221第二课时对数的运算

合集下载

人教A版数学必修一2.2.1对数与对数运算第2课时对数的运算.pptx

人教A版数学必修一2.2.1对数与对数运算第2课时对数的运算.pptx

(1) loga c logc a (2) log2 3 log3 4 log4 5 log5 2
(3)(log4 3 log8 3)(log3 2 log9 2)
解:
(1) loga c logc a
lg c lg a 1; lg a lg c
(2) log2 3 log3 4 log4 5 log5 2
2 3
lg 2 lg 32 )
( lg 3 lg 3 )(lg 2 lg 2 ) 2lg 2 3lg 2 lg 3 2lg 3
5lg 3 3lg 2 5 . 6lg 2 2lg 3 4
思考 aloga N ?
令b loga N,则ab N.
则aloga N ab N.
aloga N N
解:(1) log2 3 log3 4 log4 5 log5 6 log6 7 log7 8
lg 3 lg 4 lg 5 lg 6 lg 7 lg8 lg 2 lg 3 lg 4 lg 5 lg 6 lg 7
lg8 lg 23 3lg 2 3
lg 2 lg 2 lg 2
(2)
从而得出 loga (M N ) loga M loga N (a 0,且a 1, M 0, N 0)
思考2:结合前面的推导,由指数式
M N
ap aq
a pq
又能得到什么样的结论?
试一试:由
M N
ap aq
a pq

loga
M N
p q loga M
loga
N
(a 0,且a 1, M 0, N 0)
M lg A lg A0
其中,A是被测地震的最大振幅,A0是“标准地震” 的振幅(使用标准地震振幅是为了修正测震仪距实际 震中的距离造成的偏差).

课件2:2.2.1 第2课时 对数的运算

课件2:2.2.1 第2课时 对数的运算
2.2.1 对数与对数运算 第2课时 对数的运算
自学导引
1.对数的运算性质 如果 a>0,a≠1,M>0,N>0,那么, (1)loga(MN)=_l_o_g_aM__+__l_o_g_aN___; (2)logaMN =__lo_g_a_M_-__l_o_g_a_N_; (3)logaMn=____n_lo_g_a_M______(n∈R).
3.对于多重对数符号对数的化简,应从内向外逐层化简 求值.
4.要充分运用“1”的对数等于 0,底的对数等于“1”等对 数的运算性质.
5.两个常用的推论: (1)logab·logba=1(a,b>0 且均不为 1); (2)logambn=mn logab(a,b>0 且均不为 1,m≠0).
本节内容结束 更多精彩内容请登录:
=2(log214密 因忽略真数大于0而出错
【例 4】 已知 lg x+lg y=2lg (x-2y),求 错解:因为 lg x+lg y=2lg(x-2y),
xy的值.
所以 xy=(x-2y)2,即 x2-5xy+4y2=0,
所以 x=y 或 x=4y,即xy=1 或xy=4,
解:(1)lg 14-2lg73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7 -lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.
(3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+ (lg 5+lg 2)2=2+(lg 10)2=2+1=3.
x,得
x=llooggccba.
∵x=logab,
∴logab=llooggccba.

对数的概念及运算法则-PPT

对数的概念及运算法则-PPT

你发现了什 么?
对数恒等式: loga an n 作为公式用
18
探 求下列各式的值:


动 (1) 2log2 3 3
感 悟
(2) 7log7 0.6 0.6

学 (3) 0.4log0.4 89 89
你发现了什 么?
对数恒等式: aloga N N
19
练习 3.求下列各式的值
(1) log5 25 2 (2) log25 25 1 (3) lg10 1 (4) lg 0.01 2 (5) lg1000 3 (6) lg 0.001 3
log a
M N
log a M
log a N
(2)
logaMn nlogaM(n R) (3)
例题讲解 例1 求下列各式的值:
(1) log2 6 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log5
3
log5
1 3
(4) log3 5 log3 15
26
102 100
log10 100 2
1
42 2
log 4
2
1 2
102 0.01
log10 0.01 2
练习: a x N loga N x
把下列指数式改写成对数式
(1)54 625 log5 625 4
(2) 26 1 64
(3) 3a 27
log2
1 64
6
log3 27 a
对数的概念及运算法则
知识探究(一):对数的概念
思考1:若24=M,则M=?16 思考2:若若22x-=2=16N,,则则xN==??414
若2x= 1 4

