用向量方法解决数学问题

合集下载

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析

高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析

高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析1.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是().A.B.C.D.【答案】C【解析】建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),C1(0,1,2),设点P的坐标为(0,λ,2λ),λ∈[0,1],点Q的坐标为(1-μ,μ,0),μ∈[0,1],∴PQ==,当且仅当λ=,μ=时,线段PQ的长度取得最小值.2.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是________.【答案】【解析】以C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),则=(-1,1,-2),=(-1,0,0),cos〈,〉===.3.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是________.【答案】45°【解析】设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n=(1,0,0),D,A0,-a,0,P,M,=,所以cos 〈,n〉==,所以DM与平面PAC所成角为45°.4.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成的角的余弦值等于 ().A.B.C.D.【答案】D【解析】建立如图所示的空间直角坐标系,则O(1,1,0),E(0,2,1),D1(0,0,2),F(1,0,0),=(-1,1,1),=(-1,0,2),∴·=3,||=,||=,∴cos〈,〉==.即OE与FD1所成的角的余弦值为.5.在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.【答案】【解析】如图,建立空间直角坐标系Dxyz,则D1(0,0,1),C1(0,2,1),A1(1,0,1),B(1,2,0),∴=(0,2,0),设平面A1BC1的一个法向量为n=(x,y,z),由得,令y=1,得n=(2,1,2),设D1C1与平面A1BC1所成角为θ,则sin θ=|cos〈,n〉|===.6.平行四边形中,且以为折线,把折起,使平面平面,连接(1)求证:;(2)求二面角的余弦值.【答案】(1)参考解析;(2)【解析】(1)直线与直线垂直的证明通过转化为证明直线与平面垂直,由于通过翻折为两个垂直的平面所以只需证明直线AB垂直与两个平面的交线BD即可,通过已知条件利用余弦定理即可得到直角.(2)求二面角的问题通常就是建立空间直角坐标系,根据BD与DC垂直来建立.通过写出相应点的坐标,以及相应的平面内的向量,确定两平面的法向量,并求出法向量的夹角,再判断法向量的夹角与二面角的大小是相等还是互补,即可得到结论.试题解析:(1)在中,所以所以,因为平面平面,所以平面,所以;…3分(2)在四面体ABCD中,以D为原点,DB为轴,DC为轴,过D垂直于平面BDC的射线为轴,建立如图的空间直角坐标系.则D(0,0,0),B(,0,0),C(0,1,0),A(,0,1)设平面ABC的法向量为,而由得:取再设平面DAC的法向量为而由得:取所以即二面角B-AC-D的余弦值是【考点】1.线线垂直的判定.2.面面垂直性质.3.二面角的求法.4.空间坐标系的应用.5.法向量的求法.7.如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值的大小;(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.【答案】(1)见解析(2)存在【解析】(1)证明:PB⊥底面ABCD,∴PD⊥CD,又∵CD⊥PD,PD∩PB=P,PD,PB⊂平面PBD.∴CD⊥平面PBD,又CD⊂平面PCD,∴平面PCD⊥平面PBD.(2)如图,以B为原点,BA,BC,BP所在直线分别为x,y,z轴,建立空间直角坐标系,设BC=a,BP=b,则B(0,0,0),A(2,0,0),C(0,a,0),D(2,2,0),P(0,0,b).∵=(2,2,-b),=(2,2-a,0),CD⊥PD,∴·=0,∴4+4-2a=0,a=4,又=(2,0,-b),=(2,-2,0),异面直线PA和CD所成角等于60°,∴=,即=,解得b=2,=(0,4,-2),=(0,2,0),=(2,0,-2).设平面PAD的一个法向量为n1=(x1,y1,z1),则由得取n1=(1,0,1),∵sin θ===,∴直线PC和平面PAD所成角的正弦值为.(3)解假设存在,设=λ,且E(x,y,z),则(x,y,z-2)=λ(2,0,-2),E(2λ,0,2-2λ),设平面DEB的一个法向量为n2=(x2,y2,z2),则由得取n2=(λ-1,1-λ,λ),又平面ABE的法向量n3=(0,1,0),由cos θ==,得=,解得λ=或λ=2(不合题意).∴存在这样的E点,E为棱PA上的靠近A的三等分点.8.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.【答案】(1)见解析(2)∶2【解析】(1)证明因为PD⊥平面ABCD,∴PD⊥AC,又ABCD是菱形,∴BD⊥AC,又BD∩PD=D,故AC⊥平面PBD,又AC⊂平面EAC.所以平面EAC⊥平面PBD.(2)解连接OE,因为PD∥平面EAC,所以PD∥OE,所以OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,以点O为坐标原点,射线OA,OB,OE所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz.设OB=m,OE=h,则OA=m,A,B(0,m,0),E(0,0,h),=(-m,m,0),=(0,-m,h),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(x,y,z)则n2·=0,且n2·=0,即-mx+my=0且-my+hz=0.取x=1,则y=,z=,则n2=,∴cos 45°=|cos〈n1,n2〉|===,解得=,故PD∶AD=2h∶2m=h∶m=∶2.9.如图,四边形ABCD为矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.(1)求证:平面PQC⊥平面DCQ;(2)若二面角Q-BP-C的余弦值为-,求的值.【答案】(1)见解析(2)1【解析】(1)证明:设AD=1,则DQ=,DP=2,又∵PD∥QA,∴∠PDQ=∠AQD=45°,在△DPQ中,由余弦定理可得PQ=.∴DQ2+PQ2=DP2,∴PQ⊥DQ,又∵PD⊥平面ABCD,∴PD⊥DC,∵CD⊥DA,DA∩PD=D,∴CD⊥平面ADPQ.∵PQ⊂平面ADPQ,∴CD⊥PQ,又∵CD∩DQ=D,∴PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解如图,以D为坐标原点,DA,DP,DC所在直线为x轴,y轴,z轴,建立空间直角坐标系D-xyz.设AD=1,AB=m(m>0).依题意有D(0,0,0),C(0,0,m),P(0,2,0),Q(1,1,0),B(1,0,m),则=(1,0,0),=(-1,2,-m),=(1,-1,0),设n1=(x1,y1,z1)是平面PBC的法向量,则即因此可取n1=(0,m,2).