )A =±12C 2D .4-的结果是( )A .-3B .2C .-3D . 二、填空题1.(x ≥0)2.化简二次根式号后的结果是_________.三、综合提高题1.已知a 是否正确?若不正确,•请写出正确的解答过程:·1a(a-12.若x 、y 为实数,且y=12x +第四课时:二次根式的乘除(复习)梳理基本知识1、=(a≥0,b≥0),=·(a≥0,b≥0),2、=(a≥0,b>0),反过来=(a≥0,b>03、计算(1)×(2)(4)二、应用拓展例1.已知,且x为偶数,求(1+x)的值.例2.探究过程:观察下列各式及其验证过程(1)2=验证:2=×====(2)3=验证:3=×====()1075143÷同理可得:4 5,……通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.三、归纳小结本节课你学到了什么四、课堂练习一、选择题1.计算的结果是().A. B. C. D.2.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是().A.2 B.6 C. D.二、填空题1.分母有理化:(1) =______;(2) =______;(3) =______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)3.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?。
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案一、教学目标1. 理解二次根式乘除的运算规则。
2. 能够正确进行二次根式的乘除运算。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学重点与难点1. 教学重点:二次根式乘除的运算规则及应用。
2. 教学难点:理解并掌握二次根式乘除的运算过程。
三、教学准备1. 教师准备:教案、PPT、例题及练习题。
2. 学生准备:笔记本、笔、计算器。
四、教学过程1. 复习导入(5分钟)复习上节课的内容,回顾二次根式的定义及性质。
提问学生:如何进行二次根式的乘除运算?引发学生思考,为本节课的学习做好铺垫。
2. 知识讲解(15分钟)讲解二次根式乘除的运算规则,通过PPT展示例题,逐步引导学生理解并掌握运算过程。
例1:计算$\sqrt{2} \times \sqrt{3}$解:$\sqrt{2} \times \sqrt{3} = \sqrt{2 \times 3} = \sqrt{6}$例2:计算$\sqrt{8} \div \sqrt{4}$解:$\sqrt{8} \div \sqrt{4} = \sqrt{\frac{8}{4}} = \sqrt{2}$通过例题,让学生明白二次根式乘除的运算规则:同底数相乘除,指数相加减。
3. 课堂练习(15分钟)让学生独立完成练习题,检验学生对二次根式乘除运算的掌握情况。
教师应及时给予解答和指导。
练习题:1. 计算$\sqrt{3} \times \sqrt{5}$2. 计算$\sqrt{16} \div \sqrt{4}$3. 计算$\sqrt{2} \times \sqrt{2} \times \sqrt{3}$4. 计算$\sqrt{18} \div \sqrt{9}$5. 计算$\sqrt{6} \times \sqrt{2} \div \sqrt{3}$4. 拓展提高(10分钟)引导学生思考:如何计算不同底数二次根式的乘除运算?让学生通过小组讨论,共同探索解答方法。
21.2《二次根式的乘除》2课件
5
D.
50
2.计算: (1) 18
8
5 21 (2) 7 10
2
3a 12b (3) 5 21a
( 4)
1000 m 150 m
3
融会贯通
2.化简: (1)15
12 2 45
1 7 3 4 5 10
2 ( 2) 3 40
1 1 (4)2 1 5 2 6
融会贯通
B 能力训练
举一反三
例3:计算
解:
1
3 5
3 2 2 27
3
8 2a
1 解法1..
3 3 15 15 15 3 5 5 25 5 5 5 5 25
3 3 5 15 解法2.. 5 5 5 5
在二次根式的运算中, 最后结果要求:
(1)分母中不含有二次根式.
2 3
3 1 3 18 3 9 3 3 2 18 2
2
3 1 2 18
举一反三
3 例2 化简: 1) ( 100
36 a (2) 2 25b
3 解: 1) ( 100
3 100 10
6 a 2 5b 25b 36 a
3
36 a (2) 2 25b
找学生口述解题过程,教师将过程写在黑板上.
A C
解:∵AB2=AC2+BC2 AC 2 BC 2 ∴AB
2.52 6 2
B
5 2 2
36
169 4 13 2 6.5(cm)
答:AB的长为6.5cm.
趁热打铁
练习1: (1) 18 2
72 ( 2) 6
b b (3) 2a 6a (4) 2 5 20 a
21.2 二次根式的乘除 课件(人教版九年级上)
1 (1)当2x+1≥0,即x≥- 时, 2 2 x+1 在实数范围内有意义;
1 6x - 1 ∴ 当x≥ 且x≠1时, 在实数 6 1- x
范围内有意义.
