高等数学-格林公式

合集下载

高等数学教学教案 格林公式及其应用

高等数学教学教案 格林公式及其应用

§11.3 格林公式及其应用授课次序69教 学 基 本 指 标教学课题 §11.3 格林公式及其应用 教学方法 当堂讲授,辅以多媒体教学 教学重点 格林公式及其应用教学难点 各种不同情况下的计算 参考教材 同济大学编《高等数学(第6版)》 自编教材《高等数学习题课教程》作业布置 《高等数学》标准化作业双语教学 微分 :differential calculus ;全微分:total differential ;偏微分:partial differential ;积分:integral ;重积分:multiple integral ;二重积分:double integral ;三重积分:threefold integral课堂教学目标1. 掌握格林公式;2. 会运用平面曲线积分与路径无关的条件; 3. 会求全微分的原函数。

教学过程 1.格林公式(45min );2.平面曲线积分与路径无关的条件(20min ); 3.全微分的原函数(25min )教 学 基 本 内 容§11.3 格林公式及其应用一、格林公式单连通与复连通区域:设D 为平面区域,如果D 内任一闭曲线所围的部分都属于D ,则称D 为平面单连通区域,否则称为复连通区域.对平面区域D 的边界曲线L , 我们规定L 的正向如下: 当观察者沿L 的这个方向行走时,D 内在他近处的那一部分总在他的左边.区域D 的边界曲线L 的方向:定理1设闭区域D 由分段光滑的曲线L 围成,函数P (x ,y )及Q (x ,y )在D 上具有一阶连续偏导数,则有⎰⎰⎰+=∂∂-∂∂L DQdy Pdx dxdy yPx Q )(,其中L 是D 的取正向的边界曲线.简要证明:备注栏仅就D 即是X -型又是Y -型的情形进行证明. 设D ={(x ,y )|ϕ1(x )≤y ≤ϕ2(x ),a ≤x ≤b }.因为yP ∂∂连续,所以由二重积分的计算法有 dx x x P x x P dx dy y y x P dxdy y P b ax x b a D)]}(,[)](,[{}),({12)()(21ϕϕϕϕ-=∂∂=∂∂⎰⎰⎰⎰⎰.另一方面,由对坐标的曲线积分的性质及计算法有⎰⎰⎰⎰⎰+=+=abb aL L Ldx x x P dx x x P Pdx Pdx Pdx )](,[)](,[2121ϕϕdx x x P x x P ba )]}(,[)](,[{21ϕϕ-=⎰.因此⎰⎰⎰=∂∂-L DPdx dxdy yP .设D ={(x ,y )|ψ1(y )≤x ≤ψ2(y ),c ≤y ≤d }.类似地可证⎰⎰⎰=∂∂L DQdx dxdy x Q.由于D 即是X -型的又是Y -型的,所以以上两式同时成立,两式合并即得⎰⎰⎰+=⎪⎭⎫⎝⎛∂∂-∂∂L D Qdy Pdx dxdy y P x Q . 应注意的问题:对复连通区域D ,格林公式右端应包括沿区域D 的全部边界的曲线积分,且边界的方向对区域D 来说都是正向.设区域D 的边界曲线为L , 取P =-y ,Q =x ,则由格林公式得⎰⎰⎰-=L Dydx xdy dxdy 2, 或⎰⎰⎰-==LDydx xdy dxdy A 21.例1.椭圆x =a cos θ,y =b sin θ所围成图形的面积A . 分析:只要1=∂∂-∂∂y P x Q , 就有A dxdy dxdy yP x QDD==∂∂-∂∂⎰⎰⎰⎰)(. 解:设D 是由椭圆x =a cos θ,y =b sin θ所围成的区域. 令y P 21-=,x Q 21=, 则12121=+=∂∂-∂∂y P x Q .于是由格林公式,例2 设L 是任意一条分段光滑的闭曲线,证明⎰=+L dy x xydx 022.证:令P =2xy ,Q =x 2,则022=-=∂∂-∂∂x x yPx Q . 因此,由格林公式有0022=±=+⎰⎰⎰dxdy dy x xydx DL . (为什么二重积分前有“±”号? )3.计算⎰⎰-Dy dxdy e 2,其中D 是以O (0, 0),A (1, 1),B (0, 1)为顶点的三角形闭区域.分析: 要使2y e yP x Q -=∂∂-∂∂,只需P =0,2y xe Q -=.解:令P =0,2y xe Q -=,则2y e yP x Q -=∂∂-∂∂. 因此,由格林公式有⎰⎰⎰++--=BOAB OA y Dy dy xe dxdy e 22)1(2111022----===⎰⎰e dx xe dy xe x OAy . 例4计算⎰+-L y x ydxxdy 22,其中L 为一条无重点、分段光滑且不经过原点的连续闭曲线,L 的方向为逆时针方向.解: 令22y x y P +-=,22y x x Q +=.