第15章-工具变量讲解

合集下载

第十五章工具变量估计与TSLS-3

第十五章工具变量估计与TSLS-3


内生性检验与过度识别约束检验

内生性检验



考虑模型: y1=b0+b1y2+b2z1+b2z2+u 检验y2的内生性,外生变量z1, z2, z3, z4 基本思想:



若y2内生,OLS估计量不一致,TSLS估计量一致 若y2外生,OLS估计量和TSLS估计量都一致 比较OLS估计值和TSLS估计值的差异:
ŷ2相当于把y2中与z1不相关的部分e已经剔除了。 TSLS估计量的方差通常较大!【爱】核心用户 By微0渺 上传
多个内生变量(阶条件和秩条件)

y1=b0+b1y2+b2y3+b3z1+b4z2+b5z3+u 阶条件:


除z1, z2和z3外,至少还应存在两个外生变量,分别 作为内生解释变量y2和y3的工具变量。 被排斥的外生变量至少与结构方程中包含的内生解 释变量一样多。

Cov(x1, u-b1e1) 0 OLS估计量是不一致的。【爱】核心用户 By微0渺 上传
y=b0+b1x1+b2x2+(u-b1e1) 若存在x1*的另一种可观测度量z1

z1 = x1*+a1 z1 可以作为x1的工具变量:

Cov(z1, x1) = Cov(x1*+a1, x1*+e1) 0 Cov(z1, u-b1e1) = Cov(x1*+a1, u-b1e1) = 0
ˆ ˆ ˆ ˆ y2 0 1z1 2 z2 e y2 e【爱】核心用户 By微0渺 上传
多重工具变量


工具变量讲解

工具变量讲解

Christopher F Baum (Boston College)
IVs and Panel Data
Feb 2009
5 / 43
Instrumental variables estimators
Endogeneity
Endogeneity
We have stated the problem as that of endogeneity: the notion that two or more variables are jointly determined in the behavioral model. This arises naturally in the context of a simultaneous equations model such as a supply-demand system in economics, in which price and quantity are jointly determined in the market for that good or service. A shock or disturbance to either supply or demand will affect both the equilibrium price and quantity in the market, so that by construction both variables are correlated with any shock to the system. OLS methods will yield inconsistent estimates of any regression including both price and quantity, however specified.

工具变量法工具变量法具体步骤

工具变量法工具变量法具体步骤

工具变量法工具变量法具体步骤工具变量法(Instrumental Variable Method)是一种用于处理内生性问题的统计方法,它通过引入一个“工具变量”来解决内生性问题。