2.在实数范围内分解因式: (1)x2-3;(2)x2- 2 2 x+2.
3.把(a-2)
1 根号外的因式 2-a
移到根号内后,其结果是2来自2 3解析:对于(2)题先把根号外面的 解析:直接利用 ab = a · b (a 有理数相乘, 再利用二次根式的乘法 ≥0,b≥0)进行化简. 法则进行计算.
答案:(1) 24 × 6 = 24 6 =
2 6 = 2 × 6 =2×6=12;
2 2
2
答案:(1) 121 49 = 121 × 49 =11×7=77; (2) 25x y z = 25 ×
.
利用二次根式的性质3=( 3 ) , 2=( 2 )2,结合平方差公式和 完全平方式进行因式分解. (1) x -3= (x+ 3 ) (x- 3 ) . (2)x2- 2 2 x+2=(x- 2 )2.
2
2
在运用a= a 中的字母a为非
2
负数,只有非负数才能转移到 根号内如果字母a为负数可化 为a=-|a|=- a .
2 2 3
2
x ×
2
(2) 2 3 × 3 15 × 4 5 =(2×3× 4) 3 15 5 =24
2
y × z × z =5|xyz|
2
2
z.
3 5 =24 3
2 2
2
× 5 =24×3×5=360.
例8.计算: 3 16 x 例7.化简: ( 1) ; ( 2) ; 1 2 64 49 y (1) 2 ÷ 3 28 ×(- 5 2 ); 2 7 64a c (3) . 1 b 5 2 225b (2) ab ×(- ab )÷ . a a 3 a b 5 解析:直接利用 = (a≥0,b 解析: 二次根式的乘除混合运算仍是 b b
八年级数学上册《二次根式的乘除运算》教案、教学设计
(3)实施分层教学,针对不同学生的学习需求,提供个性化的辅导。
(4)利用信息技术,如多媒体课件、网络资源等,丰富教学手段,提高教学效果。
2.教学过程:
(1)导入:通过一个简单的实际问题,引导学生回顾二次根式的定义,为新课的学习做好铺垫。
(2)新课:以实例为主线,引导学生发现二次根式乘除运算的规律,并通过练习加以巩固。
(2)探索以下问题:
a.两个二次根式相乘,它们的根号下的数相乘,结果为什么?
b.两个二次根式相除,它们的根号下的数相除,结果为什么?
(3)查找相关资料,了解二次根式乘除运算在生活中的应用,下节课与同学分享。
3.思考题:
(1)如何将复杂的二次根式乘除运算简化?
(2)在实际问题中,如何运用二次根式乘除运算解决问题?
(二)过程与方法
在教学过程中,采用以下方法引导学生学习:
1.采用问题驱动的教学方法,激发学生的学习兴趣和探究欲望。
2.通过实例分析,引导学生发现二次根式乘除运算的规律。
3.设计丰富的课堂练习,让学生在实践中掌握二次根式乘除运算方法。
4.组织学生进行小组讨论,培养学生的合作意识和解决问题的能力。
5.引导学生总结运算规律,形成知识体系。
(三)情感态度与价值观
1.树立正确的数学观念,认识到数学在生活中的广泛应用。
2.培养学生的运算兴趣,激发他们学习数学的热情。
3.培养学生勇于探索、克服困难的品质,增强自信心。
4.培养学生的团队合作精神,使他们学会倾听、交流、协作。
5.培养学生严谨、细致的学习态度,提高他们的思维品质。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了实数的基本概念和性质,能够进行简单的实数运算。在此基础上,他们对二次根式的认识处于初步阶段,对于二次根式的乘除运算,大部分学生还缺乏系统的掌握和应用能力。因此,在本章节的教学中,需要关注以下几点:
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案一、教学目标:1. 理解二次根式乘除运算法则。
2. 能够熟练地进行二次根式的乘除运算。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学重点:1. 二次根式乘除运算法则。
2. 二次根式乘除运算的技巧。
三、教学难点:1. 二次根式乘除运算中的符号处理。
2. 二次根式乘除运算中的化简。
四、教学准备:1. 教师准备相关例题和练习题。
2. 学生准备笔记本和文具。
五、教学过程:1. 复习导入:回顾上一课时所学的二次根式的加减运算,引导学生进入本课时学习二次根式的乘除运算。