设n2=(x2,y2,z2)是平面PBQ的法向量,则即可取n2=(m,m,1).又∵二面角Q-BP-C的余弦值为-,∴|cos 〈n1,n2〉|=|-|.∴=,整理得m4+7m2-8=0.又∵m>0,解得m=1.因此,所求的值为110.在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点,将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).(1)求证:AC⊥平面ABC′;(2)求证:C′N∥平面ADD′;(3)求二面角A-C′N-C的余弦值.【答案】(1)见解析(2)见解析(3)-【解析】(1)证明∵AD=BC,N是BC的中点,∴AD=NC,又AD∥BC,∴四边形ANCD 是平行四边形,∴AN=DC,又∠ABC=60°,∴AB=BN=AD,∴四边形ANCD是菱形,∴∠ACB=∠DCB=30°,∴∠BAC=90°,即AC⊥AB,又平面C′BA⊥平面ABC,平面C′BA∩平面ABC=AB,∴AC⊥平面ABC′.(2)证明:∵AD∥BC,AD′∥BC′,AD∩AD′=A,BC∩BC′=B,∴平面ADD′∥平面BCC′,又C′N⊂平面BCC′,∴C′N∥平面ADD′.(3)解:∵AC⊥平面ABC′,AC′⊥平面ABC.如图建立空间直角坐标系,设AB=1,则B(1,0,0),C(0,,0),C′(0,0,),N,∴′=(-1,0,),′=(0,-,),设平面C′NC的法向量为n=(x,y,z),则即取z=1,则x=,y=1,∴n=(,1,1).∵AC′⊥平面ABC,∴平面C′AN⊥平面ABC,又BD⊥AN,平面C′AN∩平面ABC=AN,∴BD⊥平面C′AN,BD与AN交于点O,O则为AN的中点,O,∴平面C′AN的法向量=.∴cos〈n,〉==,由图形可知二面角A-C′N-C为钝角,所以二面角A-C′N-C的余弦值为-11.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是 ().A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【答案】D【解析】∵AC⊥平面BB1D1D,又BE⊂平面BB1,D1D.∴AC⊥BE,故A正确.∵B1D1∥平面ABCD,又E、F在直线D1B1上运动,∴EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故VA-BEF为定值.当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,∴=(0,-1,1),=,∴·=.又||=,||=,∴cos〈,〉==. ∴此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1),∴=,=(0,0,1),∴·=1,||=,∴cos〈,〉===≠,故选D.12.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.13.如图所示,四棱锥S ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P AC D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.【答案】(1)证明详见解析;(2)30°;(3)存在 SE∶EC=2∶1【解析】(1)设AC交BD于O,以、、分别为S,D,C,x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,求出,的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,为平面DAC的一个法向量,向量与的夹角等于二面角P AC D的平面角,根据向量的夹角公式计算出与的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则= +=+t,因为·=0,可建立关于t的等式,解之即可.试题解析:(1)证明:连接BD,设AC交BD于O,由题意知SO⊥平面ABCD,以O为坐标原点,、、分别为x轴、y轴、z轴的正方向,建立空间直角坐标系.设底面边长为a,,则高SO= a.于是S,D,C,=,=,·=0,故OC⊥SD,从而AC⊥SD. 4分(2)解:由题设知,平面PAC的一个法向量为=,平面DAC的一个法向量为=,则cos<,>==,故所求二面角的大小为30°. 8分(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,且=,=, 设=t(0≤t≤1),=+=+t=,而·=0t=,即当SE∶EC=2∶1时,BE∥平面PAC. 12分【考点】1.空间两向量垂直的充要条件;2.二面角;3.直线与平面平行判定.14.如图在四棱锥中,底面是边长为的正方形,侧面底面,且.(1)求证:面平面;(2)求二面角的余弦值.【答案】(1)证明过程详见解析;(2).【解析】本题主要以四棱锥为几何背景考查线面垂直、面面垂直的判定以及二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,法一,先利用面面垂直的性质判断出,从而平面,所以垂直于面内的任意的线,由,判断是等腰直角三角形,所以且,所以面,利用面面垂直的判定定理得面面垂直,法二,利用空间向量法,通过证明,其它过程与法一相同;第二问,由第一问得到平面的法向量为,而平面的法向量需要计算求出,,所以,最后用夹角公式求夹角余弦值.试题解析:(1)解法一:因为面面平面面为正方形,,平面所以平面∴ 2分又,所以是等腰直角三角形,且,即,,且、面,面又面,∴面面. 6分解法二:如图,取的中点, 连结,.∵, ∴.∵侧面底面,平面平面,∴平面,而分别为的中点,∴,又是正方形,故.∵,∴,.以为原点,向量为轴建立空间直线坐标系,则有,,,,,.∵为的中点, ∴ 2分(1)∵,,∴,∴,从而,又,,∴平面,而平面,∴平面平面. 6分(2)由(1)知平面的法向量为,设平面的法向量为,∵,∴由,,可得取,则故.∴,即二面角的余弦值为, 12分【考点】1.线面垂直;2.空间向量法;3.面面垂直;4.夹角公式.15.斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.【答案】(Ⅰ),;(Ⅱ);(Ⅲ)与所成的角的余弦值.【解析】(Ⅰ)把向量用向量表示出来,像这一类题,先找以A为始点,以M为终点的封闭图形,因为向量是用向量表示出来,而,可在平面找,然后转化为与共线的向量,可求得,求,求向量的模,往往转化为模的平方来解,由,故,利用数量积展开,由,之间的夹角均为,可求得的值;(Ⅱ)把向量用表示,和(Ⅰ)解题思想一样,只是他在空间中找;(Ⅲ)求与所成角的余弦值,利用,分别求出,即可.试题解析:(Ⅰ),所以,因为,所以(Ⅱ),(Ⅲ),,,COS=即为与所成的角的余弦值.【考点】向量加法与减法的几何意义,向量的夹角.16.已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.(1)若PA=AD,求PB与平面PAD的所成角大小;(2)问多大时,AM⊥平面PDB可能成立?【答案】(1)(2)AM⊥平面PDB不可能成立.【解析】解:(1)以AD中点O为坐标原点,建立如图所示空间直角坐标系,设AB=2则 2分平面PAD的法向量就是4分设所求夹角为,则 5分(2)设, 7分若AM⊥平面PDB,则 8分得不可能同时成立,AM⊥平面PDB不可能成立. 10分【考点】空间中垂直问题以及线面角点评:主要是考查了线面角的求解,以及线面垂直的证明,属于中档题。