工具变量是一个有着良好相关性但不会受到内生性干扰的变量,它可以用来代替内生变量,从而解决内生性的影响。

1.确定内生变量和工具变量:首先,需要确定研究中存在的内生变量和可能的工具变量。

内生变量是对所研究问题有影响的变量,而工具变量是与内生变量具有相关性但不会受到内生性干扰的变量。

内生性问题是由于内生变量的存在而导致的因果关系估计偏倚。

2.检验工具变量的相关性:接下来,需要检验所选取的工具变量与内生变量之间的相关性。

这可以通过计算相关系数或进行统计检验来实现。

如果工具变量与内生变量存在显著相关性,那么它可能是一个有效的工具变量。

3.确定工具变量的外生性:除了相关性外,工具变量还需要满足外生性的要求,即工具变量对因变量的影响是通过内生变量而不是其他方式引起的。

这可以通过进行实证分析来判断,例如通过回归模型来检验工具变量对因变量的影响是否通过内生变量进行中介。

如果工具变量的影响仅通过内生变量介导,则可以认为工具变量满足外生性的要求。

4.估计工具变量模型:一旦确定了有效的工具变量,可以使用工具变量法来估计因果关系。

工具变量法的核心思想是通过回归模型来解释内生变量对因变量的影响,并利用工具变量对内生变量进行替代。

通过将工具变量引入估计方程中,可以消除内生性的影响,从而得到无偏的因果关系估计。

5.进行统计推断:在估计了工具变量模型之后,可以进行统计推断来评估估计结果的显著性。

这可以通过计算标准误差、置信区间和假设检验等来实现。

统计推断可以帮助判断估计结果的可靠性,并验证因果关系的存在与否。

总结而言,工具变量法是一种用于解决内生性问题的统计方法。

它通过引入一个有效的工具变量来代替内生变量,消除内生性的干扰,从而得到无偏的因果关系估计。

工具变量法的具体步骤包括确定内生变量和工具变量、检验工具变量的相关性和外生性、估计工具变量模型,并进行统计推断。

第15章 工具变量估计与两阶段最小二乘法

第15章 工具变量估计与两阶段最小二乘法
具体的IV估计量可从k+1个矩条件对应的样本 方程求出:
Eu 0, Ez1u 0,L , E zk1u 0, E zku 0
15.3 两阶段最小二乘法
如果一个内生解释变量有多个工具变量,如 何有效运用多个工具变量?以下面结构模 型为例: y1 0 1y2 2z1 u1
则称z是x的工具变量(IV)。工具变量可得 能够用于一致估计回归方程的参数。
15.1 动机:简单回归模型中的遗漏变量
借助于工具变量,回归方程的参数是可识别 (identification),即参数可用总体矩表示, 而总体矩可用样本矩来估计。用工具变量z 对回归方程两边协方差:
cov z, y 1 cov z, x cov z,u
对此也没有合理的解释。
15.2 多元回归模型中的IV估计
简单回归模型IV估计很容易延伸到多元回归
y1 0 1 y2 2 z1 L k zk1 u1
借用联立方程模型的形式和术语,此方程称 为结构方程(structural equation)。 z1, z2 ,L , zk1是外生变量,y2 被怀疑是内生的, 即可能与u相关。需要找到其工具变量
有效的工具变量 zk 需满足:(1)是未包含的 外生变量,即它不在结构方程中且与u不相 关。
15.2 多元回归模型中的IV估计
(2)zk 与 y2 存在某种偏相关,即约简型方程
y2 0 1z1 L k1zk1 k zk v
的系数满足: k 0
同样要求(1)不能检验,只能寄希望于经济 逻辑和反思。要求(2)可对约简型方程估 计后直接检验。
第十五章 工具变量估计与两阶段 最小二乘法
本章研究多元回归模型中的内生解释变 量问题。解释变量的内生性常来自遗漏 变量问题,这使OLS估计不一致。尽管 代理变量法和面板数据的固定效应法可 在某些情况下解决内生性问题,但远未 完善。本章讨论另一解决解释变量内生 性问题的方法:工具变量法(IV)。其 受欢迎程度仅次于OLS。

搞定内生性,不可不知的工具变量法笔记

搞定内生性,不可不知的工具变量法笔记

搞定内生性,不可不知的工具变量法笔记内生性( endogeneity)问题,是指由自变量与误差项相关所引发的估计偏倚及统计结果误导性等问题的总称,即违背了线性回归中的正交假定而产生的一系列问题。

内生性问题看似简单,但目前已成为线性回归及其他回归模型中最为棘手的问题。

工具变量法是解决内生性问题的有效方法。

在工具变量估计中,第一,检验是否具有内生性,可以使用豪斯曼检验。

第二,工具变量的正交性检验。

(1)、强度条件,即工具变量应该与内生自变量具有较强的相关性,即该工具变量的应该能够代替或者表达原内生变量的信息,数学表达式为:COV(Z,X)=/0(2)、排除限制条件,即工具变量应该与误差项不相关,也就是与因变量Y中不能被已有的自变量x所表达的部分无关(也是与误差项无关)COV(Z,u)=/0。

工具变量估计二阶段最小二乘法的第一阶段就是利用原模型的内生解释变量对工具变量进行OLS,得到解释变量的拟合值;第二步,利用得到解释变量的拟合值对原模型进行最小二乘法,从而得到方程模型的估计值,这样就可以消除内生性的影响。

首先了解一下二阶段最小二乘法Stata中的命令为ivregress,语法格式为•ivregress estimator depvar [varlist1] (varlist2 = varlist_iv) [if] [in] [weight] [, options]选项介绍estimator分为2sls两阶段最小二乘、liml有限的信息最大似然(liml) 、gmm广义矩方法(gmm)depvardepvar 为被解释变量;varlist1为外生解释变量;varlist2 为所有的内生解释变量;varlist_iv为所有的工具变量;在选项 options 中,vce(robust)表示稳健型标准误可使用 firstfirst 选项报告 2SLS 中第一阶段的回归结果small表示小样本下的自由度调整本文以伍德里奇第十五章数据mroz.dta为例,研究已婚妇女的教育回报,相关数据介绍如下:•••••••••••••use morz.dtaeditdesc*被解释变量label var lwage 已婚妇女工资的对数值*解释变量label var educ 受教育年数 label var exper 工作年限label var expersq 工作年限平方*工具变量label var fatheduc 已婚妇女的父亲的受教育年数label var motheduc 已婚妇女的母亲的受教育年限其中研究问题为:建立lnwage与educ、exper 、expersq的方程,但是包括了影响已婚妇女工资的遗漏变量,可能存在内生性问题,其中能力会对工资产生影响,但是却与解释变量X中的educ相关,内生性存在。