对数的运算 课件

对数的运算  课件

即真数的位置出现2,3,5才可以利用已知条件.
【解析】1.选A.lg( x)3-lg( )3y
2
2
=3(lg x-lg )y
2
2
=3[(lgx-lg2)-(lgy-lg2)]=3(lgx-lgy)=3a.
2.(1)2log210+log20.04=log2(100×0.04)=log24=2.
(2) lg3+2lg2-1=lg 3 4 10=lg1.2=1.
二、对数的换底公式
前提 条件
原对数的底数a的取值范围 原对数的真数b的取值范围 换底后对数的底数c的取值范围
_a_>_0_,_且__a_≠__1_ _b_>_0_
_c_>_0_,_且__c_≠__1_
公式
logcb
logab=_l_og_c_a_
思考:换底公式的作用是什么?
提示:利用换底公式可以把不同底数的对数化为同底数的对数.
类型 二 换底公式
【典型例题】
1.式子 log89 的值为( )
log2 3
A. 3
B. 2
C.2
D.3
2
3
2.已知2x=5y,则 x 的值为______.
y
3.已知log189=a,18b=5,试用a,b表示log3645.
【解题探究】1.题1中分子和分母中的对数底数不同,如何将 其化为同底的对数? 2.为了把题2中x,y表示出来,可以对已知等式作如何处理或 变形? 3.比较题3中已知对数和所求对数的底数,解答本题若用换底 公式应换为以什么数为底?
∴xlog22=ylog25,

x y
log2 5 log2 2
log2 5.
答案:log2 5

对数的运算PPT精品课件

对数的运算PPT精品课件
这种发育类型叫做变态。
因此,青蛙属变态发育。
蝗虫的一生要经过_受__精_卵___、_若_虫____
和成虫
变态
_______三个时期,它的不发完育全也变属态_发__育____ 发
育,这种发育类型称为_______________ 。
蝗虫是农业害虫
根据蝗虫的生长发育 过程,你认为防治蝗虫 可以采取哪些措施?可 以向农业部门建议的比 较好的方法是什么?
3、青蛙属于(B )
A、鱼类 C、跳跃类
B、两栖类 D、爬行类
小明学习了“动物的生命周期”后,想探究环境因素 对动物的寿命是否有较大的影响。他设计了下面的 实验:分别在甲、乙、丙三个金鱼缸中放入等量的、 未经处理过的自来水(含有漂白粉)、煮沸并冷却 的自来水和静置几天后的自来水。然后,在每个金 鱼缸中放入5条健康的、大小相近的小鱼,观察小鱼 的生活情况。一段时间后,发现只有丙缸中的小鱼 还活着,甲缸和乙缸中的小鱼都陆续死亡了。请分 析小鱼死亡的原因。
甲缸是由于自来水中的漂白粉释放的氯气使鱼死亡 乙缸是由于自来水中没有溶解氧使鱼死亡
植物能_利_用__太__阳_光__制_造__营_养__物__质_______,
动物___需_要__从_外__界_摄__取__营_养__物_质________。
人类是通过什么方式使种族得以 延续的?
图3-3不同生长时期的蛙
蛙的各个生长发育过程的顺序是:
受—精—卵 —胚—胎— —蝌—蚪— —幼—蛙— 成—蛙—
思考5:如果a>0,且a≠1,M>0,则
loga n M 等于什么?
思考6:上述关于对数运算的三个基本性 质如何用文字语言描述? ①两数积的对数,等于各数的对数的和; ②两数商的对数,等于被除数的对数减去

对数及其运算_优秀课件

对数及其运算_优秀课件

变式体验 3 已知 lg2=0.3010,lg3=0.4771, 求 lg 45.
解:lg 45=12lg45=12lg920=12(lg9+lg10-lg2)=12 (2lg3+1-lg2)=lg3+12-12lg2
=0.4771+0.5-0.1505=0.8266.
类型四 对数的实际应用问题 [例 4] 声音的强度 D(dB)由公式 D=10lg(10I-16)给出, 其中 I 为声音能量(W/cm2),如果能量小于 10-16W/cm2 时, 人听不见声音.求: (1)人低声说话(I=10-13W/cm2)的声音强度; (2)平时常人交流(I=3.16×10-6W/cm2)的声音强度; (3) 听 交响音 乐会 时, 坐在 铜管 乐前 (I= 5.01×10- 6W/cm2)的声音强度.
[分析] 本题考查对数在实际问题中的应用.将所 给数据代入公式进行计算即可.
[解] (1)人低声说话时的声音强度: D=10lg1100- -1136=10lg103=30(dB). (2)平时常人交流的声音强度: D=10lg3.1160×-1160-6=10lg(3.16×1010) =10(lg3.16+10)≈105(dB).
n个
(2)不正确.∵(logax)n=(logax·logax·…·logax),而 logaxn =nlogax=logax+logax+…+logax,∴一般两式不相等.
n个
自我检测 1.若 a>0,a≠1,x>0,y>0,x>y,下列式子 中正确的个数是( ) ①logax·logay=loga(x+y); ②logax-logay=loga(x-y); ③logaxy=logax÷logay; ④loga(xy)=logax·logay.