则当x 2+y 2≠0时,有yP y x x y x Q ∂∂=+-=∂∂22222)(. 记L 所围成的闭区域为D . 当(0, 0)∉D 时,由格林公式得022=+-⎰L y x ydx xdy ;当(0, 0)∈D 时, 在D 内取一圆周l :x 2+y 2=r 2(r >0). 由L 及l 围成了一个复连通区域D 1,应用格林公式得02222=+--+-⎰⎰l L y x ydxxdy y x ydx xdy ,其中l 的方向取逆时针方向.于是⎰⎰+-=+-l L y x ydxxdy y x ydx xdy 2222⎰+=πθθθ2022222sin cos d r r r =2π.二、平面上曲线积分与路径无关的条件曲线积分与路径无关:设G 是一个开区域,P (x ,y )、Q (x ,y )在区域G 内具有一阶连续偏导数.如果对于G 内任意指定的两个点A 、B 以及G 内 从点A 到点B 的任意两条曲线L 1、L 2,等式⎰⎰+=+21L L Qdy Pdx Qdy Pdx恒成立,就说曲线积分⎰+L Qdy Pdx 在G 内与路径无关,否则说与路径有关.设曲线积分⎰+L Qdy Pdx 在G 内与路径无关,L1和L 2是G 内任意两条从点A 到点B 的曲线,则有⎰⎰+=+21L L Qdy Pdx Qdy Pdx ,因为⎰⎰+=+21L L Qdy Pdx Qdy Pdx ⇔021=+-+⎰⎰L L Qdy Pdx Qdy Pdx⇔021=+++⎰⎰-LL Qdy Pdx Qdy Pdx ⇔0)(21=+⎰-+L L Qdy Pdx ,在L 所围成的区域内时, 结论未必成立. 三、二元函数的全微分求积曲线积分在G 内与路径无关, 表明曲线积分的值只与起点从点(x 0,y 0)与终点(x ,y )有关. 如果⎰+LQdy Pdx 与路径无关,则把它记为⎰+),(),(00y x y x Qdy Pdx即⎰⎰+=+),(),(00y x y x L Qdy Pdx Qdy Pdx .若起点(x 0,y 0)为G 内的一定点,终点(x ,y )为G 内的动点,则u (x ,y )⎰+=),(),(0y x y x Qdy Pdx为G 内的的函数.二元函数u (x ,y )的全微分为du (x ,y )=u x (x ,y )dx +u y (x ,y )dy .表达式P (x ,y )dx +Q (x ,y )dy 与函数的全微分有相同的结构,但它未必就是某个函数的全微分.那么在什么条件下表达式P (x ,y )dx +Q (x ,y )dy 是某个二元函数u (x ,y )的全微分呢?当这样的二元函数存在时怎样求出这个二元函数呢?定理 3 设开区域G 是一个单连通域,函数P (x ,y )及Q (x ,y )在G 内具有一阶连续偏导数,则P (x ,y )dx +Q (x ,y )dy 在G 内为某一函数u (x ,y )的全微分的充分必要条件是等式xQ y P ∂∂=∂∂在G 内恒成立.简要证明:必要性:假设存在某一函数u (x ,y ),使得du =P (x ,y )dx +Q (x ,y )dy ,则有y x u x u y y P ∂∂∂=∂∂∂∂=∂∂2)(,xy u y u x x Q ∂∂∂=∂∂∂∂=∂∂2)(.因为y P y x u ∂∂=∂∂∂2、x Q x y u ∂∂=∂∂∂2连续, 所以xy u y x u ∂∂∂=∂∂∂22,即x Q y P ∂∂=∂∂.充分性:因为在G 内xQ y P ∂∂=∂∂, 所以积分⎰+L dy y x Q dx y x P ),(),(在G 内与路径无关.考虑函数u (x ,y )⎰+=),(),(0),(),(y x y x dy y x Q dx y x P .因为 u (x ,y )⎰+=),(),(0),(),(y x y x dy y x Q dx y x P ⎰⎰+=xx y y dx y x P dy y x Q 0),(),(0,所以),(),(),(000y x P dx y x P x dy y x Q x x u x x y y =∂∂+∂∂=∂∂⎰⎰.类似地有),(y x Q yu =∂∂,从而du =P (x ,y )dx +Q (x ,y )dy .即P (x ,y )dx +Q (x ,y )dy 是某一函数的全微分. 求原函数的公式:⎰+=),(),(0),(),(),(y x y x dy y x Q dx y x P y x u ,⎰⎰+=y y xx dy y x Q dx y x P y x u 0),(),(),(0,⎰⎰+=xx y y dx y x P dy y x Q y x u 0),(),(),(0.例6 验证:22yx ydxxdy +-在右半平面(x >0)内是某个函数的全微分,并求出一个这样的函数. 解: 这里22y x y P +-=,22y x x Q +=.。