《工具变量SLSG》课件

《工具变量SLSG》课件
智能化与人性化
未来的工具变量slsg将更加注重智能化和人性化的设计。通过人工智能和机器学习技术,实现工具变 量slsg的自动化和智能化;同时,将更加注重用户体验和人机交互,使工具变量slsg更加易于使用和 操作。
05
工具变量slsg的实际应用与案例分析
工具变量slsg在经济学中的应用
总结词
经济学中,工具变量slsg被广泛应用于解 决内生性问题,如遗漏变量偏差和同时 性偏差。
《工具变量slsg》ppt课件
• 工具变量slsg简介 • 工具变量slsg的基本原理 • 工具变量slsg的实证分析 • 工具变量slsg的未来发展与展望 • 工具变量slsg的实际应用与案例分析
01
工具变量slsg简介
定义与特点
定义
工具变量(SLSG)是一种用于解决内生性问题的方法,通过引入一个或多个 外生的工具变量来替代或估计内生解释变量,以获得一致的估计结果。
实证分析的案例与结果
数据处理
对收集到的数据进行预处理和 清洗,确保数据的质量和一致 性。
结果分析
对拟合结果进行详细分析,评 估模型的适用性和解释能力。
案例选择
选择具有代表性的案例进行实 证分析,确保案例的典型性和 可信度。
模型拟合
使用所选模型对数据进行拟合 ,得到拟合结果。
结果比较
将实证分析结果与其他相关研 究进行比较,验证结果的可靠 性和创新性。
人工智能与机器学习在工具变量slsg中的应用
随着人工智能和机器学习技术的发展,越来越多的研究开始探索如何将这些技术应用于 工具变量slsg中,以提高其效率和准确性。
大数据处理与分析在工具变量slsg中的研究
随着大数据时代的到来,如何有效地处理和分析大规模数据成为工具变量slsg面临的重 要挑战。当前的研究热点是如何利用先进的数据处理和分析技术,从海量数据中提取有

工具变量法结果解读

工具变量法结果解读

工具变量法结果解读一、引言工具变量法是计量经济学中一种重要的估计方法,主要用于解决内生性问题。

通过引入工具变量,工具变量法能够有效地减少误差,提高估计的准确性和可靠性。

然而,对于初学者来说,如何正确解读工具变量法的结果可能是一个挑战。

本文将详细解读工具变量法的理论基础、工具变量的选择、结果解读以及结论,以期帮助读者更好地理解和应用工具变量法。

二、工具变量法的理论基础工具变量法源于经济理论,特别是当一个或多个解释变量与误差项相关时,就会产生内生性问题。

在这种情况下,普通最小二乘法(OLS)的估计结果是有偏的。

为了解决这个问题,我们引入一个或多个与内生解释变量相关,但与误差项无关的工具变量。

这些工具变量通过与内生解释变量的线性组合来“工具化”内生解释变量,从而在估计中起到减少误差和偏误的作用。

三、工具变量的选择选择合适的工具变量是工具变量法的关键步骤。

理想情况下,一个好的工具变量应该与内生解释变量高度相关,同时与误差项无关。

在实践中,我们通常选择那些与内生解释变量相关,同时又遵循随机扰动的因素作为工具变量。

此外,工具变量的数量应该足够多,以便能够充分地“工具化”内生解释变量。

四、结果解读在应用工具变量法后,我们得到了一组估计结果。

这些结果应该如何解读呢?首先,我们需要关注估计系数的符号。

如果估计系数的符号与预期相符,那么我们可以初步认为估计结果是可靠的。

其次,我们需要检验估计结果的显著性。

常用的方法是观察估计系数的p值。

如果p值较小(通常小于0.05),则表明估计结果是显著的。

最后,我们需要检验工具变量的有效性。

这可以通过观察工具变量的系数是否接近于1来初步判断。

如果工具变量的系数接近于1,并且显著,那么我们可以认为工具变量是有效的。

此外,我们还可以使用诸如弱工具检验、过度识别检验等统计方法来进一步检验工具变量的有效性。

五、结论本文对工具变量法的结果解读进行了详细阐述。

通过关注估计系数的符号、显著性以及工具变量的有效性等方面,我们可以更好地理解和应用工具变量法。

第十五章工具变量估计与TSLS-2

第十五章工具变量估计与TSLS-2


第二阶段,用ŷ2代替内生变量y2
y1对 ŷ2 和z1回归

TS】核心用户 By微0渺 上传
临近大学作为教育的IV【爱】核心用户 By微0渺 上传两阶段最小二乘(TSLS)