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析

高中数学解题中平面向量方法的应用分析
高中数学解题中,平面向量方法是一种常用的解题方法。

它主要应用于平面几何、线
性代数和解析几何等领域。

下面将从几个方面分析平面向量方法在高中数学解题中的应
用。

在平面几何中,平面向量方法可以用于解决平面上的点、线、面的位置关系问题。


过引入向量的概念和运算法则,可以用向量的加减、数量积等操作来表示和计算线段、向
量的长度、夹角、平行关系等几何性质。

可以用向量来证明平行线之间的距离相等、求解
点在直线上的投影等问题。

在线性代数中,平面向量方法可以用于求解线性方程组。

通过将线性方程组写成矩阵
乘法的形式,并用向量表示未知数,可以将求解线性方程组的问题转化为求解向量的线性
组合的问题。

利用向量的性质和运算法则,可以通过增广矩阵的行变换来求解未知数的值。

可以用向量法解决线性方程组的解的存在唯一性以及解的求法等问题。

平面向量方法还可以用于解决高等数学中的微分和积分问题。

通过将函数表示为向量
函数,可以简化微分和积分的运算过程。

可以用向量函数求导来计算曲线的切线和法线,
用向量函数积分来计算曲线的弧长和面积等问题。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

高中数学复习专题讲座运用向量法解题的思路及方法

高中数学复习专题讲座运用向量法解题的思路及方法

C 1D 1B 1A 1C D B A高中数学复习专题讲座运用向量法解题的思路及方法 高考要求平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐步加大了对这部分内容的考查力度,本节内容要紧是关心考生运用向量法来分析,解决一些相关咨询题 重难点归纳1 解决关于向量咨询题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识 二是向量的坐标运算表达了数与形互相转化和紧密结合的思想2 向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等咨询题中常用向量的直角坐标运算来证明向量的垂直和平行咨询题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的咨询题3 用空间向量解决立体几何咨询题一样可按以下过程进行摸索(1)要解决的咨询题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否?假设未知,是否可用条件转化成的向量直截了当表示?(3)所需要的向量假设不能直截了当用条件转化成的向量表示,那么它们分不最易用哪个未知向量表示?这些未知向量与由条件转化的向量有何关系?(4)如何样对差不多表示出来的所需向量进行运算,才能得到需要的结论?典型题例示范讲解例1如图,平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD (1)求证 C 1C ⊥BD (2)当1CC CD 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明命题意图 此题要紧考查考生应用向量法解决向量垂直,夹角等咨询题以及对立体几何图形的解读能力知识依靠 解答此题的闪光点是以向量来论证立体几何中的垂直咨询题,这就使几何咨询题代数化,使繁琐的论证变得简单错解分析 此题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再确实是要清晰条件中提供的角与向量夹角的区不与联系C 1D 1B 1A 1C DB A 技巧与方法 利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可 (1)证明 设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,因此 -==a -b ,CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD(2)解 假设使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC AA C CA -⋅+=⋅=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得当|a =|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD ,∴1CC CD =1时,A 1C ⊥平面C 1BD 例2如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分不是A 1B 1、A 1A 的中点 (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证 A 1B ⊥C 1M 命题意图 此题要紧考查考生运用向量法中的坐标运算的方法来解决立体几何咨询题知识依靠 解答此题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标错解分析 此题的难点是建系后,考生不能正确找到点的坐标技巧与方法 能够先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方一直找出其他的点的坐标 M NC 1B 1A 1CB Ao xz y(1)解 如图,以C 为原点建立空间直角坐标系O -xyz 依题意得 B (0,1,0),N (1,0,1)∴|BN |=)01()10()01(222=-+-+-(2)解 依题意得 A 1(1,0,2),C (0,0,0),B 1(0,1,2) ∴1BA =1),2,1,1(CB -=(0,1,2) 11CB BA ⋅=1×0+(-1)×1+2×2=3|1BA |=6)02()10()01(222=-+-+- 5)02()01()00(||2221=-+-+-=CB.1030563||||,cos 111111=⋅=⋅>=<∴CB BC CB BA (3)证明 依题意得 C 1(0,0,2),M (2,21,21) )2,1,1(),0,21,21(11--==A C ∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅ ∴A 1B ⊥C 1M例3三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求 (1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值 解 (1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+- .2221)291()05(||22=--+-=∴AM 5)21()15(||,10)71()15(||)2(2222=--+-==--++= D 点分的比为2 ∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=AD (3)∠ABC 是BA 与BC 的夹角,而BA =(6,8〕,BC =(2,-5〕1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅⋅=∴BC BA BCBA ABC 学生巩固练习1 设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),那么四边形ABCD 为( )A 正方形B 矩形C 菱形D 平行四边形2 △ABC 中,AB =a ,AC =b ,a ·b <0,S △ABC =415,|a |=3,| b |=5,那么a 与b 的夹角是( )A 30°B -150°C 150°D 30°或150°3 将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x -5的图象只有一个公共点(3,1),那么向量a =_________4 等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的两个平面成60°角,假设AB =16 cm,AC =17 cm,那么CD =_________5 如图,在△ABC 中,设AB =a ,AC =b ,AP =c , AD =λa ,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c6 正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标;(2)求AC 1与侧面ABB 1A 1所成的角 7 两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列(1)点P 的轨迹是什么曲线?(2)假设点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ8 E 、F 、G 、H 分不是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点(1)用向量法证明E 、F 、G 、H 四点共面;P ED A(2)用向量法证明 BD ∥平面EFGH ; (3)设M 是EG 和FH 的交点, 求证 对空间任一点O ,有)(41OD OC OB OA OM +++= 参考答案 1 解析 AB =(1,2〕,DC =(1,2〕,∴AB =DC ,∴AB ∥DC , 又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3〕,|AC |=34, ∴|AB |≠|AC },∴ABCD 不是菱形,更不是正方形;又=(4,1〕,∴1·4+2·1=6≠0,∴不垂直于,∴ABCD 也不是矩形,应选D 答案 D 2 解析 ∵21415=·3·5sin α得sin α=21,那么α=30°或α=150° 又∵a ·b <0,∴α=150° 答案 C 3 (2,0) 4 13 cm 5 解 ∵与共线,∴=m =m (-)=m (μb -a ), ∴=+=a +m (μb -a )=(1-m ) a +m μb ①又与共线,∴=n =n (-)=n (λa -b ),∴=+=b +n (λa -b )=n λa +(1-n ) b②由①②,得(1-m 〕a +μm b =λn a +(1-n ) b ∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即 ③ 解方程组③得 m =λμμλμλ--=--11,11n代入①式得c =(1-m ) a +m μb =πμ-11[λ(1-μ) a +μ(1-λ)b ] 6 解 (1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以通过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系 由,得A (0,0,0〕,B (0,a ,0〕,A 1(0,0,2a ),C 1(-,2,23a a 2a ) (2)取A 1B 1的中点M ,因此有M (0,2,2a a 〕,连AM ,MC 1, 有1MC =(-23a ,0,0〕,且=(0,a ,0〕,1AA =(0,02a ) 由于1MC ·=0,1MC ·1AA =0,因此M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角确实是AC 1与侧面ABB 1A 1所成的角 ∵1AC =),2,2,0(),2,2,23(a a AM a a a =- a a a AC 49240221=++=⋅∴ a a a a a a a AC 2324||,324143||22221=+==++=而 2323349,cos 21=⨯>=<∴a a a AC 因此AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30° 7 解 (1)设P (x ,y 〕,由M (-1,0〕,N (1,0〕得,PM =-=(-1-x ,-y 〕,-= =(1-x ,-y ),=-=(2,0), ∴·=2(1+x ), PM ·PN =x 2+y 2-1,⋅ =2(1-x ) 因此,⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 因此,点P 的轨迹是以原点为圆心,3为半径的右半圆(2)点P 的坐标为(x 0,y 0)220012,||||(1PM PN x y PM PN⋅=+-=⋅=+ 0(42)(4x =+-=cos ||4PM PN PM PN θ⋅∴==⋅ 010cos 1,0,23x πθθ<≤∴<≤≤< ||3cos sin tan ,411cos 1sin 020202y x x =-==∴--=-=∴θθθθθ 8 证明 (1〕连结BG ,那么 +=++=++=+=)(21 由共面向量定理的推论知 E 、F 、G 、H 四点共面,(其中21=〕 (2〕因为21)(212121=-=-=-= 因此EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH因此BD ∥平面EFGH(3〕连OM ,OA ,OB ,OC ,OD ,OE ,OG 由(2〕知21=,同理21=,因此=,EH FG ,因此EG 、FH 交于一点M 且被M 平分,因此 1111111()[()][()]2222222OM OE OG OE OG OA OB OC OD =+=+=+++ 1().4OA OB OC OD =+++ 课前后备注。