2. 知识讲解:讲解二次根式乘除运算法则,并通过示例进行演示。
引导学生理解并掌握二次根式乘除运算的步骤和技巧。
3. 练习巩固:给出一些二次根式乘除运算的题目,让学生独立完成,并及时给予指导和解答。
4. 拓展提高:引导学生思考二次根式乘除运算在实际问题中的应用,给出一些相关的例题,让学生尝试解决。
六、课后作业:1. 完成教材后的相关练习题。
2. 收集一些有关二次根式乘除运算的实际问题,尝试解决。
3. 准备下一课时的学习内容。
七、教学评价:1. 课后收集学生的练习作业,对学生的学习情况进行评价。
2. 在下一课时的教学中,关注学生的学习进度和理解情况,及时进行调整和指导。
3. 鼓励学生积极参与课堂讨论,对学生的表现给予肯定和鼓励。
八、教学反思:九、教学拓展:1. 引导学生思考二次根式乘除运算在实际问题中的应用。
2. 介绍一些有关二次根式的有趣问题和数学故事。
3. 推荐一些有关的数学读物和学习资源。
十、教学计划:第二课时:二次根式的乘除运算六、教学内容:1. 掌握二次根式乘除运算的法则。
2. 学会如何将复杂的二次根式进行化简。
3. 能够运用二次根式乘除运算解决实际问题。
七、教学方法:1. 采用讲解法,引导学生理解二次根式乘除运算的法则。
2. 使用示例法,让学生通过具体的例子掌握二次根式乘除运算的步骤。
3. 运用练习法,巩固学生对二次根式乘除运算的掌握。
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案一、教学目标知识与技能:1. 学生能够掌握二次根式乘除法的运算方法。
2. 学生能够正确进行二次根式的乘除运算。
过程与方法:1. 通过实例分析,让学生理解二次根式乘除法的运算规律。
2. 培养学生运用二次根式乘除法解决实际问题的能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的逻辑思维能力。
2. 培养学生的团队合作精神,提高学生的解决问题能力。
二、教学重点与难点重点:1. 二次根式乘除法的运算方法。
2. 二次根式乘除法的应用。
难点:1. 二次根式乘除法中,如何正确处理根号下的乘除运算。
2. 如何在实际问题中灵活运用二次根式乘除法。
三、教学准备教师准备:1. 教学课件或黑板。
2. 相关练习题。
学生准备:1. 预习二次根式乘除法相关内容。
2. 准备好笔记本,记录重点知识点。
四、教学过程1. 复习导入:回顾上一课时所学内容,让学生回顾二次根式的定义及性质。
通过提问方式检查学生对上一课时的掌握情况。
2. 知识讲解:讲解二次根式乘除法的运算方法,通过实例分析,让学生理解并掌握二次根式乘除法的运算规律。
3. 课堂练习:在学习过程中,穿插一些练习题,让学生实时巩固所学知识。
教师应及时给予解答和指导。
4. 应用拓展:给出一些实际问题,让学生运用二次根式乘除法进行解决。
培养学生的实际应用能力。
5. 总结归纳:对本节课所学内容进行总结,强调重点知识点。
让学生整理笔记,加深记忆。
五、课后作业布置一些相关的练习题,让学生巩固所学知识。
鼓励学生自主学习,提高解题能力。
教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在课堂上的参与程度,激发学生的学习兴趣,培养学生的自主学习能力。
六、教学评价评价目标:1. 学生能够理解并运用二次根式乘除法解决实际问题。
2. 学生能够正确评估自己的理解和应用能力。
评价方法:1. 课堂练习题的完成情况。
二次根式的乘除第二课时教案
二次根式的乘除第二课时教案教学目标:1. 理解二次根式乘除法的运算规则和性质。
2. 能够正确进行二次根式的乘除运算。
3. 能够解决实际问题,运用二次根式的乘除法。
教学内容:1. 二次根式乘除法的运算规则和性质。
2. 二次根式乘除法的实际应用。
教学步骤:一、导入(5分钟)1. 复习上节课的内容,回顾二次根式的定义和性质。
2. 提问:二次根式乘除法与整数乘除法有何不同?二、新课讲解(15分钟)1. 介绍二次根式乘除法的运算规则:a. 二次根式乘法:将根号内的数相乘,根号外的数相乘。
b. 二次根式除法:将根号内的数相除,根号外的数相除。