课件8:2.2.1 第2课时 对数的运算

课件8:2.2.1 第2课时 对数的运算

方法二:原式=lg14-lg(73)2+lg7-lg18 =lg73142××718=lg1=0. (2)原式=2+l2gl3g62-+2l+g32lg2=42llgg22++2llgg33=12. (3)原式=lg25+(1-lg5)(1+lg5) =lg25+1-lg25 =1.
跟踪训练 2.
2 原式=lologg333442=3lloogg3344=23.
4.计算:log89·log332=________.
[答案]
10 3
[解析] 运用换底公式,得 log89·log332=llgg98·llgg332=23llgg32·5llgg32=130.
5.计算下列各式的值: (1)2lg5+lg4+eln2+log 22 2; (2)(log23+log89)(log34+log98+log32).
(2)log927=lloogg33297=lloogg333332=32lloogg3333=32.
1
11
(3)log2125·log332·log53
=log25-3·log32-5·log53-1
=-3log25·(-5log32)·(-log53)=-15·llgg52·llgg23·llgg35=-15.
跟踪训练 3.
计算下列各式的值:
(1)log89·log2732;
(2)log927;
1
11
(3)log2125·log332·log53.
[解析] (1)log89·log2732=llgg98·llgg3227=llgg3223·llgg2353=23llgg32·53llgg23=
10 9.
本节内容结束 更多精彩内容请登录:

3 (3)loga

对数的运算性质公开课PPT课件

对数的运算性质公开课PPT课件
详细描述
对数运算基于指数法则,以某个底数(通常为10或自然对数e)为基数,将一个 数的幂次转化为线性关系。例如,以10为底的对数表示10的几次方等于给定数 值,而以e为底的对数则表示e的几次方等于给定数值。
对数的性质
总结词
对数具有一些基本的数学性质,这些性质在解决实际问题时非常有用。
详细描述
对数性质包括对数的乘积法则、商数法则、幂次法则等。这些法则允许我们在不进行复杂计算的情况下,快速得 出数值结果。例如,利用乘积法则,我们可以将两个数的对数相加,得到它们乘积的对数;利用商数法则,我们 可以将两个数的对数相减,得到它们的商的对数。
遵循运算优先级规则
在进行对数运算时,应遵循数学中的运算优先级规则,先进 行乘除运算,再进行加减运算。在对数运算中,也需要注意 优先级问题,以确保运算的正确性。
括号的作用
在运算中,括号可以改变运算的优先级。当有多个对数运算 时,可以使用括号来明确运算的顺序,避免混淆和错误。
精度问题
避免大数计算
在进行对数运算时,应注意精度问题。对于非常大或非常小的数值进行对数运算 ,可能会因为计算机的精度限制而导致结果不准确。为了避免这种情况,可以使 用科学记数法来表示大数或小数,或者使用计算器或数学软件进行计算。
进阶练习题
总结词
提高对数运算的灵活运用能力
详细描述
题目难度有所提升,涉及对数性 质的应用,如换底公式、对数的 幂运算等,旨在提高学生解决复 杂对数问题的能力。
综合练习题
总结词
综合运用对数知识解决实际问题
详细描述
题目设计为实际问题背景,要求学生 综合运用对数的知识,如对数方程的 求解、对数不等式的求解等,培养学 生对对数知识的实际应用能力。

对数的运算 课件(39张)

对数的运算 课件(39张)

x
x
=x,则 log25=xlog23,即 log25=log23 ,从而有 3 =5,将

其化为对数式得 x=log35,若将对数函数的底数 2 换成 c(c>0 且 c≠1),

=log35 还成立吗?

提示:成立,证明如下:


x
x
=x,则 logc5=xlogc3,即 logc5=logc3 ,从而有 5=3 ,即 x=log35,
数学

(2)loga = logaM-logaN .