理解初中数学如何利用向量解决几何问题

理解初中数学如何利用向量解决几何问题

理解初中数学如何利用向量解决几何问题初中数学是学生学习数学的关键阶段,其中利用向量解决几何问题是数学学习中的重要一环。

通过理解向量的概念和性质,学生可以更好地解决几何问题,提高数学解题能力。

本文将详细介绍初中数学中如何利用向量解决几何问题。

首先,我们来了解向量的概念。

向量是有大小和方向的量,用有向线段来表示。

在数学中,向量通常用字母加箭头表示,比如a→、b→。

向量有两个重要的性质:大小和方向。

向量的大小叫做模,用|a→| 或||a→|| 表示;向量的方向用夹角来表示。

接下来,我们来看一些常见的向量操作。

向量的加法、减法和数乘是最基本的操作。

向量的加法是将两个向量“首尾相接”,得到一个新的向量。

向量的减法是将被减向量改变方向再相加。

向量的数乘是将向量的长度按比例拉伸或压缩。

通过这些操作,我们可以得到多种不同的向量,从而解决不同的几何问题。

在几何问题中,向量的应用非常广泛。

以下是几个例子:1. 平行向量:两个向量的方向相同或相反,它们就是平行的。

利用向量的平行性质,我们可以轻松解决一些平行四边形、平行线等问题。

例如,已知AB→和CD→平行,要证明AD→和BC→平行,我们只需要利用向量的加法和数乘性质进行推导即可。

2. 垂直向量:两个向量的夹角为90度,则它们是垂直的。

利用向量的垂直性质,我们可以解决一些直角三角形、垂直平分线等问题。

例如,在三角形ABC中,AB→和AC→垂直,我们可以利用向量的减法和加法性质进行证明。

3. 向量共线:如果几个向量共线,则它们可以表示为某个向量的数倍。

利用向量的共线性质,我们可以解决一些共线点、共线线段等问题。

例如,在平面直角坐标系中,已知A(1,2)、B(-2,-4)和C(-3,-6)三点共线,我们可以利用向量的加法和数乘性质进行求解。

除了以上提到的例子,向量还可以应用于平移、旋转、共面等几何问题的解决中。

通过合理运用向量的概念和性质,我们可以更加灵活地解决复杂的几何问题,为数学学习打下坚实的基础。

运用向量法证明几个数学公式

运用向量法证明几个数学公式

运用向量法证明几个数学向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。

例1、用向量证明和差化积公式cos cos 2coscos22αβαβαβ+-+=sin sin 2sin cos 22αβαβαβ+-+=如图,作单位圆,并任作两个向量(c o s ,s i n )OP αα= ,(cos ,sin )OQ ββ=取PQ的中点M,则(cos,sin)22M αβαβ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x和∠MOQ 分别为,22αβαβ+-,所以||||cos cos 22ON OM αβαβ--== ,所以点N 的坐标为(||cos ,||sin )22ON ON αβαβ++ ,即(c o s c o s ,c o s s i n2222N αβαβαβαβ-+-+又11()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1(cos cos ,sin sin )2αβαβ=++ 即cos cos 2cos cos 22αβαβαβ+-+= sin sin 2sin cos 22αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:sin sin 2cossin22αβαβαβ+--= cos cos 2sinsin22αβαβαβ+--=-如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=- ,||cos cos FQ βα=-,∠QPF=∠QNE=∠Mox=2αβ+,||2||2||sin 2sin 22PQ NQ OQ αβαβ--===所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠即sin sin 2cossin22αβαβαβ+--=cos cos 2sin sin 22αβαβαβ+--=-例2、用向量解决平行四边形与三角形面积的计算公式如图,在直角坐标系中,已知12(,)OA a a a == ,12(,)OB b b b ==,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积12211||2OAB S a b a b ∆=- 证明:设,a b α<>=,那么可以得出 ||||sin OACB S a b α= ,由于cos ||||a ba b α⋅=所以222sin 1cos 1()||||a ba b αα⋅=-=-2222221122122111221221222222222222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++所以sin α=所以1221||OACB S a b a b =-,因此12211||2OAB S a b a b ∆=-例3、用向量法证明三角形面积的海伦公式三角形面积的海伦公式: S , 式中c b a ,,为三条边的边长, )(21c b a p ++=, S 为三角形的面积. 证明: 证明: 在三角形ABC 中, 设BC a = , CA b = , AB c = , a a =,b b = ,c c =因为:ABC ∆的面积为: 1sin 2S ab C =所以: 222222211||||sin ||||(1cos )44S a b C a b C ==-2222211||||||||cos 44a b a b C =- =2221(||||())4a b a b -⋅ (1)因为: 0 =++c b a , 所以: c b a -=+, 所以: 22)(c b a =+,所以: )(21222b a c b a --=⋅ (2)将(2)式代入(1)式, 并化简得:).22()22()22(2161))()()((161])(][)[(161)](2)][(2[161])(41[4122222222222222222a p b p c p p b a c b a c c b a c b a b a c c b a b a c ab b a c ab b a c b a S -⋅-⋅-⋅⋅=+--+-+++=---+=--+---=---= 化简即得 ))()((2c p b p a p p S ---=.所以S =例4、向量方法证明三角形中的射影定理在△ABC 中,设三内角A 、B 、C 的对边分别是a 、b 、c . ∵AC +CB =AB , ∴()AC AC CB AB AC ⋅+=⋅∴2||AC AC CB AB AC +⋅=⋅∴2||||||cos()||||cos AC AC CB C AB AC A π+⋅-=⋅∴||||cos ||cos AC CB C AB A -=∴b -a cos C =c cos A 即b =c cos A +a cos C …………………① 类似地有 c =a cos B +b cos A , …………………②a =b cos C +c cos B . …………………③上述三式称为三角形中的射影定理.。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用【摘要】向量在高中数学中的应用是非常重要的。

本文首先介绍了向量的基本概念及性质,然后着重讨论了向量在几何和代数中的应用。

通过向量几何解决几何问题和向量代数解决代数问题的实例,展示了向量在解决数学问题中的强大作用。

还探讨了向量在物理问题中的应用,以及向量在实际生活中的应用。

本文强调了向量在高中数学教学中的重要性,并展望了未来向量在高中数学教育中的发展。

通过深入理解和应用向量的知识,可以更好地解决各种复杂问题,提升数学学习成绩,同时也为未来的学习和工作奠定基础。

【关键词】关键词:向量、高中数学、基本概念、性质、几何问题、代数问题、物理问题、实际应用、重要性、应用拓展、教学发展。

1. 引言1.1 向量在解决高中数学问题中的应用向量在解决高中数学问题中的应用是一种非常重要且广泛应用的数学工具。

在高中数学学习过程中,向量不仅仅是一个概念,更是一个具有实际意义的数学工具。

通过向量的运用,我们可以更好地理解和解决各种数学问题。

在高中数学课程中,向量被广泛运用于几何、代数和物理等领域。

在几何中,向量可以帮助我们解决平面几何、立体几何以及空间几何中的各种问题,如求距离、角度、面积等。

在代数中,向量可以用来表示方程组、矩阵运算,从而解决各种代数问题。

在物理中,向量可以帮助我们描述物体的运动、力的作用等实际问题,解决物理学中的各种问题。

2. 正文2.1 向量的基本概念及性质向量是高中数学中一个非常重要的概念,它不仅在几何中有着广泛的应用,还可以帮助我们解决各种代数和物理问题。

在学习向量之前,我们首先需要了解向量的基本概念和性质。

向量是一个具有大小和方向的量。

在坐标系中,一个向量通常用一个有序对表示,如(3,4),其中3代表向量在x轴上的分量,4代表向量在y轴上的分量。

向量的大小通常用模表示,记作||a||,其中a是向量,模的计算公式为sqrt(x^2 + y^2),即向量的长度。

向量还有一些重要的性质,比如向量的加法和数乘。

数学向量题型和解题方法

数学向量题型和解题方法

数学向量题型和解题方法数学向量是高中数学中重要的一章,涉及到向量的概念、表示、加减、数量积、向量积等等,是一道重要的数学工具。

在学习数学向量的过程中,不同的题型需要不同的解题方法,下面就来介绍一些常见的数学向量题型及解题方法。

一、向量的概念题型向量的概念题型多以向量的定义为主线,通过对向量的定义的理解和应用,来解决问题。

在这类题型中,需要注意向量的定义,了解向量的基本性质。

例如:1. 已知向量AB,求向量BA解法:向量BA是向量AB的相反向量,所以BA=-AB。

2. 若向量OA,OB,OC共线,则证明三角形ABC共线。

解法:若OA,OB,OC共线,则向量OA,OB,OC线性相关,设向量OA=k1OB+k2OC(k1,k2为实数),则只需要证明k1+k2=1即可。

因为三角形ABC的三个顶点不共线,所以可以得到向量OA,OB,OC线性无关。

所以k1+k2=1,三角形ABC共线。

二、向量的运算题型向量的运算题型多以向量的加减、数量积、向量积为主线,通过对向量的计算来解决问题。

在这类题型中,需要注意向量的运算法则,了解向量的性质。

例如:1. 已知向量AB=3i+4j,向量BC=5i+2j,求向量AC解法:向量AC=向量AB+向量BC=(3+5)i+(4+2)j=8i+6j。

2. 已知向量a=2i-j,向量b=3i+4j,求向量a与向量b的数量积。

解法:向量a与向量b的数量积为a·b=2×3+(-1)×4=2。

三、向量的几何应用题型向量的几何应用题型多以向量的几何应用为主线,通过对向量的几何意义的理解和应用,来解决问题。

在这类题型中,需要注意向量的几何意义,了解向量的几何应用。

例如:1. 已知三角形ABC的三个顶点A(1,2),B(2,3),C(4,5),求向量AB,向量BC和向量AC的夹角。

解法:向量AB=(1-2)i+(2-3)j=-i-j,向量BC=(4-2)i+(5-3)j=2i+2j,向量AC=向量AB+向量BC=i+j,所以cos∠ABC=(向量AB·向量BC)/(|向量AB||向量BC|)=(-1-2)/√2×2=-(1/2)。

高中数学向量解题技巧必看

高中数学向量解题技巧必看

高中数学向量解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些高中数学向量解题技巧的学习资料,希望对大家有所帮助。

高二数学向量重点学习方法高二数学向量重点-向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a.向量b=|向量a|.|向量b|.Cosα=x1x2+y1y2Cosα=向量a.向量b/|向量a|.|向量b|(x1x2+y1y2)=————————————————————根号(x1平方+y1平方).根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a⊥向量b那么向量a.向量b=0如果向量a//向量b那么向量a.向量b=±|向量a|.|向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a.向量b=(向量a±向量b)平方高二数学向量重点-三角函数公式:1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina.cosb=[sin(a+b)+sin(a-b)]/2cosa.sinb=[sin(a+b)-sin(a-b)]/2cosa.cosb=[cos(a+b)+cos(a-b)]/2sina.sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]高考数学平面向量易错点分析1.数0有区别,0的模为数0,它不是没有方向,而是方向不定。