格林公式补线法求极限

格林公式补线法求极限

格林公式补线法求极限格林公式是高等数学中的一个重要内容,而补线法在求极限时经常能发挥关键作用。

咱先来说说啥是格林公式。

简单来讲,格林公式就是把一个平面区域上的二重积分和沿着这个区域边界的曲线积分联系起来的一个公式。

比如说,有个区域 D ,它的边界是曲线 L ,那么格林公式就告诉咱,在一定条件下,区域 D 上某个二元函数的偏导数的积分,就等于沿着曲线 L 对这个函数的另一种形式的积分。

那补线法又是咋回事呢?有时候,给咱的曲线不是封闭的,这时候就需要咱自己补上一条线,让它变成封闭曲线,这样就能用格林公式啦。

就像我之前教过的一个学生,他在做一道题的时候,就碰到了这种情况。

题目给的曲线是一个半圆弧,从点 A 到点 B 。

这可把他难住了,因为直接用格林公式没办法啊,曲线不封闭。

我就提示他,咱能不能补上一段线段,把这个半圆弧变成一个封闭的图形呢?这孩子一开始还不太明白,瞪着大眼睛一脸懵。

我就耐心地给他画图解释,从点 A 垂直向下画一条线段到 x 轴,再从点 B 垂直向上画一条线段到 x 轴,这样就把原来的半圆弧封闭起来啦。

然后再用格林公式,计算封闭曲线的积分,但是别忘了,咱补的这两条线段的积分也要单独算出来,最后从总的积分里减去。

这孩子恍然大悟,一拍脑门说:“哎呀老师,我懂了!”然后就兴致勃勃地开始计算。

通过这个小例子,咱们就能明白,补线法其实就是一种巧妙的手段,能把原本不好处理的问题变得容易解决。

但是用补线法求极限也不是随随便便补就行的,得注意补的线要简单,计算积分也不能太复杂,不然可就给自己找麻烦啦。

而且在补线的时候,还得注意方向,方向错了,整个计算就全错喽。

再比如说,还有一种情况,给的曲线是一个复杂的折线,这时候也可以考虑补线,把它变成一个规则一点的图形,像矩形啊、圆形啊之类的。

总之,格林公式的补线法求极限是个很实用的技巧,但要想用得好,还得多做练习,多琢磨琢磨。

只有不断地练习和思考,才能在遇到各种复杂的题目时,迅速找到最合适的补线方法,轻松求出极限。

格林公式(公开教学用)

格林公式(公开教学用)

B
x
b
y
E
xd 1( y)
nD
c
C
o
m
x 2( y)
x
y 型区域
按照 y 型区域考虑
Q dxdy
d
[
2 ( y) Q(x, y)dx]dy
D x
c 1( y)
x
d
c Q( 2 ( y), y) Q(1( y), y)dy
Q(x, y)dy Q(x, y)dy Q(x, y)dy
3)平面曲线 L 的正向:当人(观
察者)沿L的方向行走时,D内在靠近人
Hale Waihona Puke 的一侧始终在人的左侧。L
L
D
D l洞
外圈是逆时针方向;内圈是顺时针方向。
2、格林(Green)公式(定理1)
(1)D 是由分段光滑 (或光滑)的有向
闭曲线 L 围成; (2)函数 P(x, y),Q(x, y) 在D上具有一
阶连续偏导数;
y2 x2 x2 y2
2
,
补充定理:
1) 设P,Q 在 D 内具有一阶连续偏导数
2)

D
内恒有
Q x
P y
3) L1, L2 为D内任意两条同向闭曲线;
4) L1,L2 各自所围的区域中有相同的不
属于D的点,则
D
Pdx Qdy Pdx Qdy
L1
L2
L1 L2
解:当 (0,0利) 用D格林公式,结论为0.
(3)L要求取正向.(若不是正向 ? )
(4)二重积分的被积函数必须是 Q P .
x y
同学们思考一下,说明的第(2) 条其实是可以修改的,应该改成什么?

高数考研备战格林公式的应用与解题技巧

高数考研备战格林公式的应用与解题技巧

高数考研备战格林公式的应用与解题技巧格林公式(Green's theorem)是高等数学中的一个重要定理,也是考研数学中的重要内容之一。

它在很多场景中有广泛的应用,帮助我们解决各种复杂的问题。

本文将介绍格林公式的基本原理和应用,并提供一些解题技巧,以帮助考生备战高等数学考研。

一、格林公式的基本原理格林公式是由英国数学家格林(George Green)于1828年提出的,它将二维平面上的曲线积分转化为对该曲线所围成的区域的面积积分。

具体地说,设曲线C是一条分段光滑的闭合曲线,曲线C所包围的区域称为D。

如果函数P(x, y)和Q(x, y)在区域D上具有一阶连续偏导数,那么有格林公式的表达式如下:∮C (Pdx + Qdy) = ∬D (Qₓ - Pᵧ)dA其中,∮C表示曲线C上的曲线积分,∬D表示对区域D上的面积积分,Pdx + Qdy表示关于x和y的微分形式,Qₓ和Pᵧ分别表示Q对x求偏导和P对y求偏导。

二、格林公式的应用格林公式在物理、工程和数学等多个领域都有广泛的应用。

下面将介绍几种常见情况下的应用。

1. 曲线积分的计算格林公式可以帮助我们计算曲线C上的曲线积分。

具体操作是,将积分转化为对曲线所包围的区域D上面积积分的计算。

通过求解二重积分,我们可以更简单地计算出原本复杂的曲线积分。

2. 面积的计算格林公式可以通过计算面积积分来帮助我们计算区域D的面积。

通过求解面积积分,我们可以不需要遍历整个区域来计算面积,而是通过对边界曲线上的积分来得到结果。

这在实际问题中十分有用,节省了计算的时间和精力。

3. 流量的计算格林公式还可以用于计算流体力学中的流量。

通过设定P和Q的形式并代入格林公式,我们可以将流量计算问题转化为对面积积分的计算。

这样一来,我们可以更加方便地求解流体力学中的流量问题。

三、解题技巧在考研中遇到格林公式的应用题时,我们可以采取以下的解题技巧:1. 理解问题在开始解题之前,先要完全理解问题的背景和要求。

高等数学曲面积分与曲线积分之格林公式

高等数学曲面积分与曲线积分之格林公式


4 1 cos 4 a 2 2 a 4 sin 2 2d 2 2 a 4 d 0 0 2 2


高 等 解法二: 利用圆的参数方程转化为定积分计算 数 学 x a cos ,dx a sin d 电 y a sin ,dy a cosd 2 2 y xdy x ydx 子 L 案
其中C是一条不经过原点的分段
光滑的不自相交的简单闭曲线,方向取逆时针方向.
解:
y x P 2 ,Q 2 2 x y x y2
y
C
2 2 Q y x P x 2 y 2 0时,有 2 x ( x y 2 ) 2 y
D
x
下面分两种情况计算.
ydx xdy Q P ( )dxdy (1)当(0,0) D时, 则C 2 2 D x x y y