即两个正数商的对数等于同一底数的被除数的对数减去除数的对数.
(3)logaMn= nlogaM(n∈R) .
即正数幂的对数等于幂指数乘同一底数幂的底数的对数.
特别地,logaaN=N.
数学
2.换底公式及导出公式
[问题 2] 假设

=(lg 5)2+(1+lg 5)lg 2
=(lg 5)2+lg 2·lg 5+lg 2
=(lg 5+lg 2)lg 5+lg 2
=lg 5+lg 2=1.
数学




+ +
(2)
-
-

;

(3)log535-2log5 +log57-log51.8.


= (lg 2+lg 5)





= lg 10= .
数学
法二
=lg
原式=lg
×
×
=lg( × )
=lg

= .

对数运算法则 PPT

对数运算法则 PPT

(2)log 7 48 log 12 1 log 421
2
2 22
知 识 回 顾 : (1) 公 式
① log(M • N ) logM logN
a
a
a

logM a
N
logM logN
a
a
③ logM n n logM (n R)
a
a
a loga N N
(2)公式的作用:
化简;求值;证明。
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
(3)作业:习题 2.7 3, 4, 6.
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VI买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。

PPT教学课件对数与对数的运算

PPT教学课件对数与对数的运算
logcb logab=_lo_g_c_a___ (a>0,b>0,c>0,a≠1,c≠1).
问题探究
1 . 若 M 、 N 同 号 , 则 式 子 loga(M·N) = logaM + logaN成立吗? 提 示 : 不 一 定 . 当 M>0 , N>0 时 成 立 ; 当 M<0 , N<0时不成立. 2.对数式logapNq如何化简?(a>0,a≠1,N>0) 提示:可用换底公式化简: logapNq=llooggaaNapq=qlopgaN=qplogaN.
即2x+1y=1.
【名师点拨】 法一,通过指数式化对数式求出 x,y,再代入所求式子中进行对数运算,注意 化同底. 法二,对等式两边取对数,是一种常用的技巧.
自我挑战 2 已知 x、y、z 为正数,3x=4y=6z=k,
求证:1z-1x=21y. 证明:1z-1x=lo1g6k-log13k=logk6-logk3=logk2 =12logk4=21y,
• ②发展方向:研制

新型农药。
• 二、化学是社会可持续发展的基础
• 1.现代科学技术的发展离不开化学
• (1)化学与人类的密切关系
• ①化学与人们的生活有着密切的联系。 • ②化学与信息、生命材、料 、环境、能、源 地 球 、
空间和核科学等新兴学科密切联系。 • ③化学 合成和分离 技术为其他技术的发明
失误防范
1.应用对数运算性质时应注意保证每个对数 都有意义.
要注意底数和真数的取值范围.例如,
log5[(-5)×(-5)]是有意义的,但是不能用公 式 计 算 , 否 则 会 得 到 如 下 结 果 : log5[( - 5)×(-5)]=log5(-5)+log5(-5),即无意义 了.

221对数与对数运算

221对数与对数运算

其中a > o且a ≠ 1; M>0,N>0.
作业: 作业:配套作业本
log e 3
简记作ln3 ; log e 10 简记作 简记作ln10 简记作
规律1: 底的对数等于1. 规律 : 底的对数等于
规律2: 的对数等于 的对数等于0. 规律 : 1的对数等于
规律3: 负数和零没有对数 规律 : 负数和零没有对数.
规律4: 规律 :
(a > o且a ≠ 1)
讲解范例 将下列指数式写成对数式: 例1 将下列指数式写成对数式: (1) )
幂 对数 底数 真数
底数 指数
常用对数: 常用对数: 我们通常将以10为底的对数叫做常用对数。 为底的对数叫做常用对数 我们通常将以 为底的对数叫做常用对数。 为了简便,N的常用对数 简记作lgN。 为了简便 的常用对数 log 10 N 简记作 。 log 简记作lg3.5. 简记作lg5; 例如: 例如: 10 5 简记作 ;log10 3.5 简记作 自然对数: 自然对数: 在科学技术中常常使用以无理数e=2.71828…… 在科学技术中常常使用以无理数 为底的对数, 为底的对数叫自然对数 为底的对数,以e为底的对数叫自然对数。 为底的对数叫自然对数。 为了简便, 的自然对数 简记作lnN。 为了简便,N的自然对数 log e N 简记作 。
其中a > o且a ≠ 1; M>0,N>0.
小结: 1.对数定义: 对数定义: 对数定义 2.性质: 性质: 性质 规律1: 底的对数等于1. 规律 : 底的对数等于 规律2: 的对数等于 的对数等于0. 规律 : 1的对数等于 规律3: 负数和零没有对数。 规律 : 负数和零没有对数。 规律4: 规律 : 规律5: 规律 : 规律6: 规律 :