中考数学模拟试题向量的解决问题方法

中考数学模拟试题向量的解决问题方法

中考数学模拟试题向量的解决问题方法中考数学模拟试题 - 向量的解决问题方法在中考数学中,向量是一个重要的概念,广泛应用于几何、代数和物理等领域。

解决向量相关问题的方法与技巧对于学生们来说至关重要。

本文将介绍一些常见的向量解题方法,并给出具体的例题进行说明。

一、计算向量的模和方向角在解决向量问题时,首先需要计算向量的模和方向角。

向量的模表示向量的大小,方向角表示向量与某一参考方向之间的夹角。

例如,已知向量AB的坐标分别为(3, 4),求向量AB的模和方向角。

解:根据勾股定理,向量AB的模可以通过以下公式计算得出:|AB| = √[(x2 - x1)² + (y2 - y1)²]代入坐标,即|AB| = √[(3 - 0)² + (4 - 0)²] = 5方向角的计算可以通过以下公式得出:θ = arctan[(y2 - y1) / (x2 - x1)]代入坐标,即θ = arctan[(4 - 0) / (3 - 0)] ≈ 53.13°二、向量相加与相减解决向量相加与相减问题时,可以将向量视为有方向和大小的箭头,并使用平行四边形法则进行计算。

例如,已知向量A的坐标为(2, 3),向量B的坐标为(-1, 2),求向量A与向量B的和及差。

解:向量的和可以通过以下公式计算得出:A +B = (Ax + Bx, Ay + By)代入坐标,即 A + B = (2 + (-1), 3 + 2) = (1, 5)向量的差可以通过以下公式计算得出:A -B = (Ax - Bx, Ay - By)代入坐标,即 A - B = (2 - (-1), 3 - 2) = (3, 1)三、向量的数量积与夹角解决向量的数量积与夹角问题时,需要使用向量的坐标表示,并应用数量积的定义。

定义:向量A与向量B的数量积可以通过以下公式计算得出:A·B = |A||B|cosθ其中,|A|和|B|分别表示向量A和向量B的模,θ表示向量A与向量B之间的夹角。

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。

2022-2023学年高一数学:空间向量解决距离问题

2022-2023学年高一数学:空间向量解决距离问题

(2)在三棱锥中用等体积法求解.
|·|
(3)向量法:d= || (n 为平面的法向量,A 为平面上一点,MA 为过点 A
的斜线段)
练一练
2.如图,已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,
E,F分别为AB,BC的中点.
(1)求点D到平面PEF的距离;


建立如图所示的空间直角坐标系,
解:以B为坐标原点,分别以BA,过B垂直于BA的直线,BB1为x轴,y轴,z轴建立
如图所示的空间直角坐标系,
则B(0,0,0),A1(2,0,2),
C1(1, 3,2),
所以 A1C1 的方向向量1 1 =(-1, 3,0),1 =(1, 3,2),
所以点 B 到直线 A1C1 的距离
2
1 1
∴SO⊥平面ABC.
又BO⊂平面ABC,∴SO⊥BO.
如图所示,分别以OA,OB,OS所在直线为x轴,y轴,z轴,建立空间直角坐标系Oxyz,
则 B(0,2 3,0),C(-2,0,0),S(0,0,2 2),M(1, 3,0),N(0, 3, 2).
∴=(3, 3,0),=(-1,0, 2),=(-1, 3,0).
→ ———→
|BC
· A′C |
4
→ ———→
所以BC在 A′C 上的投影长为

.
———→
14
| A′C |
所以点 B 到直线 A′C 的距离 d=
→ ———→
→ 2 BC· A′C 2
|BC| -

———→
| A′C |
16 2 35
4-14= 7 .
归纳
用向量法求点到直线的距离的一般步骤

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

高中数学复习专题讲座(第3讲)运用向量法解题的思路及方法

1题目高中数学复习专题讲座运用向量法解题高考要求平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题重难点归纳1解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识二是向量的坐标运算体现了数与形互相转化和密切结合的思想2向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题3用空间向量解决立体几何问题一般可按以下过程进行思考(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?典型题例示范讲解例1如图,已知平行六面体ABCD—A1B1C1D1的底面 ABCD是菱形,且∠C1CB=∠C1CD=∠BCD(1)求证C1C⊥BD(2)当1CCCD的值为多少时,能使A1C⊥平面C1BD?请给出证明命题意图本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力知识依托解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单错解分析本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系技巧与方法利用a⊥ba·b=0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可(1)证明 设C B =a , C D =b ,1C C c = ,依题意,|a|=|b |,C D 、C B 、1C C中两两所成夹角为θ,于是DB =a -b ,1CC BD =c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c|·|b |cos θ=0,∴C 1C ⊥BD(2)解 若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由1111()()CA C D CA AA CD CC ⋅=+⋅-=(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c|2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c|·cos θ=0,得 当|a =|c |时,A 1C ⊥DC 1,同理可证当|a |=|c|时,A 1C ⊥BD ,∴1CC CD =1时,A 1C ⊥平面C 1BD例2如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点(1)求B N的长;(2)求cos<11,BA CB>的值;(3)求证 A 1B ⊥C 1M 命题意图 本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题知识依托 解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标错解分析 本题的难点是建系后,考生不能正确找到点的坐标技巧与方法 可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标(1)解 如图,以C 为原点建立空间直角坐标系O -xyz 依题意得 B (0,1,0),N (1,0,1)∴|B N|=)01()10()01(222=-+-+-(2)解 依题意得 A 1(1,0,2),C (0,0,0),B 1(0,1,2) ∴1BA =1(1,1,2),CB -=(0,1,2)11BA CB ⋅=1×0+(-1)×1+2×2=3 |1BA|=6)02()10()01(222=-+-+-1||CB == 111111cos ,10||||BA CB BA CB BC CB ⋅∴<>===⋅(3)证明 依题意得 C 1(0,0,2),M (2,21,21)1111(,,0),(1,1,2)22C M A B ==--∴111111(1)1(2)00,,22A B C M A B C M ⋅=-⨯+⨯+-⨯=∴⊥∴A 1B ⊥C 1M例3三角形ABC 中,A (5,-1)、B (-1,7)、C (1,2),求 (1)BC 边上的中线AM 的长;(2)∠CAB 的平分线AD 的长;(3)cos ABC 的值解 (1)点M 的坐标为x M =)29,0(,29227;0211M y M ∴=+==+-||2AM ∴==(2)||10,||5AB AC ====D 点分BC 的比为2∴x D =31121227,3121121=+⨯+==+⨯+-D y||AD ==(3)∠ABC 是BA 与B C 的夹角,而BA=(6,8),B C =(2,-5)2629cos 145||||BA BC ABC BA BC ⋅∴====⋅学生巩固练习1 设A 、B 、C 、D 四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD 为( )A 正方形B 矩形C 菱形D 平行四边形2 已知△ABC 中, AB =a ,A C =b ,a ·b <0,S △ABC =415,|a|=3,|b |=5,则a与b 的夹角是( )A 30°B -150°C 150°D 30°或150°3 将二次函数y =x 2的图象按向量a 平移后得到的图象与一次函数y =2x-5的图象只有一个公共点(3,1),则向量a=_________4 等腰△ABC 和等腰Rt △ABD 有公共的底边AB ,它们所在的两个平面成60°角,若AB =16 cm,AC =17 cm,则CD =_________5 如图,在△ABC 中,设AB =a ,A C =b ,AP =c , AD =λa,(0<λ<1),AE =μb (0<μ<1),试用向量a ,b 表示c6 正三棱柱ABC —A 1B 1C 1的底面边长为a ,侧棱长为2a(1)建立适当的坐标系,并写出A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角7 已知两点M (-1,0),N (1,0),且点P 使,,M P M N PM PN N M N P⋅⋅⋅成公差小于零的等差数列(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与P N的夹角,求tan θ8 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的 中点(1)用向量法证明E 、F 、G 、H 四点共面; (2)用向量法证明 BD ∥平面EFGH ; (3)设M 是EG 和FH 的交点,求证 对空间任一点O ,有1(4O M O A O B O C O D =+++参考答案1 解析 AB =(1,2),D C =(1,2),∴AB =D C ,∴AB∥D C ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB|=5,A C =(5,3),|A C |=34,∴|AB|≠|A C },∴ ABCD 不是菱形,更不是正方形; 又B C =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于B C ,∴ABCD 也不是矩形,故选D 答案 D2 解析 ∵21415=·3·5sin α得sin α=21,则α=30°或α=150°又∵a·b <0,∴α=150°答案 C3 (2,0)4 13 cm5 解 ∵BP 与BE 共线,∴BP =m BE =m (AE -AB )=m (μb-a ),∴AP =AB +BP =a +m (μb -a )=(1-m ) a+m μb ①又C P 与C D 共线,∴C P =n C D =n (AD -A C )=n (λa-b ), ∴AP =A C +C P =b +n (λa -b )=n λa+(1-n ) b ② 由①②,得(1-m )a +μm b =λn a+(1-n ) b∵a与b 不共线,∴110110m a n m m n n m λλμμ-=+-=⎧⎧⎨⎨=-+-=⎩⎩即 ③解方程组③得 m =λμμλμλ--=--11,11n代入①式得c =(1-m ) a+m μb =πμ-11[λ(1-μ) a+μ(1-λ)b ]6 解 (1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a )(2)取A 1B 1的中点M ,于是有M (0,2,2aa ),连AM ,MC 1,有1M C =(-23a ,0,0),且AB =(0,a ,0),1AA =(0,02a )由于1M C ·AB=0,1M C ·1AA =0,所以M C 1⊥面ABB 1A 1,∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角∵1AC=(,),(0,,),222a a a A M -=22190244a AC AM a a ∴⋅=++=13||,||2AC AM a ====而2194cos ,322aAC AM a∴<>==⨯所以1AC AM与所成的角,即AC 1与侧面ABB 1A 1所成的角为30°7 解 (1)设P (x ,y ),由M (-1,0),N (1,0)得, PM =-M P=(-1-x ,-y ),PN N P =-=(1-x ,-y ), M N =-N M=(2,0),∴M P ·M N =2(1+x ), PM ·P N=x 2+y 2-1,N M N P ⋅ =2(1-x )于是,,,M P M N PM PN N M N P ⋅⋅⋅是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆(2)点P 的坐标为(x 0,y 0)220012,||||PM PN x y PM PN ⋅=+-=⋅===cos ||PM PN PM PNθ⋅∴==⋅010cos 1,0,23x πθθ<≤∴<≤≤<||3cos sin tan ,411cos 1sin 0222y x x =-==∴--=-=∴θθθθθ8 证明 (1)连结BG ,则 1()2EG EB BG EB BC BD EB BF EH EF EH =+=++=++=+由共面向量定理的推论知 E 、F 、G 、H 四点共面,(其中21BD=EH )(2)因为1111()2222EH AH AE AD AB AD AB BD =-=-=-=所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH 所以BD ∥平面EFGH(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知12EH BD =,同理12FG BD = ,所以EH FG = ,EH FG ,所以EG 、FH 交于一点M 且被M 平分,所以 1111111()[()][()]2222222OM OE OG OE OG OA OB OC OD =+=+=+++ 1().4O A O B O C O D=+++课前后备注。