结构方程:

y1=b0+b1y2+b2z1+u y2的工具变量z2
ˆ ˆ ˆ ˆ y2 0 1z1 2 z2 e y2 e

第一阶段:简化模型的OLS回归

通常不能保证Corr(z,u)=0,只能保证: |Corr(z,u)|<|Corr(x,u)| 若Corr(z,x)很低,IV估计量的偏差可能更大【爱】核心用户 By微0渺 上传
抽烟对婴儿体重的影响
log(bwght)=b0+b1packs+u


生活环境越糟糕,可能越容易抽烟:孕妇抽烟 量与婴儿体重的其他影响因素相关 工具变量:香烟价格cigprice
工具变量合适吗?【爱】核心用户 By微0渺 上传
IV估计中的R2



R2=1-SSR/SST 对于OLS估计: SST=SSE+SSR R2[0, 1] 对于IV估计: SSR可能大于SST, R2可能为负 IV估回归模型的IV估计


三个方程,三个未知的b参数 若y2外生,z2=y2,IV估计等同于 OLS估计 工具变量的相关性检验: y2=0+1z1+2z2+v2 H0: 2=0【爱】核心用户 By微0渺 上传
简单的扩展:


多个内生解释变量和外生解释变量 y1=b0+b1y2+b2y3+b3z1+b4z2+u 假设存在两个外生变量z3和z4【爱】核心用户 By微0渺 上传

工具变量

工具变量


设定模型
Y 0 1 X 1 v
工具变量
1
~
X
i 1 n i 1
n
i1
X 1 Yi

2 X X i 1 1
Yi 0 1 X i1 2 X i 2 u i
X
i 1 n i 1
n
i1
X 1 0 1 X i1 2 X i 2 u i X1
基本流程
第一步: 建立模型
第二步: 寻找工具变量 第三步: 数据分析
工具变量
演示
工具变量
假说1: 区域的经济增长或财政税收水平等政绩考核指 标会显著影响地区性行政垄断的强弱。 假说2: 区域内企业经济指标会显著影响地区性行政垄 断的强弱。
地方财政支出占GDP 比重gov 作为工具变量。 外商资本比重lobby 作为工具变量。 liquid 变量( 流动资产合计的自然对数) 作为另一个 工具变量。

选择Y2的工具变量Z2,满足: 与Y2相关,与随机误差项不相关,与另 一外生解释变量不要高度相关
工具变量

在检验时,采用如下回归模型:
Y2 0 1 Z1 2 Z 2 v

如果Z2系数显著不为0,则满足一个基本 条件,其含义是,控制其他外生解释变 量,相关性仍然存在。
工具变量
出现相关最常见的原因是遗漏变量我们以此为例来进行说明工具变量如果遗漏变量与解释变量正相关则解释变量与随机误差项正相关如果遗漏变量与解释变量负相关则解释变量与随机误差项负相关无论何种情况系数估计都会出现偏误工具变量处理此类问题的一般方法是工具变量法instrumentalvariable寻找一个变量z满足

工具变量法例子及解析

工具变量法例子及解析

工具变量法例子及解析工具变量法是经济学中常用的一种回归分析方法,它的作用是削弱内生性问题对回归结果的影响。

本文将通过具体例子和分析,介绍工具变量法的原理、应用和重要性。

一、工具变量法原理工具变量法的核心思想是利用一个与内生变量有关的外生变量来代替内生变量,既能够在一定程度上削弱内生性问题,又能够保留回归模型的一般结构。

其原理可以简单归纳为以下几个步骤:1. 利用可靠性高的工具变量代替内生变量2. 使用工具变量回归得到内生变量的估计值3. 将内生变量的估计值代入原始回归模型,得出正确的回归效果。

通过以上三个步骤,工具变量法可以尽可能地消除内生性问题对回归分析的干扰,从而得到准确的分析结果。

二、工具变量法应用在实际经济研究中,工具变量法的应用非常广泛,以下是几个常见的应用:1. 教育和收入的关系分析这是一个非常经典的实证研究,研究者发现,教育与收入之间存在内生性问题,即教育水平可能受到家庭收入的影响。