对数的运算性质公开课PPT课件

对数的运算性质公开课PPT课件

换底公式
总结词
换底公式是指数与对数的转换公 式。
详细描述
如果log(b) a = n,那么 a = b^n。特别地,如果log(b) a = m/n,那么 a = b^(m/n)。
03
对数在实际中的应用
科学计算
科学计算中经常需要进行大数的乘除运算,使用对数可以将大数转换为小数,简化 计算过程。
乘法性质
总结词
对数乘法性质是指数相乘对应的对数 相加。
详细描述
如果a的b次方等于c,那么log(a)b = log(c)a。特别地,如果a > 0且a ≠ 1 ,b > 0,那么log(a) (mn) = log(a) m + log(a) n。
除法性质
总结词
对数除法性质是指数相除对应的对数相减。
已知 log(a) - log(b) = 3,log(b) - log(c) = 4
,求 a/c 的值
已知 a^2 = b,b^2 = c,求 (log(a) + log(b)) / (log(b) + log(c)) 的值
已知 a × b = c,log(a) + log(b) = 2,求 log(c) 的值
THANKS
对数运算是一种数学运算,它表示一个数(对数)与另一个数(基数)的幂次 之间的关系。具体来说,如果 a^x = N(a>0,a≠1),则x叫做以a为底N的 对数。
对数的性质
总结词
对数具有一些重要的性质,这些性质 在数学和科学计算中非常有用。
详细描述
对数具有一些重要的性质,包括对数 的乘积性质、除法性质、指数性质等 。这些性质在数学和科学计算中非常 有用,可以简化复杂的数学运算。

人教版高中数学必修1《对数的运算》PPT课件

人教版高中数学必修1《对数的运算》PPT课件

法二:原式
=lglg1225+llgg245+llgg
5lg 8lg
25+llgg245+lglg1825
=3llgg25+22llgg
52+3llgg52llgg
25+22llgg
25+33llgg
2 5
=133llgg253llgg52=13.
法三:原式=(log253+log2252+log2351)·(log52+log5222+log5323)
1 a
b=-logab.
[典例 2] (1)计算(log2125+log425+log85)·(log52+log254+log1258)的值; (2)已知 log189=a,18b=5,用 a,b 表示 log3645 的值.
[解] (1)法一:原式=log253+lloogg22245+lloogg2258· log52+lloogg55245+lologg515825 =3log25+22lloogg2225+3lloogg2252log52+22lloogg5525+33lloogg5525 =3+1+13log25·(3log52) =13log25·lloogg2225=13.
(a>0,且a≠1;b>0;c>0,且
c≠1).我们把上式叫做对数换底公式.
• [微思考] 换底公式中底数c是特定数还是任意数?
• 提示:是大于0且不等于1的任意数.
(二)基本知能小试
1.判断正误:
(1)由换底公式可得 logab=lloogg- -22ba.
()
(2)log2M+log3N=log6(MN).
• [方法技巧] • 1.解对数综合应用问题的3种方法 • (1)统一化:所求为对数式,条件转为对数式. • (2)选底数:针对具体问题,选择恰当的底数. • (3)会结合:学会换底公式与对数运算法则结合使用. • 2.解对数应用题的4个步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二课时对数的运算
【选题明细表】
1.下列等式成立的是(C )
(A)log 2(8-4)=log 28-log 24
碣8 8
(B) I =log2,
(C) log 28=3log 22
(D)log 2(8+4)=log 28+log24
解析:由对数的运算性质易知C正确.
2.计算(log 54) • (log 花25)等于(B )
I I
(A)2 (B)1 (C) (D):
培4记25 21耳2 21目5
解析:(log 54) • (log 1625)=「x H" =1.故选B.
3.设lg 2=a,lg 3=b, 则log 125等于(A )
1 - a 1 - a
(A) ' ' ' (B)
l 1 + ci
(C) ' ' (D)
l - lg2 1 -a
解析:因为lg 2=a,lg 3=b, 则log価二卅_1故选A.