例说向量法在数学问题解决中的应用

例说向量法在数学问题解决中的应用

例说向量法在数学问题解决中的应用甘肃民族师范学院 尚珑杰【摘要】文章分析了向量法在数学问题解决的基本思路,结合具体例题呈现了向量法的广泛应用.【关键字】向量法;数学问题;运用【正文】向量本身是数形结合的产物,既反映数量关系,又体现位置关系.它既具有代数的抽象与严谨, 又兼备几何的直观,因此向量是沟通代数、几何与三角函数的一种重要工具,有着极其丰富的实际背景. 以下分别对向量与各种数学问题的交汇进行举例,作一简单讨论.一. 向量法的基本思想向量具有很好的“数形结合”特性.一是“数”的形式,即利用一对实数对既可表示向量大小,又可以表示向量的方向;二是“形”的形式,即利用一条有向线段来表示一个向量.而且这两种形式又是密切联系的,它们之间可以利用简单的运算进行相互转化.可以说向量是联系代数关系与几何图形的最佳纽带.它可以使图形量化,使图形间关系代数化,使我们从复杂的图形分析中解脱出来,只需要研究这些图形间存在的向量关系,就可以得出精确的最终结论.使分析思路和解题步骤变得简洁流畅,又不失严密. 二.向量法在数学问题解决中的思路分析 (一)运用向量法解决代数问题 1.与函数交汇:例1.已知平面向量a=(3,-1),b =(21,23),若存在实数变量t和函数)(t f 使+=a x (t2b t a t f y b +-=-)(,)3,且x ⊥y ,试求函数的表达式)(t f .解:由题设可知a ·b =3·21+(-1)·23=0,且a 2=4,b2=1由x ⊥y ,有 [a +(2t -3)b ]·[-)(t f a +tb ]=0化简整理,得)(t f =41t(2t -3) 2.与方程交汇:例2.设a ,b ,c 是三个非零向量 ,a⊥b ,x∈R,若1x ,2x 是方程2x a+xb +c =0 的两实根,求证:1x =2x证明:由题设有21x a +1x b +c=0 ①22x a+2x b +c =0 ②①-②,有(21x -22x )a +(1x -2x )b =0若1x ≠2x ,则有(1x +2x )a +b =0 ,即b =-(1x +2x )a知a ∥b ,而a ,b 为非零向量,即与已知a⊥b 矛盾,故1x =2x .3.与数列交汇例3.设 {n a }为首项是-10,公差是2的等差数列,{n b }为首项是-21,公差是21的等差数列,O 为坐标原点,向量OA =(-1,1) ,OB =(1,1).点列P n 满足OP =a n ·OA +b n ·OB (n ∈N) (1)证明:P 1,P 2,…,P n 共线;(2)若点 P k (k ∈Nt) 表示点列P n 中处于第一象限的点,求k 的值. (1)证明:a n =2n-k, b n =2n-1 则OP=(2n-k) ·OA +(2n -1) ·OB =(11-23n ,25n-13)设P n 的坐标为 (x n ,y n ),则5 x n +3 y n = 16 即P 1,P 2,…,P n 均在直线5 x n +3 y n = 16上, 从而这些点共线.(2)解:OP k =(11-23k ,25k-13),当P k 在第一象限时, 有11-23k ﹥0,25k-13﹥0 则526﹤k ﹤322,而k ∈Nt故k 的取值为6或7. 4.与不等式交汇 例4.设a,b,c ∈R +,且abc=1,求证: )(13c b a ++)(13c b b ++)(13b ac +≥23 证明:原不等式⇔)(22c b a cb ++)(22a c b ac ++)(22b ac ab +≥23 令m =()(c b a +,)(a c b +,)(b a c +)n=⎪⎪⎭⎫⎝⎛+++)(,)(,)(b a c baa cb cac b a bc 则m·n=bc+ca+ab =)(2ca bc ab ++=)()()(222222b ac ba a cb ac c b a cb +++++因 m ·n≤则 ab+bc+ca ≤)(2ca bc ab ++)()()(222222b ac ba a cb ac c b a cb +++++即2cabc ab ++≤)(22c b a cb ++)(22a cb ac ++)(22b ac ab +而ab+bc+ca ≥3322cb a =3故)(22c b a cb ++)(22a c b ac ++)(22b ac ab +≥23(二)运用向量法解决三角问题 1.与三角交汇: 例1设a=(1+cosα,sin α),b=(1-cos β,sin β),c=(1,0),α∈(0,π),β=(π,2π),a与c的夹角为θ1 ,b与c的夹角为θ2且θ1 -θ2 =6π求sin 4βα-的值. 解:α =2cos2α,b=2sin 2β,c=1a ·c=2cos22α,b·c=2sin 22β,cos θ 1 =ca c a ⋅⋅= cos 2α,cos θ2=cb c b ⋅⋅= sin 2β而α∈(0,π),β=(π,2π) 则θ1 = 2α,θ2= 2β-2π从而2βα-=-3π故sin4βα-=21-(三).运用向量法解决几何问题 1.与平面几何交汇例1.如图,设E 、F 分别为△ABC 的AC 、AB 边上的点,BE 、CF 相交于点P ,M 为其三角形所在平面内任一点,则AE =zx ,AF =z y⇔MP=z y x z++MA+z y x y++MB+z y x x++MC证明:由已知得AE =zx x +AC,AF =z y y+AB因C,P,F 共线,则可设AP =m AF +(1-m )AC =z y my+AB+(1-m )AC 同理可设AP=n AE +(1-n )AB =(1-n )AB +zx nx +AC由AC ,AB 不共线,得1-m=zx nx +且zy my+=1-n则m=zy x zy +++所以AP =z y x y++AB+zy x x ++AC又AP =MP -MA ,AB =MB -MA ,AC =MC -MA 从而MP =zy x z ++MA+zy x y ++MB+zy x x ++MC以上.2.与平面解析几何交汇例2.设椭圆的一个焦点为F ,直线l 与过椭圆长轴的端点A ′,A 的切线相交于M ′,M 则(1)FM ·FM =0⇔直线l 与椭圆相切; (2)FM ·FM ﹥0⇔直线l 与椭圆相离;(3)FM ·FM ﹤0⇔直线l 与椭圆相交. 证明:设椭圆方程22ax +22by =1 (a ﹥b ﹥0),F (c,0),A ′(-a ,0), A(a ,0),直线l :m kx y +=FM·FM =(-a -c,ka m -) ·(a -c, ka m +)=22222a k m a c -+-=2222ka b m --由 22ax +22by =1消去y ,得 mkx y +=(b 2+a 2k )x 2+2a 2kmx+a 2(m 2-b 2)=0其判别式为△=4a 2b 2(b 2+ a 2k-m ),于是,(1)FM ·FM =0⇔ m 2-b 2- a 2k=0⇔△=0 ⇔直线l 与椭圆相切 (2)FM ·FM ﹥0⇔ m 2-b 2- a 2k ﹥0⇔△﹥0⇔直线l 与椭圆相离 (3)FM ·FM ﹤0⇔ m 2-b 2- a 2k ﹤0⇔△﹤0⇔直线l 与椭圆相交 3、与立体几何交汇例3、如图,在底面是直角梯形的四棱锥S-ABCD 中,∠ABC=90°,SA ⊥面ABCD,SA=AB=BC=1,AD=21.求面SCD 与面SBA 所成角的正切值.解:建立如图坐标系,则垂直于平面SBA 的向量为1n =(81,0,0) 设平面SCD 的方程为Ax+By+Cz+D=0 . 因为S(0,0,1),C (1,1,0),D (21,0,0)在平面上,所以⎪⎪⎩⎪⎪⎨⎧=+=++=+02100D A D B A D C ⇔⎪⎩⎪⎨⎧=-=-=D B DA D C 2于是平面SCD 的方程为-2D+Dy-Dz+D=0,设D=-1,所以垂直于平面SCD 的向量为2n =(2,-1,1),从而cos(1n ,2n )=2121n n n n ⋅⋅=36sin(1n ,2n )=33,则tan(1n ,2n )=22,即所求二面角的正切值为22.注:通过空间向量的应用而省去找角的过程.总结: 由于向量表示形式的多样性,它是各分科数学知识的一个重要交汇点,它成为联系多科内容的媒介,常与函数、方程、数列、不等式、三角、平面几何,解析几何,更重要的是立体几何的内容相联系,自然地交汇在一起,使数学问题的解法别致新颖,方便简捷.Abstract : this paper analyzes the vector method in mathematical problem solving the basic ideas, combined with the specific example presents the wide application of vector method.【参考文献】张景中 《走进教育数学-走进教育数学》.北京:科学教育出版社.2009。