为了解决这个问题,研究者使用父母教育程度作为工具变量,用它来代替受教育程度对收入的内生性影响,最终得出正确的研究结果。

2. 运动员收入与绩效的关系分析在研究运动员收入与绩效关系的时候,由于运动员自身的能力或健康状况等因素可能会影响分析结果,因此需要使用工具变量来解决内生性问题。

例如,研究者可以使用运动员所属的地理区域作为工具变量,用它来代替个人因素对收入和绩效的影响,从而得出更加准确的研究结果。

3. 货币政策与经济增长的关系分析在研究货币政策对经济增长的影响时,通常会使用实际利率作为工具变量来解决内生性问题。

由于实际利率受银行制度、资本市场以及政府债券利率等多种因素的影响,因此能够代替内生性较强的利率变量,得出更加准确的研究结果。

三、工具变量法的重要性工具变量法在经济学研究中具有非常重要的地位,它的主要作用在于解决内生性问题,从而得出更加准确的研究结果。

由于内生性问题可能会导致回归结果的偏误,因此如果不进行工具变量法处理,可能得出的结论会与实际情况有较大差距,这对于政策的制定和实施将会带来严重影响。

第十五章工具变量估计与TSLS 1

第十五章工具变量估计与TSLS 1

x=p0+p1x+个例子
教育的工具变量
身份证的后四位数
智商IQ
母亲的受教育水平 兄弟姐妹个数 出生的季度变量
逃课对期末成绩的影响:逃课的工具变量
住宿区离学校的距^ ar(ˆ1)
ˆ 2

2 x
ˆ
2 x,
z

ˆ 2
SSTx Rx2,z
Rx2,z 1 ˆ 2
SSTx
根据这一公式可以计算IV估计量的方差和标准 差,构造t统计量
比较IV估计量和OLS估计量方差的大小
R2x,z1,IV估计量方差大于OLS林壑/尤美,望之/蔚然而深秀者,琅琊也。山行/六七里,渐闻/水声潺潺,而泻出于/两峰之间者,酿泉也。峰回/路转,有亭/翼然临于泉上者,醉翁亭也。作亭者/谁?山之僧/曰/智仙也。名之者/谁?太守/自谓也。太守与客来饮/于此,饮少/辄醉,而/年又最高,故/自号曰/ 醉翁也。醉翁之意/不在酒,在乎/山水之间也。山水之乐,得之心/而寓之酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
越战老兵的收入是否受到参加越战的影响?
log(earns)=0+1veteran+u
是否参加越战可能与收入的其他影响因素有关 如何选择veteran的工具变量?
随机抽签:号码与u不相关 号码足够小的必须服役:号码与veteran相关 征兵抽签号 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧

工具变量

工具变量
2
在教育回报率的例子中,假定真实模型将对数工资对教育和能力回 归:现在能力不可观测,而且没有代理变量 没有代理变量IQ 没有代理变量 事实上使用的回归:将对数工资对教育回归,但由于误差项包含能 力,并且教育水平与能力相关,此时会出现教育的内生性问题 内生性问题。 内生性问题 一个好的IV应当与教育水平高度相关,并且与误差项不相关。 ——问:IQ是好的工具变量吗? ——答:不。它同时与教育和误差项相关。 文献中使用的IV:(1) 父母亲的教育水平;(2) 兄弟姐妹数目,依赖 的假说是:兄弟姐妹越多,平均受教育水平越低 注意:无论我们使用其中的哪一个作为IV,我们都需要肯定它们与 能力不相关。 满足零条件均值条件:OLS x u 内生性:OLS估计将有偏 x y u y 工具变量的解决思路 z x u y=β0+ β1x+u(x)→→dy/dx=β1+du/dx
6
例 15.1 已婚妇女的教育回报率的估计 . reg lwage educ if inlf==1
Source Model Residual Total lwage educ _cons SS 26.3264193 197.001022 223.327441 Coef. .1086487 -.1851968 df 1 426 427 MS 26.32641 93 .4624437 13 .5230150 84 t 7 .55 -1 .00 P>|t| 0.000 0.318 Number of obs F( 1, 426) Prob > F R-squared Adj R-squared Root MSE = = = = = = 428 56.93 0.0000 0.1179 0.1158 .68003
σ2 ˆ ˆ β1的渐近方差是 Var β1 = 2 2 nσ x ρ x , z

工具变量法工具变量法具体步骤

工具变量法工具变量法具体步骤

工具变量法工具变量法具体步骤工具变量法目录概念某一个变量与模型随机解释变量高度相关,但却不与为丛藓科扭口藓项相关,那么就可以用此变量与模型中相应回归系数的一个一致估计量,这个变量就称为方法变量,这种估计方法就叫工具基本原理变量法。