2. 举例讲解二次根式乘除法:a. 示例1:\( \sqrt{2} \times \sqrt{3} \)b. 示例2:\( \sqrt{12} \div \sqrt{4} \)三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固二次根式乘除法的运算规则。
2. 老师巡回指导,解答学生的疑问。
四、实际应用(10分钟)1. 引入实际问题:计算一个正方体的体积,其边长为\( \sqrt{2} \)米。
2. 引导学生运用二次根式的乘除法解决问题。
五、课堂小结(5分钟)1. 回顾本节课所学内容,总结二次根式乘除法的运算规则。
2. 强调实际应用中二次根式乘除法的重要性。
教学评价:1. 课后作业:布置一些二次根式乘除法的练习题,巩固所学知识。
2. 课堂练习:观察学生在课堂练习中的表现,了解掌握情况。
3. 实际应用:评价学生在解决实际问题中的应用能力。
六、案例分析(15分钟)1. 介绍几个典型的实际问题,如:a. 计算一个正方形的对角线长度,其边长为\( \sqrt{2} \)米。
b. 计算一个立方体的体积,其边长为\( \sqrt[3]{2} \)米。
2. 引导学生运用二次根式的乘除法解决问题,并讨论解题思路和步骤。
七、练习与讲解(20分钟)1. 让学生独立完成练习题,巩固二次根式乘除法的运算规则。
21.2 二次根式的乘除(课件)华师大版数学九年级上册
=31x
6xy
C.
(
1 4
)2-(
1 5
)2=210
D. 94x=23xx
知4-练
感悟新知
例 7 去掉下列各式分母中的根号:
知4-练
(1) 3 ;(2) 3
12;(3) 32
2 ; (4) 2ab
3+ 3-
2. 2
解题秘方:紧扣“去掉分母中的根号的方法”进
行变形 .
感悟新知
解:(1)
3= 3
3× 3×
2(
5- 2
3)=
5-
3.
感悟新知
知识点 5 最简二次根式
知5-讲
1. 定义 二次根式被开方数中不含分母,并且被开方数中 所有因数(或因式)的幂的指数都小于2,像这样的二次 根式称为最简二次根式 .
感悟新知
知5-讲
特别提醒 判断一个二次根式是否是最简二次根式,要紧扣两个条件: 1. 被开方数不含分母; 2. 被开方数中不含能开得尽方的因数或因式 . 注意:分母中含有根式的式子不是最简二次根式 .
(2) (-14)×(-112);
(-14)×(-112)= 14×112= 2×72×42= 2× 72× 42= 7×4× 2=28 2;
感悟新知
(3) 200a5b4c5;
知2-练
解: 200a5b4c5= 2×102·(a2)2·a·(b2)2·(c2)2·c
= 2× 102· (a2)2· (b2)2· (c2)2· ac=10a2b2c2 2ac;
2. 二次根式相乘,被开方数的积中有开得尽方的因数或因
式时一定要开方 .
3. 二次根式相乘的结果是一个二次根式或一个整式 .
感悟新知
21.2二次根式的乘除(2)
21.2 二次根式的乘除(2)
课型: 上课时间: 课时: 学习内容:
a ≥0,b>0)a ≥0b>0)及利用它们进行计算和化简. 学习目标:
a ≥0,b>0a ≥0,b>0)及利用它们进行运算. 教学过程
一、 自主学习
(一)复习引入
1.写出二次根式的乘法规定及逆向等式.
2.填空
(1
; 规律:
(2
=____;
(3
;
(4. (二)、探索新知
一般地,对二次根式的除法规定:
下面我们利用这个规定来计算和化简一些题目.
二、巩固练习
1、计算:(1
(2 (3 (4 == == == ==
2、化简:
(1 (2 (3 (4 == == == ==
3、巩固练习
教材P14 练习1.
三、学生小组交流解疑,教师点拨、拓展
1、 例3.=,且x 为偶数,求(1+x 的值.
2、归纳小结
(1a ≥0,b>0a ≥0,b>0)及其运用. 并利用它们进行计算和化简.
四、课堂检测
(一)、选择题
1 ).A .27 B .27 C D
2
3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”
).
A .2
B .6
C .
13 D (二)、填空题
1.分母有理化:(1)
=_____;(3) =______.
2.已知x=3,y=4,z=5的最后结果是_______.