4. 如果lg 2=m,lg 3二n,贝孔:厂等于(C )
2m 4- n m + 2n
(A)丨‘ ’-(B):十:? - ■
2m + n m + 2n
(C) I u (D)" 1
解析:因为lg 2=m,lg 3二n,
]gl2 21g2 + Ig3 2m 4- n 2m + n
所以増15 = 1率+ lg5 “+ 1 -lg2y+l-nt.故选 C.
y_
5. 若lg x=m,lg y=n,则lg -lg( )2的值为(D )
i i
(A) m-2n-2 (B) m-2n-1
i i
(C) m-2n+1 (D) m-2n+2
解析:因为lg x=m,lg y=n,
- 上丄1
所以lg -lg( )2= lg x-2lg y+2= m-2n+2.故选D. 6. (2019 •上海高一月考)若Io • 2=a,则log仁3二________ 解析:lo 2=a,可得2log 32=a,
1 ____ 1 1
氏心-=:- -=".
1
答案::1
I I
7. 已知3a=5b=A,若+ =2,则A= ______ .
解析:因为3a=5b=A>0,所以a=log 3A,b=log s A.
1 1
由,+ =log A3+log A5=log A15=2,
得A"=15,A=:.
答案:/
8. 计算下列各题:
1 3 4 (1) 0.008 「+(「)2+(」-16 "°'75;
2 1+扣
(2) (lg 5) 2+lg 2 • lg 50+ .
1 3 3 4
解:(1)原式=(0.3 4 '+ + -24X(-0.75) =0.3+2-3+2-2-2-3=0.55.
2 2【%祁
(2)原式=(lg 5) +lg 2 • lg(2 X 5)+2 •
=(lg 5) 2+lg 2 • (lg 2+2lg 5)+2
=(lg 5+lg 2) 2+2 =1+2 .
9. 已知lg 2=a,lg 3=b,贝S log 36 等于(B )
a +
b a + b a b
(A)「(B) " (C) (D)
lg6 1^2 + lg3 a + b
解析:log 36— =「=「,故选 B.
1
10. 化简」 1 ; +log2 ,得(B )
(A)2 (B)2-2log 23
(C)-2 (D)2log 23-2
解析:」一=2-log 23,所以原式
1
=2-log 23+log23 =2-2log 23.
11. 下列给出了x与10x的七组近似对应值:
假设在上表的各组对应值中,有且仅有一组是错误的,它是第_组. 解析:由指数式与对数式的互化可知,
10x=N? x=lg N,
将已知表格转化为下表:
因为lg 2+lg 5=0.301 03+0.698 97=1,
所以第一组、第三组对应值正确.
又显然第六组正确,
因为lg 8=3lg 2=3 x 0.301 03=0.903 09,
所以第五组对应值正确.
因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18, 所以第四组、第七组对应值正确.
所以只有第二组错误
答案:
12. 已知a,b,c是厶ABC勺三边,并且关于x的二次方程
x2-2x+lg(c 2-b2)-2lg a+仁0 有等根,试判断厶ABC的形状.
解:由题意知△ =0,
2 2 2
即(-2) -4[lg(c -b )-2lg a+1]=0,
2lg a-lg(c 2-b2)=0,
a2a2
lg 1 =0, 1 =1,a2+b2=c2,
故厶ABC是直角三角形.
2
13. 地震的震级R与地震释放的能量E的关系为R= (lg E-11.4).A地
地震级别为9.0级,B地地震级别为8.0级,那么A地地震的能量是B 地地震能量的______________ 倍.
2 3
解析:由R= (lg E-11.4), 得'R+11.4=lg E,
3
-R + 11.4
故E=1 .
设A地和B地地震能量分别为E,E2,
3
yX 9 4- 11.4
10
”1 3 3
—yX 8 + 11.4 -
则'2 = 10 =1 广= 10;1O.
即A地地震的能量是B地地震能量的10「倍.
答案:10 ::
【教师备用】求值:
7
(2)lg 14-2lg
:
+lg 7-lg 18;
Ig5-]g8 000 + Qg 2^)z
⑶计算:""A"
7
(2)lg 14-2lg
:
+lg 7-lg 18=lg[14
(3) 分子=lg 5(3+3lg 2)+3(lg 2) lg 2)=3,
分母=(lg 6+2)-lg 6+1=3, 所以原式=1.
(1)2log 2 -lg 2-lg 5+
解:(1)2log 2 -|g 2-lg 5+
3 q
4 4 —& X ( • h
——
) =1-1+ =.
7
-()2x 7- 18]=lg 仁0.
2
=3lg 5+3lg 2(lg 5+
i
=2X -lg 10+(
1
27 .。

相关文档
最新文档