缺点工具变量法的关键是选择一个有效的优先选择工具变量,由于工具自变量变量可以选择中的困难,工具变量法本身存在两方面不足:一是由于工具变量不是惟一的,因而工具变量估计量有一定的任意性;其二由于误差项实际上是不可观测的,因而要寻找严格意义上与误差项无关的与所替代而随机解释变量高度相关的变量总的来说事实上是困难的。

工具变量法与内生解释变量可持续性解释变量会造成解读严重的后果:不一致性inconstent 和有偏biased ,因为频域不满足误差以解释线性为条件的期望值为0。

产生解释变量招盛纯一般有三个原因:一、遗漏变量二、测量误差三、联立性第三种情况是无法逐步解决的,前两种可以采用工具变量(IV )法。

IV 会带来的唯一坏处是估计方差的增大,也就是说同时采用OLS 和IV 估计,则前者的方差小于后者。

但IV 的应用是有前提条件的:1.IV 与内生解释函数相关,2.IV 与u 不相关。

在小样本情况下,一般用内生解释变量对IV 进行回归,如果R -sq 值很小的话,一般t值也很小,所以对IV 质量的评价没有大的风险问题,但是当采用大样本时,情况则相反,往往是t 值很大,而R -sq 很小,这时如果采用t 值进行关键问题评价则可能出现出现问题。

这时IV 与内生解释变量之间的若干程度不是阐释太大,但是如果与u 之间有轻微的相关机构的话,则:1、导致很小的不一致性;2、有偏性,并且这种有偏性随着R -sq趋于0而趋于OLS 的有偏性。

所以现在在采用IV 时最好采用R -sq 或F -sta 作为评价标准,另外为了观测IV 与u 的关系,可以将IV 作为解释变量放入方程进行回归,如果没有其他的系数没有多的变化,则说明IV 满足第二个条件。

工具变量的标准

工具变量的标准

工具变量的标准工具变量在经济学和社会科学研究中起到至关重要的作用,它们用于处理内生性问题,即某种变量可能与因果变量以及其他自变量之间存在内在的相关性。

本文将从工具变量的定义、选择、标准以及使用等方面进行探讨。

工具变量(Instrumental Variables, IV)是一种经济学中用于解决内生性问题的技术手段。

内生性问题主要指的是观测数据中存在的内在的相关性,导致无法直接得到准确的因果关系。

例如,假设我们想研究教育对收入的影响,但由于教育与个体能力水平以及其他影响收入的因素存在共同决定因素,因此无法准确地测量教育对收入的独立影响。

在这种情况下,工具变量可以帮助我们解决内生性问题。

工具变量可以看作是对内生性问题的一个解决方案,它是一种可以从外部影响因果关系的变量。

通过使用工具变量,我们可以利用这种外部影响来估计原始因果效应,而不会受到内生性问题的影响。

工具变量的基本思想是通过利用这种外部影响,将原始内生性问题转化为一个外生性问题,进而得到更准确的因果关系估计。

在选择工具变量时,需要满足一些标准。

首先,工具变量与内生变量之间应该存在一定的相关性,即工具变量对内生变量有一定的影响。

如果工具变量与内生变量没有相关性,那么它就不能有效地解决内生性问题。

其次,工具变量与误差项之间应该不存在相关性。

如果工具变量与误差项之间存在相关性,那么工具变量就不能满足外生性的要求,从而无法有效地解决内生性问题。

此外,工具变量应该具有足够的异质性,即工具变量对不同个体的影响程度应该有所不同。

如果工具变量没有足够的异质性,那么它不能提供有效的“随机试验”条件,无法解决内生性问题。

在实际应用中,我们常常使用一些统计测量指标来评估工具变量是否符合标准。

例如,工具变量的相关性通常可以通过计算工具变量与内生变量之间的相关系数来衡量。

同时,我们可以使用所谓的第一阶段回归来检验工具变量与内生变量以及其他控制变量之间的相关性。

另外,工具变量也需要满足一些经济学上的合理性标准。

工具变量

工具变量

工具变量
~ E 1 1

~
2
X X
~
i 1 i 1 n
n
i1
X 1 X i2 X1

i1

2
E 1 1 2 1

在两种情况下无偏:
2 0 ~ 1 0
工具变量

偏误情况
X1 和 X2 正相关
2 0 2 0

设定模型
Y 0 1 X 1 v
工具变量
1
~
X
i 1 n i 1
n
i1
X 1 Yi

2 X X i 1 1
Yi 0 1 X i1 2 X i 2 u i
X
i 1 n i 1
n
i1
X 1 0 1 X i1 2 X i 2 u i X1
工具变量
应用领域
[1]邓曲恒,王亚柯. 农民工的工作条件与工资收入:以补偿性工资差异为视角[J]. 南开 经济研究,2013,06:134-147. [2]陈昊. 出口贸易与学历误配:缓解还是加剧?——基于多工具变量法的经验研究[J]. 财经研究,2014,03:42-51. [3]陈继勇,梁柱. 贸易开放与经济增长的内生性研究新进展[J]. 经济评论 ,2011,06:130-137.
工具变量