三、综合提高题(1·(m>0,n>0)。
二次根式的乘除 (第 二 课 时)教学设计(含学案)
二次根式的乘除(第二课时)21.2.2 二次根式的乘除 (2) 学案学习目标:1.a≥0,b>0a≥0,b>0)及利用它们进行计算和化简.2. 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.难点:发现规律,归纳出二次根式的除法规定.【预习内容】(阅读教材第9至11页,并完成预习内容。
)1.准备知识二次根式的乘法规定为反过来:2. 探究新知请同学们完成填空(1; (2=________=________;(3; (4=________.规律:______ ____________________ 对二次根式的除法规定:_________________________(_____________________)试一试1.计算: (1(2)÷ 把baba =反过来,得到_____________________(________________) 下面利用这个规定来计算和化简一些题目.2.化简: (1 (2 (3【课堂活动】活动1 预习反馈、明确公式 活动2 公式应用、明确概念 例1:1.计算:(1)324 (2)23181÷2.化简:(1)1003 (2)2925xy例2 计算:(可以用两种方法计算) (1) 53 (2)2723 (3)a28观察上面各小题的最后结果,比如22,103, aa2等,这些二次根式有哪些特点:(1)被开方数不含__________________(2)被开方数不含______________________________ 归纳概念 最简二次根式:(注意:在二次根式的运算中,一般要把最后结果化为__________________.)例3 化简: (1) ; (2) (3)例4 如图,在Rt △ABC 中,∠C=90°,AC=2.5cm,BC=6cm ,求AB 的长。
九年级数学上册 21.2 二次根式的乘除(第2课时)教案 新人教版
21.2二次根式的乘除(第2课时)教学时间 课题课型 新授教学媒体多媒体教 学 目 标知识 技能过程 方法 1.经历观察、比较、习,达成目标1,2,认识到除法法则只是进行除法运算的第一步,之后如果需要化简,进行化简.也可运用概括二次根式除法公式,通过公式的双向性得到商的算术平方根性质.2.通过例题分析和学生练习分母有理化方法进行二次根式除法. 情感态度类比二次根式的乘法进行知识与方法的迁移,获得新知,体验探索的乐趣.教学重点 双向运用()0,0>≥=b a bab a 进行二次根式除法运算. 教学难点能使用分母有理化方法进行二次根式的除法运算教学过程设计教学程序及教学内容师生行为设计意图 一、复习引入导语设计:上节课学习了二次根式的乘法,这节课学习二次根式的除法运算.二、探究新知(一)二次根式除法法则活动1、1.填空,完成课本探究12.用1中所发现的规律比较大小82 82; 52 52活动2、给出二次根式的除法法则 活动3、思考下列问题: ①公式中为什么要加a ≥0, b>0? ②两个二次根式相除其实就是 不变, 相除 练习:课本例4,在(1)(2)之后补充 (3)a a ÷34归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化.(二)商的算术平方根性质活动4.将二次根式除法公式逆用得到商的算术平方根性质完成课本例5 归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再利用积的算术平方根分别化简.点题,板书课题. 学生计算,观察对比,类比上节课知识找规律结合探究内容师生总结 教师组织学生小组交流,进行讨论.学生板演,师生订正学生板演并讲解解题过程及依据找学生说明解题过程,引导学生先观察、分让学生经历从特殊到一般的认知过程,培养数感.使学生理解二次根式除法的前提是二次根式有意义.使学生初步学会化简被开方式含有分数线的二次根式例6. 计算:(1)53 (2)2723;(3)a 28分析:第一步可以把被开方数相除,然后告诉学生被开方数中不能含有分母,数必须是整数,利用分数的基本性质将分母变成完全平方数,开方后移到根号外;也可以直接模仿分数的基本性质和公式a a =2)(,)0,0(≥≥=⋅b a ab b a ,以去掉分母中的根号.(三)最简二次根式概念活动5、让学生观察所做习题结果,总结归纳结果的特点,得到最简二次根式的概念. 分析概念:1.被开方数不含分母的含义指-----因数是整数,因式是整式;2.被开方数中不能含开得尽方的因数是指----被开方数不能分解出完全平方数;被开方数中不含开得尽方的因式是指----被开方数的每一个因式的指数都小于根指数2,因此,每一个因式的指数都是1.完成课本例7补充:化简2442y x y x +注意:被开方数是和式时,结果不等于各加数的算术平方根的和. 