数学用向量方法解决问题专题研究3000字报告

数学用向量方法解决问题专题研究3000字报告

数学用向量方法解决问题专题研究3000字报告一、课题研究的背景及意义向量具有几何形式与代数形式的“双重身份”,它是中学数学知识的一个交汇点,是数学问题解决的重要工具。

《普通高中数学课程标准》对其教学要求为重基础,突出向量作为工具的作用。

本课题对高中数学教科书中的向量内容进行分析,把向量作为数学工具来解决数学问题,列举在教学中积累的应用向量解决问题的实例,并进行分类讨论。

主要是向量在平面几何、函数、等式与不等式、数列、复数、三角函数、平面解析几何等数学问题解决教学方面的应用。

学生在中学阶段必须掌握利用向量来解决常见的数学问题。

在此背景下,“运用向量法解题”是一值得关注和研究的问题。

二、课题研究的目标和内容研究目标本课题研究的目标是明确向量在中学数学解题中的地位,提高对向量解题的认识,有效地促进中学数学中利用向量解题,从解题的内涵、思维过程等方面试图从向量解题的思想方法、解题策略、解题心理、解题案例等方面尽可能全面的阐述向量解题,给学习向量的人提供相应的参考。

1、优化学生认识的结构根据数学学习的同化理论,学生在数学学习的过程中,总是在原有的知识基础上,学习、接受新的知识,使旧知识获得新的意义,使原来的认知结构得到重建和优化。

如学习向量平行与垂直时,可以使原有的直线平行、垂直含义及证明的方法得到扩充,得到同化,充实了学生的知识结构。

在向量的观念下,学生可以从多角度多方面思考数学知识,达到对知识的融合,优化学生认识结构。

2、培养学生的思维品质中学数学教学的目的之一是培养学生的思维能力,而培养数学思维品质是形成数学思维能力的基本条件。

向量的引入给培养学生的思维品质提供了新的方法和途径。

利用向量知识点的多样性,一题多解,培养思维的广阔性;在平面向量这一章中许多概念及有关向量的运算、运算性质、运算律、既类似于实数的相关知识,又有本质区别,这是本章难点,在训练过程中,完善学生认识结论,克服知识负迁移,培养思维的批判性;以课文习题为蓝本实现一题多变,培养思维的灵活性;利用向量形成解题模型,做到一法多题,培养学生思维的聚合性。

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用

向量在解决高中数学问题中的应用高中数学问题相对于其他阶段的数学问题而言具有一定的复杂性,并且高中数学知识也有着相应的连贯性特点,所以针对一个题目会存在着多种解答方法。

“向量”也可以用来解决数学中的许多问题,因此教师在进行教学、学生在进行题目解答时要发挥“向量”的作用价值,应用到各类数学问题中去。

一、教学策略中体现“向量”的价值意义向量在许多数学问题上能够作为有效的手段进行问题解决,因此向量在数学教学中是一个非常重要的环节,教师进行向量基础知识的教学中就应该重视对向量的价值意义进行解释,使得学生对向量的学习保持着一定的热情,从而能够重视向量知识的应用。

例如在学习“向量的加法”时,设a=(x,y),b=(x1,y1),向量满足着平行四边形法则和三角形法则,所以便可以得出AB+BC=AC,由此满足向量公式:a+b=(x+x1,y+y1),并且a+0=0+a=a。

这个知识点就是一个关于向量在平面图形中的应用问题,所以教师便可以让学生进行猜想:平面问题的解决是否可以用向量知识来解答呢。

这个问题就是“向量”价值意义的体现,促进学生在学习向量这个知识时能够结合其他知识来进行思考,推动知识的结合应用,充分把向量的价值意义能够从其他类型的知识体系中体现出来。

这也是教师教学策略的体现,让学生巩固数学知识,寻找解决途径。

又比如“数乘向量”的学习,实数λ和向量a的乘积是一个向量,记作λa,且?Oλa=λ?a?O。

当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

需要追的是:按定义知,如果λa=0,那么λ=0或a=0。

这种数乘向量的知识也有着其重要的价值意义,规律中对λ的讨论就是一种严谨性的数学意识,这在高中数学学习中非常重要,因此向量知识也将此体现出来。

而向量特殊的方向性,对整个数学问题的讨论有着指导性作用,引导着学生更加注意到数学问题中的正负问题,这在其他类别的数学问题上也有着体现,所以向量的价值意义还在于对其他知识体系的映射,学生能够通过向量的学习类比其他数学问题,这便是非常重要的数学经验。