Wooldridge给出两个可能的IV:
母亲的受教育水平 成长过程中兄弟姐妹数

工具变量

选择工具变量,需要验证它是否满足两 个条件,对于与X(内生变量)相关,可 以通过做X与Z的回归模型,对系数进行 检验,但对于与u不相关,则只能依靠理 论设定了!

工具变量的定义及应用要求

工具变量的定义及应用要求

工具变量的定义及应用要求工具变量是在计量经济学中使用的一种方法,用于解决内生性问题。

内生性问题指的是自变量(解释变量)与误差项之间存在相关性,从而导致回归结果产生偏误。

工具变量的核心思想是通过引入一个外生性足够强的变量,来替代内生性的自变量,从而消除内生性问题。

在本文中,将介绍工具变量的定义、应用要求以及实际应用,以及工具变量方法在实证研究中的重要意义。

首先,工具变量的定义是指在计量经济模型中,利用一个或一组外生性足够强的变量(即工具变量)来替代内生性自变量,从而消除内生性问题。

工具变量需要满足两个基本要求:第一,工具变量与内生性自变量存在显著相关性;第二,工具变量与误差项不存在相关性。

如果工具变量满足这两个要求,那么使用工具变量进行估计就可以得到无偏的一致估计。

其次,工具变量的应用要求包括两个方面:第一,工具变量必须是外生性的。

外生变量指的是与误差项不相关的变量,通常是与内生性自变量相关但与误差项不相关的变量。

工具变量的外生性是工具变量方法有效性的基础,只有外生性的工具变量才能有效地消除内生性问题。

第二,工具变量必须具有强相关性。

强相关性意味着工具变量与内生性自变量之间存在显著的相关性,这样才能有效地替代内生性自变量,从而消除内生性问题。

在实际应用中,工具变量方法通常用于解决内生性问题。

内生性问题在计量经济学中是一个常见且严重的问题,如果不加以解决,将导致回归结果产生偏误,从而影响到结论的准确性和可靠性。

工具变量方法可以有效地解决内生性问题,得到无偏的一致估计。

因此,在许多实证研究中,特别是涉及到内生性问题的情况下,研究者通常会使用工具变量方法来确保估计结果的准确性。

工具变量方法在实证研究中具有重要的意义。

首先,工具变量方法为研究者提供了一种有效的解决内生性问题的方法,使他们能够得到无偏的一致估计。

其次,工具变量方法在一定程度上放宽了对自变量的外生性假设,使得研究者能够在较宽松的条件下进行估计。

工具变量法PPT教案学习

工具变量法PPT教案学习

Z = ( X, X ,… , X , Z)
1
2
K −1
K
只要Cov(Z, X ) ≠ 0 ,Cov(Z,ε ) = 0
K
K
K
变量Z就满足条件1和2,成为工具变量
• 实际运用中,寻找工具变量的关键 就是要 找到与Xk高度相关而与u无关的 Zk
第30页/共64页
识别
• 恰好识别
– 回归模型中有一个解释变量是内生的,而我们就找 到 一个工具变量
– 通常ability受到教育的影响 abil=₀+₃edu+r,
E(r|exp,exp²)=0 – 从而E(b3)= 3+ 3,b3不仅是有偏的,而且在大
样本中也是不一致的。
– 特别是,如果3>0,b3会高估教育对工资的影响
第9页/共64页
变量的测量误差
• 被解释变量的测量误差 • 真实的模型设定
工具变量法
会计学
1
单方程线性模型
• 如果我们在经验分析中采用一个单方程线 性模型来研究x 对y 的影响,并得到相关的 政策结论,那么则要求方程
y = + X + X + . . . X + u
0
1
1
2
2
k
k
能够反映X与y之间的因果关系,而不是单 纯的统计相关关系
第1页/共64页
假设1
• 条件期望线性与外生性假设 y = E(y|X)+u
第15页/共64页
遗漏变量
• 当被遗漏的变量与引入模型的其他解释变量 相 关,被遗漏的变量进入到随机扰动项时, 就会导致解释变量与扰动项相关
• 假定真实的总体模型设定为:Y = X β + Wγ + u