顺时针
y 2 xdy x 2 ydx
逆时针
y 2 xdy x 2 ydx
Q p ( )dxdy ( x 2 y 2 )dxdy D x D y

2
0
d 2 d
0
a
a 4
2
高 等 数 学 电 子 案
ydx xdy , 例5 计算 C 2 2 x y
高 等 数 学 电 子 案
例1 求椭圆 x a cos , y b sin 的面积S.
解: S
1 xdy ydx 2 C
1 1 2 S (a cos b cos b sin a sin )d abd ab 2 C 2 0
高 等 数 学 电 子 案

平面上曲线积分与路径无关的条件

高等数学-格林公式及其应用.ppt

高等数学-格林公式及其应用.ppt

l D1
O D2
x
1

d
1 2π
π
20
2
l :4x2 y2 2
法二
l
ydx xdy 4x2 y2
l
ydx
2
xdy
1
2
ydx xd y
l
格林公式
D2是由l 所围区域
4x2 y2 2
所以 I 0 π
π.
1
2
1
2
(1
D2
(2)
π
2
1)dxdy
2
π
25
10.3 格林公式及其应用
Pdx Qdy
L
(L1, L2, L3对D来说为正方向)
8
10.3 格林公式及其应用
(3) 对复连通区域证明:
对若复区连域通不区止域由D一, 格条林闭公曲式线
的右所曲端围线应成积 包.添分 括加,沿且直区边线域界段D的的A方全B向,部CE对边.区界 G D
域则DD来的说边都界是曲正线向由. AB, L2 , BA,
2π 0
格林公式
sin d(
2
(Q P )dxdy D1 x y 0
cos ) cos d(
2
2
0 sin
)
24
10.3 格林公式及其应用
l
ydx xdy 4x2 y2

sin
d(
2
cos
)
2
cos
d(
sin
)
0
2
2 0
π
2
2
sin
2
2
2
2
cos2
d
y L: x2 y2 4

格林公式及其应用

格林公式及其应用
高等数学
格林公式及其应用
本节,我们将会讨论曲线积分与二重积分之间的关系.格林公式就是 连接两种积分的桥梁.
1.1 格林公式
格林公式给出了平面闭区域上二重积分与该闭区域边界曲线上第二类曲线积分之 间的关系.在介绍它们之间的关系前,我们首先给出单连通区域和复连通区域的定义.
定义 设 D 为平面区域,如果 D 内任意一条闭曲线所围成的部分都属于 D ,则称 D 为平面单连通区域(即 D 内部不含有“洞”),否则称为复连通区域.
1.1 格林公式
定理 1(格林公式) 设函数 P(x ,y) , Q(x ,y) 在闭区域 D 上具有一阶连续偏 导数,则有
D
Q x
P y
dxdy
L
Pdx
Qdy

其中 L 为 D 的正向边界曲线.
(12-4)
1.1 格林公式
证 将区域 D 分为单连通区域和复连通区域两种情形来证明.
(1)如果 D 是单连通区域,则分以下两种情况讨论.
例 如 , 区 域 {(x ,y) | x2 y2 1} 和 (x ,y) | y x 是 单 连 通 区 域 ; 环 状 区 域
{(x ,y) |1 x2 y2 4} 是复连通区域.
1.1 格林公式
关于平面区域 D 边界曲线的正负向规定如下:设平面区域 D 的边界曲线为 L , 当沿着边界曲线 L 运动时,平面区域总在其左侧,此运动方向即为 L 的正向,此时 的反向即为 L 的负向.对于单连通区域来说,逆时针方向为正向.对于如图所示的 复连通区域来说,图中的箭头指向即为边界正向.
b a
P
(
x
,2
(
x))dx
b a
P
(
x

高等数学-格林公式及其应用

高等数学-格林公式及其应用
由格林公式知 xdy ydx 0 L x2 10 y 2
(2) L为正方形 x y 1 的正向.
作位于 D内圆周 l : x2 y2 a2 ,
取顺时针方向。
记 D1由 L和 l所围成, 应用格林公式,得
L
xdy x2
ydx y2
xdy ydx Ll x2 y2
xdy ydx l x2 y2
,
0 2
所围面积
1 2 (abcos2 absin2 ) d ab 20 14
例5 计算抛物线 ( x y)2 ax(a 0) 与 x 轴所围成
的面积.
解 ONA为直线 y 0.
曲线 AMO 由函数
y ax x, x [0,a]表示,
M
N
A(a,0)
1
A xdy ydx
计算
L
xdy x2
ydx , y2
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
(2) L为正方形 x y 1的正向.
解 记 L所围成的闭区域为 D,