三、课堂训练完成课本练习.补充:四、小结归纳 1.二次根式除法公式的双向运用; 2.进行二次根式除法运算的一般步骤,观察式子特点灵活选取最优解法. 3.最简二次根式概念 五、作业设计 必做:P12:2、3(3)(4)、5、6、7 选做:P12:8、9、10析,解题后养成说明理由的反思习惯.指导学生交流,教师总结学生观察刚做过的题的结果,含根式的结果中根式的特点.教师及时肯定学生的结论并加以引导和整理汇总.学生说解题方法,书写解题过程体会化简二次根式再实际问题中的应用 学生独立完成巩固新知学生思考,讨论,阐述个人见解让学生观察,寻找并解释,能将不是的进行化简让学生观察,判断,将不成立的正确求解 师生共同归纳双向使用公式,熟练灵活进行计算形成运用技巧,以提高解题速度与正确率让学生通过结果的最终性初步感知最简二次根式的概念,继而理解概念,并为以后的计算和化简的结果设立标准强调被开方数是和式的二次根式的化简办法熟练计算和解题深化理解公式及运用使学生能判断最简二次根式正确化简二次根式纳入知识系统教 学 反 思。
二次根式的乘除(第二课时)教学设计(含学案)
知识
利用具体数据, 通过学生练习活动, 发现规律, 归纳出除法规定,
技能 并用逆向思维写出逆向等式及利用它们进行计算和化简.
教 教学
从具体实例出发,让学生在实际计算中寻找规律,总结规律,并
学 思考 灵活运用。
目 情感
通过本节课教学, 让学生自主参与到学习中来, 使学生体验到“从
课
2. 二次根式的性质是什么?
前
复
3.写出二次根式的乘法规定及逆向等
习 式.
4、猜想:二次根式的除法法则如何?
(老师提问,学生口头回答 )
设计意图
由复习二次根式的 乘法引导学生猜想除法 运算的法则,激发学生 探索新知识的兴趣.同 时检查学生复习巩固情 况
(学生活动) 1.请同学们完成下列各
探 题:
索
标 态度 特殊到一般”的探究方法。
解决 问题
通过加减法运算解决二次根式的计算和化简问题.
教学重点 教学难点
理解
a =
a (a≥0,b>0),
a =
a ( a≥0,b>0)及利用它
bb
bb
们进行计算和化简. 发现规律,归纳出二次根式的除法以及分母有理化的规律。
教学 流程
教学内容(师生活动) 复习:
1.什么叫二次根式?
新
( 1 ) 4 =________ , 4
知
9
9
=_________;
让学生通过探究活 动经历了一个由具体到 抽象的认识过程,达成 一定的感官认识,形成 规律性结论,然后归纳 出除法法则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.2 二次根式的乘除
第二课时
教学内容
=a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.
教学目标
a≥0,b>0a≥0,b>0)及利用它们进行运算.
利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.
教学重难点关键
1a≥0,b>0)a≥0,b>0)及利用它们进行计算
和化简.
2.难点关键:发现规律,归纳出二次根式的除法规定.
教学方法三疑三探
教学过程
一、设疑自探——解疑合探
自探1.(学生活动)请同学们完成下列各题:
1.填空
(1=____;(2=_____;
(3=_____;(4=________.
2.利用计算器计算填空:
,(2,(3,(4=_____.
(1
;。
每组推荐一名学生上台阐述运算结果.(老师点评)
刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们进行合探:二次根式的除法规定:
一般地,对二次根式的除法规定:
下面我们利用这个规定来计算和化简一些题目.
合探1.计算:(1 (2(3(4
分析:上面4
a ≥0,b>0)便可直接得出答案.
合探2.化简:
(1(2 (3 (4
a ≥0,b>0)就可以达到化简之目的. 三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!
四、应用拓展
=,且x 为偶数,求(1+x 的值.
分析:a ≥0,b>0时才能成立. 因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.
五、归纳小结(师生共同归纳)
a ≥0,b>0(a ≥0,b>0)及其运用.
六、作业设计 一、选择题
1的结果是( ).
A .2
7
.27
C D
2
=
==
=
数学上将这种把分母的根号去掉的过程称作“分母有理化”
( ). A .2 B .6 C .
1
3
D
二、填空题 1.分母有理化:(1)
=_________;(2)
=________;(3)
=______.
2.已知x=3,y=4,z=5_______.
三、综合提高题 计算
(1·(m>0,n>0)
(2)(a>0)教后反思:。