用向量方法解决数学问题

用向量方法解决数学问题

用向量方法解决数学问题将向量引入高中数学教材,并做为一种基础理论和基本方法要求学生掌握。

这是由于向量知识具有以下几大特点和需要。

首先,利用向量解决一些数学问题,将大大简化原本利用其他数学工具解题的步骤,使学生多掌握一种行之有效的数学工具。

其次,向量的引入将使高中数学中“数形结合”理论得到新的解析,为在高中数学贯彻“数形结合”的教学理念提供一种崭新的方法。

向量具有很好的“数形结合”特性。

一是“数”的形式,即利用一对实数对既可表示向量大小,又可以表示向量的方向;二是“形”的形式,即利用一条有向线段来表示一个向量。

而且这两种形式又是密切联系的,它们之间可以利用简单的运算进行相互转化。

可以说向量是联系代数关系与几何图形的最佳纽带。

它可以使图形量化,使图形间关系代数化,使我们从复杂的图形分析中解脱出来,只需要研究这些图形间存在的向量关系,就可以得出精确的最终结论。

使分析思路和解题步骤变得简洁流畅,又不失严密。

第三,向量概念本身来源于对物理系中既有方向、又有大小的物理量,即物理学中所称的“矢量”的研究。

其实,“向量”和“矢量”是在数学和物理两门学科对同一量的两种不同称呼而已。

在物理学中,矢量是相对于有大小而没有方向的“标量”的另一类重要物理量。

几乎全部的高中物理学理论都是通过这两类量来阐释的。

矢量广泛地应用于力学(如力,速度,加速度等)和电学(如电流方向,电场强度等)理论之中,在高中新教材中引入向量章节,对向量进行系统深入的学习和研究。

对学生在物理课上学习和理解矢量知识无疑将提供一个数学根据和许多运算便利。

同样,学生在物理课上碰到的与矢量有关的物理实际又会使他们对向量也有更深入了解,并激发他们学习向量知识的兴趣和热情。

如在力学中,对力、速度等的分解和合成,使用的就是向量的加减理论,数学和物理的完美结合,起到异曲同工之作用。

第四,把向量理论引入高中教材,也是当今世界中等教育的一种普遍趋势,是教育顺应时代发展的必然结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用向量方法解决数学问题
将向量引入高中数学教材,并做为一种基础理论和基本方法要求学生掌握。

这是由于向量知识具有以下几大特点和需要。

首先,利用向量解决一些数学问题,将大大简化原本利用其他数学工具解题的步骤,使学生多掌握一种行之有效的数学工具。

其次,向量的引入将使高中数学中“数形结合”理论得到新的解析,为在高中数学贯彻“数形结合”的教学理念提供一种崭新的方法。

向量具有很好的“数形结合”特性。

一是“数”的形式,即利用一对实数对既可表示向量大小,又可以表示向量的方向;二是“形”的形式,即利用一条有向线段来表示一个向量。

而且这两种形式又是密切联系的,它们之间可以利用简单的运算进行相互转化。

可以说向量是联系代数关系与几何图形的最佳纽带。

它可以使图形量化,使图形间关系代数化,使我们从复杂的图形分析中解脱出来,只需要研究这些图形间存在的向量关系,就可以得出精确的最终结论。

使分析思路和解题步骤变得简洁流畅,又不失严密。

第三,向量概念本身来源于对物理系中既有方向、又有大小的物理量,即物理学中所称的“矢量”的研究。

其实,“向量”和“矢量”是在数学和物理两门学科对同一量的两种不同称呼而已。

在物理学中,矢量是相对于有大小而没有方向的“标量”的另一类重要物理量。

几乎全部的高中物理学理论都是通过这两类量来阐释的。

矢量广泛地应用于力学(如力,速度,加速度等)和电学(如电流方向,电场强度等)理论之中,在高中新教材中引入向量章节,对向量进行系统深入的学习和研究。

对学生在物理课上学习和理解矢量知识无疑将提供一个数学根据和许多运算便利。

同样,学生在物理课上碰到的与矢量有关的物理实际又会使他们对向量也有更深入了解,并激发他们学习向量知识的兴趣和热情。

如在力学中,对力、速度等的分解和合成,使用的就是向量的加减理论,数学和物理的完美结合,起到异曲同工之作用。

第四,把向量理论引入高中教材,也是当今世界中等教育的一种普遍趋势,是教育顺应时代发展的必然结果。

追溯向量在数学上的兴起与发展,还是近几十年的事。

翻阅早期一些关于数学学史的书藉,很少有关于向量发展史的介绍。

随着向量研究的深入,在许多方面已经取得了突破,向量理论也象函数、三角、复数等数学分支一样日趋完备,形成了独立的数学理论体系。

越来越多的数学教育者认识到向量不象其他新兴数学学科那么深奥难懂,易于处于高中文化水平之上的学生理解和接受,且其所具有的良好的“数形结合”特点使它与高中数学知识能够融汇贯通,相辅相承。

因此,为了保持与世界数学教育发展同步,使当代中学生能够较早接触当代数学的前沿,在高中数学教育中引入向量是非常必要和可行的。

将“向量”引入高中数学教材后,值得探讨和深思的几个问题
首先,从运用向量解题的方法和未运用向量的解题方法的比较中,可以看到向量解题的优势就在于只运用了向量公式的简单变形就解决了一个通过繁琐解析几何分析方能解决的问题。

“这是未来数学的解题模式,是数学的进步。

”同样,这一思想也是对笛卡尔“变实际问题为数学问题,再变数学问题为方程问题,然后只需求解方程便可使问题得以解决”这一数学哲学思想的完美体现。

然而,高中一线的数学教师都知道:培养学生的“运算能力、分析能力、空间想象能力”这三大能力是高中数学教学的最主要目标之一。

而采用这样一种单纯得只需代入公式,并在解题过程中无需任何几何分析甚至连图都可不画的解法,对学生又怎能算得上是一种能力的培养。

如果单单要求学生做这样的一些题目,会把学生培养成只会按步照搬,缺乏创造力、分析力、想象力的“数学机器”。

这与当代数学的培养目标是背道而驰的。

其次,大多数已经从事过向量教学的老师会有这样的感受。

即向量的引入虽然给其他后继数学理论的推导和难题的解决带来了便利,但其本身的理论和由其理论介入的一些解题过程,在教学过程中却很难使学生理解和接受。

这无形中加大了中学数学教育者的教学负荷。

某些题目的作法,虽然在运用该向量公式时解题很简单,但要使学生明白这条公式的由来和演化过程却要花去课程的不少时间。

要解决这一问题,笔者认为归根结底要依靠通过加强对向量部分知识的细致教学,加深学生对向量知识的理解和灵活运用来完成。

第三,对于新教材引入向量章节,教育上层机关还应该积极做好对一线教师的宣传、培训工作,必要时应该动用政策性指令加以干预和指导,促使向量教学在中学教学中的顺利开展。

然而许多中学教师对向量编入高中教材提出了反对意见,甚至不能理解。

对于这点,究其原因有二:一方面是由于新教材刚刚实施,大家还没有实践体验,很难发现向量的优势所在。

另一方面,许多一线教师,尤其是老教师,教授老教材多年,教学已经形成固定的有效模式,且其自身的向量知识和对向量教学优势的认识都比较缺乏所致。

由此可见,在普及新教材的过程中,对从事新教材教学的数学教师进行短期向量知识的教学培训是相当必要的。

另外,新教材中大量向量知识的引入和合理编排也是使教育者和被教育者感受到应该教好和学好向量知识的最具说服力的佐证。

笔者自己在教学中对待向量的态度,随着教学的深入也经历了一个从开始不能理解,到逐渐领会其用意和精髓,到最后赞成并认真在教学实践中加以贯彻的过程。

另外,在中学数学教学中,对向量章节轻视,粗略带过,甚至不教不学的现象在多数学校也普遍存在。

要根本上杜绝这些现象的发生,还需依靠教育改革的正确引导。

班级:2016届班
指导教师:
课题组长:
成员:
一问题提出:学习平面向量后,根据课本设计活动方案,进行“平面向量的应用
研究”
二研究内容、方法及过程:
制定计划。

得出结论。

组内讨论。

三结果与结论:经组内讨论认为,平面向量有着广泛的应用。

四研究体会与收获:通过这次活动我们认识到教学圆形手工制作,在生活中的广泛应用,让我们了解到数学圆形在生活中发挥着很大的作用。

指导教师评语:通过同学们的分工和合作,进行数据搜集和整理工作。

调查方法科学合理,记录简洁,明了清晰。

通过同学们研究性学习活动的开展,培养了合作团队精神,达到了预期的目的。

相关文档
最新文档