P
y x2 y2
,
Q
x2
x
y2
,
则当
x2 y2 0
时,有
Q x
y2 x2 ( x2 y2 )2
P .
y
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
高等数学
第二十讲
第三节
第十一章
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径无关的 等价条件
一、 格林公式
区域 D 分类 单连通区域 ( 无“洞”区域 )
L
多连通区域 ( 有“洞”区域 )
D
域 D 边界L 的正向: 域的内部靠左

高等数学格林公式介绍

高等数学格林公式介绍
( L1, L2 , L3对D来说为正方向 )
L3
D3
D2
L2
D1
L1
L
证明(3)
若区域不止由一条闭曲 线所围成.添加直线段 AB,CE. 则 D 的边界曲线由 AB,L2 ,BA, AFC,CE, L3 , EC 及 CGA 构成. D
由(2)知
Q P ( )dxdy y D x
第十章
第三节
格林公式及其应用
本节的主要内容
一、连通域及其边界的方向; 二、格林(Green)公式;
三、曲线积分与路径无关的条件;
四、全微分方程。
一、连通域及其边界的方向
1、连通区域
D是连通区域: D内任意两点都可以用完 全
属于D的折线连接起来。
单连通区域和复连通区 域:
若包含于D内的任一条封闭曲线 C所围成的区域
c
d d
c Q( 2 ( y ), y )dy c Q( 1 ( y ), y )dy
= CBE =
CBE
x 1 ( y ), 曲线EAC : y y,
Q( x , y )dy
CAE
Q( x , y )dy
d
y
x 2 ( y ), 曲线CBE : y y,
若区域D 既是X 型 又是Y 型,即平行于 坐标轴的直线和L 至 多交于两点.
d x 1 ( y) A c o a
E
y 2 ( x)
D
B
x 2 ( y) Cy 1 ( x ) x b
D {( x, y) a x b,1 ( x) y 2 ( x)}
D都包含于D,则称D为单连通区域,否则称 D

高等数学格林公式PPT课件

高等数学格林公式PPT课件

正向闭路.
解: 令 P x ,yy2 ,Q x ,yx2
y
L
则 P2y,Q2x
y
x
在L所围成的区域D上连续
D x
由格林公式得ID 2x2ydxdy 2d0 2Rcos2cossind 2 R3
2
5
机动 目录 上页 下页 返回 结束
例3.求 I y x 3 e y d x x y 3 x e y 2 y d y , L
其中L是圆周 x2y2 a2的顺时针方向.
y
解:令 Px,yyx3ey
L
Q x,yxy3xey2y
D x
则 Px3ey,Qy3ey
y
x
在L所围成的区域D上连续, 由格林公式得
I L P x ,y d x Q x ,y d y Dy3x3dxdy 0
注:用格林公式时,一定要注意曲线积分的方向性.
y
0, a
Dl x
0, a
7
高斯 目录 上页 下页 返回 结束

P 2 y , Q a 2 y 1
y a 2x2 x
a 2x2
在 l L 所围成的闭区域D上连续,
L
y
0, a
所以由格林公式得:
I lL
l
Dadxdy aa2ylnady
1 2
a
3
Dl x
0, a
注: 用格林公式时, 若L非闭, 则可使用补边法使积分
注:使用格林公式时,若 P , Q 闭曲线所围区域上不 y x
连续, 可先挖去不连续的点后, 再使用格林公式.
11
高斯 目录 上页 下页 返回 结束
三、平面曲线积分与路径无关的等价条件
1.定义:设A,B为D内任意两点, 若从

高等数学:格林公式

高等数学:格林公式

( )(Pdx Qdy)
L2
L3
L1
Pdx Qdy
L
(L1,L2 , L3对D来说为正方向)
说明:
格林公式的实质: 沟通了沿闭曲线的积分与 二重积分之间的联系.
便于记忆形式:
x ydxdy L Pdx Qdy.
DP Q
注意:当f ( x, y)较繁,L较复杂,而Q P 较简单, x y
A
1
2 L
xdy
ydx .
取P 0, Q x, 得 A L xdy 取P y, Q 0, 得 A L ydx
例 3 计算抛物线( x y)2 ax(a 0)与 x轴所
围成的面积.
解 ONA为直线 y 0.
M
曲线AMO 由函数
A(a,0) N
y ax x, x [0,a]表示,
多交于两点.
y
d x 1( y)
A c oa
E y 2(x) DB
x 2( y)
Cy 1(x) b
x
D {( x, y)1( x) y 2( x),a x b}
D {( x, y)1( y) x 2( y),c y d }
Q dxdy
d
dy
2 ( y) Qdx
D x
[∫(f(x)g(x))dx]^2≤(∫[f(x)]^2dx)*(∫[g(x)]^2dx)
写成和式极限的形式,应用柯西不等式
从向量a往单位向量b做垂直投影,投影长度小于斜边 (就是向量a)的长度。
三、格林公式
定理1 设闭区域D 由分段光滑的曲线L 围
成,函数P( x, y)及Q( x, y)在D 上具有一阶连
应用格林公式,有 e y2dxdy

高等数学课件--D11_3格林公式

高等数学课件--D11_3格林公式



2012-10-12
同济版高等数学课件
定理2 目录 上页 下页 返回 结束
证明 (2) (3) 在D内取定点 与路径无关, 有函数
和任一点B( x, y ), 因曲线积分
B( x, y )
A( x0 , y0 )
( x x , y ) ( x, y )
C ( x x, y )

dy 1 y
2
O (1,0)
x y
( x,0 )
x

π 2
arctan
2012-10-12
同济版高等数学课件
目录 上页 下页 返回 结束
例7. 设质点在力场 由 A( 0, ) 移动到
2 π
作用下沿曲线 L : 求力场所作的功W
y
k
L
A L
O
解: W F d s
L
r
( y dx x d y) 2
Q x P y
L
Dn

k 1 n
Dk

d xd y
O
x

k 1
Dk
P dx Qd y
(Dk 表示 Dk 的正向边界 )
证毕
P dx Qd y
L
2012-10-12
同济版高等数学课件
定理1 目录 上页 下页 返回 结束
Q P d xd y P d x Q d y 格林公式 x y D L
Pd x Qd y

L2
(1) 沿D 中任意光滑闭曲线 L , 有 L Pd x Qd y 0 说明: 积分与路径无关时, 曲线积分可记为 .
B (2) 对D 中任一分段光滑曲线 L, 曲线积分 L Pd x Qd y Pd x Qd y Pd x Qd y AB 与路径无关, 只与起止点有关. A

高数格林公式

高数格林公式

2
通过格林公式,可以将二重积分转化为曲线积分 来计算,这在某些情况下可以大大简化计算过程。
3
此外,格林公式还揭示了平面区域内向量场与标 量场之间的关系,为多元函数微积分中的场论问 题提供了有力工具。
与场论初步知识联系
01
场论是研究向量场和标量场的数学分支,而格林公式正是场论 中的一个基本定理。
02
04
培养抽象思维能力和逻辑推理能力,为进一步学习高等数学打下坚实 的基础。
02 格林公式基本概念
曲线积分与路径无关条件
曲线积分与路径无关的定义
若在所有以A、B为端点的光滑曲线族上,曲线积分∫L P(x,y)dx+Q(x,y)dy 的值都是相同的,则称此曲线积分与 路径无关。
曲线积分与路径无关的条件
径为平面区域D的边界曲线。
格林公式的证明需要运用到微积分基本定理和斯托克 斯定理等相关知识。
学习目标与要求
ቤተ መጻሕፍቲ ባይዱ
01
掌握格林公式的基本形式和证明方法,理解其几何意义和物理应用。
02
能够熟练运用格林公式解决平面区域上的二重积分和曲线积分问题。
03
了解格林公式在电磁学、流体力学、热力学等领域的应用实例,提高 解决实际问题的能力。
高数格林公式
目 录
• 引言 • 格林公式基本概念 • 格林公式证明方法 • 格林公式应用举例 • 格林公式与相关知识点联系 • 拓展与延伸
01 引言
背景与意义
格林公式是高等数学中的一个 重要概念,它揭示了平面区域 上二元函数与其偏导数之间的
关系。
在实际应用中,格林公式被 广泛应用于电磁学、流体力 学、热力学等领域,是解决 复杂物理问题的有力工具。

高等数学 曲线积分和曲面积分 (10.3.2)--格林公式及其应用

高等数学  曲线积分和曲面积分  (10.3.2)--格林公式及其应用


0,
其中 C
为平面区域
x
内的
任一封闭曲线.
6. 设函数 Q(x, y) 在 xOy 平面上具有一阶连续偏导数,曲线积分 2xydx Q(x, y)dy 与 C 路径无关,并且对任意 t 恒有
(2xydx Q(x, y)dy 2xydx Q(x, y)dy ,
(0, 0)
(0, 0)
求 Q(x, y) .
7. 确定常数 p , 使得在任何不含 y 的点的区域上, 曲线积分
C
x y2
(x2

y2)p

ydx

xdy
与路径无关,并求当 C 从点 (1, 1) 到点 (0, 2) 时的积分值.
8. 求下列微分方程的通解:
(1) [ y ln(1 x)]dx (x 1 ey )dy 0 ;
C
a b
(3)
C
(x2
y

2 y)dx


x3 3

x

dy

,其中 C
是直线
x
1,
y

x,
y

2x
所围三角形区
域的正向边界.
(4) (ex sin y my)dx (ex cos y m)dy ,其中 C 为由点 A(a,) 到点 O(,) 的上 C 半圆周 x y ax ;

t


)与
x
轴.
2. 利用 Green 公式, 计算下列第二类曲线积分:
(1) (2x sin y 4y)dx (x2 cos y x)dy ,其中 C 为圆周 x2 y2 3 , 并取逆时针 C 方向;

11-(3)格林公式及其应用

11-(3)格林公式及其应用

其中L为一无重点且不过原点
则当x 2 y 2 0时,
设 L 所围区域为D,
y L
D
(1) 当(0,0) D时, 由格林公式知
o
高等数学A(下)
x
41 - 14
Monday, January 25, 2016
例4. 计算
其中L为一无重点且不过原点
的分段光滑正向闭曲线. (2) 当(0,0) D时, 在D 内作圆周l : x 2 y 2 r 2 ,取逆时 针方向, 记 L 和 l ¯ 所围的区域为 D1 , 对区域 D1 应用格 林公式 , 得
和任一点B( x, y ), 因曲线积分
B( x, y )
A( x0 , y0 )
( x x , y ) ( x, y )
C ( x x, y )

x u u( x x, y) u ( x, y )

( x x , y ) ( x, y )
Pd x Qd y
D
高等数学A(下)
41 - 12
Monday, January 25, 2016
例3. 计算
其中D 是以 O(0,0) , A(1,1) ,
B(0,1) 为顶点的三角形闭域 . 可以直接用二重积分来计算 解: 令P 0, Q x e
y2
y
B(0,1) A(1,1)
,则
D
O
yx
x
1 x2
Q( x, y )d y
CBE
EAC
Q( x, y )d y


高等数学A(下)
41 - 5
Monday, January 25, 2016

第10.5节 格林、高斯、斯托克斯公式

第10.5节  格林、高斯、斯托克斯公式

小单连通区域上公式(10.5.1)都成立,把这些式子相加, 就可以证明在区域 D 上公式(10.5.1)成立. 在定理10.5.1中,若 L 取负向,则
Q P ( )dxdy. L Pdx Qdy x y D
高等数学 第10章 曲线积分与曲面积分
10.5 格林公式、高斯公式与斯托克斯公式
(10.5.5)
Dxy
x
1 : z z1 ( x , y )
高等数学 第10章 曲线积分与曲面积分
10.5 格林公式、高斯公式与斯托克斯公式
再设 是一个 YZ 型区域 , 或ZX 型区域 , 则可以证明
P Rdxdy d , x
(10.5.6)
或者
b x
P ( x , 2 ( x ) P ( x ,1 ( x ))dx
a
b
dx
a
b
2( x )
1( x )
2 P ( x, y) dy y
(10.5.2)
2P dxdy. y D
高等数学 第10章 曲线积分与曲面积分
10.5 格林公式、高斯公式与斯托克斯公式

Q P )dxdy, (10.5.1) Pdx Qdy ( L x y D
其中 L取正向 . 公式(10.5.1)称为格林公式 .
证明 根据 D的不同形式 , 分三种情形证明 .
1 先设D是X 型区域, 即设
D ( x , y ) 1 ( x ) 2 ( x ), a x b.
第10章 曲线积分与曲面积分
§10.5 格林公式、高斯公式与斯托克斯公式
高等数学 第10章 曲线积分与曲面积分

格林公式三个条件

格林公式三个条件

格林公式三个条件格林公式是高等数学中的一个重要内容,它在计算平面区域上的二重积分和沿着区域边界的曲线积分之间建立了联系。

要理解和应用格林公式,我们需要清楚它的三个条件。

咱先来说说第一个条件,就是要求闭区域 D 是由分段光滑的曲线 L 围成的。

啥叫分段光滑呢?简单说就是曲线可以分成几段,每一段都是光滑的,没有尖尖角或者突然断开的地方。

比如说,一个圆形区域,它的边界就是光滑的曲线;再比如一个矩形区域,它的四条边也是分段光滑的曲线。

我记得我之前给学生讲这个的时候,有个学生就问我:“老师,那像那种歪歪扭扭的曲线算不算分段光滑啊?”我就给他举了个例子,我说:“你想象一下,你画一条曲线,一会儿像蚯蚓爬,一会儿像麻花扭,到处都是尖尖角和突然拐弯的地方,那能叫光滑吗?肯定不算呀!”这学生一听,恍然大悟。

接下来是第二个条件,要求函数 P(x,y) 和 Q(x,y) 在闭区域 D 上具有一阶连续偏导数。

这可就有点抽象啦!其实你可以这么想,这两个函数得表现得乖乖的,不能有突然的跳跃或者不连续的地方。

就好比你开车在路上,路得平平整整,不能一会儿有个大坑,一会儿有个陡坡,不然车开起来多危险啊!有一次在课堂上,我为了让学生更好地理解这个条件,就拿了一张画满函数曲线的纸,指着那些曲线说:“同学们,你们看,如果这函数曲线这里凸一块,那里凹一块,像不像我们走的山路啊?这可就不满足连续偏导数的条件啦!”学生们看着我夸张的手势和表情,都哈哈大笑,同时也对这个概念印象深刻。

最后是第三个条件,曲线 L 的正向。

这个正向啊,简单来说就是沿着曲线走,区域始终在你的左边。

听起来是不是有点晕?别担心,咱们来个实际的例子。

想象你沿着一个操场的跑道跑步,规定逆时针跑是正向,那么你跑的时候,操场就在你的左边。

曾经有个学生总是搞不清楚正向,做题的时候老是出错。

我就带着他到操场上,让他亲自沿着跑道跑了一圈,边跑边感受什么是正向。

从那以后,他再也没在这个问题上犯错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( )(Pdx Qdy) L2 L3 L1
( 0, 0)
AB BA
CE EC
Pdx Qdy
L
(L1,L2 , L3对D来说为正方向)
9
格林公式及其应用
Q P
(
D
x
y
)dxdy
L Pdx
Qdy
格林公式的实质
沟通了沿闭曲线的积分与二重积分
之间的联系.
10
格林公式及其应用
又是Y 型的区域 D1, D2 , D3 .
D1
L1
(Q P )dxdy
(Q P )dxdy
D x y
x D1 D2 D3 y
D2 L2
7
格林公式及其应用
D
(Q x
P y
)dxdy
L
Pdx
Qdy
(Q P )dxdy
(Q P )dxdy
D x y
x D1 D2 D3 y
D 单连通区域
D
复连通区域
2
格林公式及其应用
2. 格林公式
格林定理(定理1) 设闭区域D由分段光滑的 曲线L围成,函数P( x, y)及Q( x, y) 在D上具有
一阶连续偏导数,则有
D
(Q x
P y
)dxdy
L
Pdx
Qdy
(1)
其中L是 D的取正向的边界曲线. 公式(1)称 格林公式.
3
格林公式及其应用
解 P e y , Q xy3 xe y 2 y y
P e y , Q y3 e y
y
x
.
O
1
2x
Q P y3 x y
对称性
由格林公式有 I y3dxdy 0
D
13
格林公式及其应用
对平面闭曲线上的对坐标曲线积分, 当Q P 比较简单时,常常考虑通过格林
x y 公式化为二重积分来计算.
14
格林公式及其应用

计算
(e x sin y my )dx (e x cos y m)dy,
AO
其中A⌒O是从点 A(a,0) 到点O(0,0)的上半圆周
x2 y2 ax.
y
分析 此积分路径 A⌒O 不是闭曲线!
但由
P
e
x
sin
y
my
,
Q
ex
cos
y
O
m

A(a,0) x
Q e x cos y, P e x cos y m
3. 简单应用
(1) 计算平面面积
y x
格林公式
D
(Q x
P y
)dxdy
L
Pdx
Qdy
得 2 dxdy L xdy ydx
D
闭区域D的面积 A 1 xdy ydx 2L
或A Ñ L xdy, A Ñ(L y)dx 11
格林公式及其应用
例 求椭圆 x a cost, y bsint,0 t 2
格林 Green.G. (1793—1841) 英国数学家、物理学家
第三节 格林公式及其应用
格林(Green)公式 平面上曲线积分与路径无关的 条件 二元函数的全微分求积 小结 思考题 作业
1
格林公式及其应用
一、格林公式
1. 区域连通性的分类 设D为平面区域, 如果D内任一闭曲线所围
成的部分都属于D, 则称D为平面 单连通区域, 否则称为复连通区域.
(e
x
sin
y
my
x
)dx
y
(e
x
cos
y
m)Ody
AOOA

A(a,0) x
mdxdy
1 8
ma
2
D
OA的方程为y 0, 0 x a 0

(ex sin0y m0y)dx (ex cos y m)dy
E y 2(x)
DB
即平行于坐标轴的直线
A
x 2( y)
和L至多交于两点.
c Oa
C y 1(x)
bx
D {( x, y)1( x) y 2( x),a x b}
D {( x, y)1( y) x 2( y),c y d}
5
格林公式及其应用
Q P
(
D
x
y
)dxdy
L Pdx
(3) 对复连通区域证明: 若区域不止由一条闭曲线
所围成.添加直线段 AB,CE .
则D的边界曲线由AB, L2 , BA,
AFC , CE, L3 ,EC 及CGA 构成.
由(2)知
D
(Q x
P y
)dxdy
GD
L2 B
L3
E
C
L1 F A
{ } (Pdx Qdy) AB L2 BA AFC CE L3 EC CGA
D1
(
Q x (Q
P )dxdy y P )dxdy
(
D2
Q x
P y
பைடு நூலகம்
)dxdy
D3 x y
Pdx Qdy Pdx Qdy Pdx Qdy
L1
L2
L3
L Pdx Qdy
D3 L3
( L1,L2 , L3对D来说为正方向)
L
D
D1
L1
D2 L2
8
格林公式及其应用
边界 对区
规定 边界曲线L的正向
当观察者沿边界行走时,区域D总在他的 左边.
y
L
L
D
D
l
注O
x
(1) P、Q在闭区域D上一阶偏导数的连续性;
(2) 曲线L是封闭的,并且取正向.
4
格林公式及其应用
证明
D
(
Q x
P )dxdy y
L Pdx
Qdy
(1)先对简单区域证明:
若区域D既是 X 型 又是Y 型
y
d
x 1( y)
Q( x, y)dy Q( x, y)dy
CBE
EAC
O
x
LQ( x, y)dy
Q P
D
(
x
y
)dxdy
L Pdx
Qdy
同理可证
D
P y
dxdy
L
P(
x,
y)dx
6
格林公式及其应用
(2) 再对一般区域证明:
若区域D由按段光 滑的闭曲线围成.(如图)
积分区域的可加性
D3 L3
将D分成三个既是 X 型 L D
Qdy
Q dxdy
d
dy
2 ( y) Qdx
D x
c
1( y) x
d c
Q(
x,
y
)
2 1
( (
y) y)
dy
y
d
E
x 1( y)
d
d
c Q( 2( y), y)dy c Q(1( y), y)dy
D
B
Q( x, y)dy Q( x, y)dy
CBE
CAE
A
c
C x 2( y)
x
y
可知 Q P m
x y
非常简单.
15
L不闭合+边L*,使L+ L*闭合,再用格林公式.
为应用格林公式再补充一段曲线, 使之构成 闭曲线.因在补充的曲线上还要算曲线积分, 所以
补充的曲线要简单, 通常是补充与坐标轴平行的 直线段. 因而这里补加直线段 OA. y
解 由格林公式 Q P m
所围成的面积.
y
解 由公式 A 1 xdy ydx 2L
D
O
x
得 A 1 2 ab(cos2 t sin2 t )dt 20
ab
12
格林公式及其应用
(2) 简化曲线积分
D
(Q x
P y
)dxdy
L
Pdx
Qdy
例 计算I e ydx ( xy3 xe y 2 y)dy, L 其中L为圆周 x2 y2 2x 的正向.
相关文档
最新文档