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章工具变量估计与两阶段最小二乘法【圣第15章工具变量估计与两阶段最小二乘法15.1复习笔记一、动机:简单回归模型中的遗漏变量1.面对可能发生的遗漏变量偏误(或无法观测异质性)的四种选择(1)忽略遗漏变量问题,承受有偏而又不一致估计量,若能把估计值与关键参数的偏误方向一同给出,则该方法便令人满意。

(2)试图为无法观测变量寻找并使用一个适宜的代理变量,该方法试图通过用代理变量取代无法观测变量来解决遗漏变量的问题,但并不是总可以找到一个好的代理。

(3)假定遗漏变量不随时间变化,运用固定效应或一阶差分方法。

(4)将无法观测变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法,工具变量法。

2.工具变量法简单回归模型01y x uββ=++其中x 与u 相关:()Cov 0,x u ≠(1)为了在x 和u 相关时得到0β和1β的一致估计量,需要有一个可观测到的变量z,z 满足两个假定:①z 与u 不相关,即Cov(z,u)=0;②z 与x 相关,即Cov(z,x)≠0。

满足这两个条件,则z 称为x 的工具变量,简称为x 的工具。

z 满足①式称为工具外生性条件,工具外生性意味着,z 应当对y 无偏效应(一旦x 和u 中的遗漏变量被控制),也不应当与其他影响y 的无法观测因素相关。

z 满足②式意味着z 必然与内生解释变量x 有着或正或负的关系。

这个条件被称为工具相关性。

(2)工具变量的两个要求之间的差别①Cov(z,u)是z 与无法观测误差u 的协方差,通常无法对它进行检验:在绝大多数情形中,必须借助于经济行为或反思来维持这一假定。

②给定一个来自总体的随机样本,z 与x(在总体中)相关的条件则可加以检验。

最容易的方法是估计一个x 与z 之间的简单回归。

在总体中,有01x z vππ=++从而,由于()()1Cov /ar V ,x z z π=所以式Cov(z,x)≠0中的假定当且仅当10π≠时成立。

工具变量名词解释

工具变量名词解释

工具变量名词解释
工具变量是一种在计量经济学中被广泛使用的重要概念。

它在研究因
果性问题时具有重要的作用,尤其在面临内生性问题时更加不可或缺。

工具变量指的是一种可以影响特定自变量但不影响因变量的变量,它
可以用来代替原始的自变量,并被用来推断自变量对因变量的影响。

这些变量通常与自变量高度相关,但又与因变量无关。

通过使用工具
变量,我们可以消除内生性问题,从而得到更加准确和可靠的因果性
推断。

例如,如果我们想研究一个人的教育水平对其收入的影响,但我们发
现这两个变量之间存在内生性问题,我们就可以使用工具变量来解决
这个问题。

一个可能的工具变量是该人的家庭背景,因为家庭背景可
能会影响一个人的教育水平,但对其收入没有直接的影响。

通过使用
家庭背景作为工具变量,我们可以得到更准确的教育水平对收入的因
果效应。

值得注意的是,选择适当的工具变量对于结果的正确性至关重要。


个好的工具变量应该满足以下三个条件:第一,与自变量高度相关;
第二,与因变量无关;第三,与内生变量的误差项无关。

如果一个工
具变量不满足这些条件,那么使用它推断因果性的结果将可以受到严
重的偏差影响。

在实际应用中,工具变量方法被广泛应用于各种经济学问题的解决中,包括偏误修正、习惯性烟民效应等等。

使用工具变量方法可以帮助我
们理清复杂的因果关系,消除内生性问题,并得出更加准确和可靠的
经济政策建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这样一来 , 我们便把 abil 放人误差项中,而 只留下简单回归模型: Log(wage) =β 0+β 1educ+u (15.1 ) 其中,u 包含 abil。当然,如果用 OLS 估计 方程 (15.1) ,若 educ 与 abil 相关,则得到 的结果将是 1 的有偏而又不一致估计量。
第15章 工具变量估计与两阶段最小二乘法
在本章中,我们进一步研究多元回归模型中的 内生解释变量 (endogenous explanatory Variables) 问题。在第 3 章中,我们推导出遗漏一个重要变 量时 OLS 估计量的偏误,在第 5 章中,我们说明 了在遗漏变量(omitted variables)的情况下,OLS 通 常是不一致的。
举例来说,考虑成年劳动者的工资方程中存 在无法观测之能力因素的问题。一个简单的 模型为: log(wage)=β 0+β 1educ+β 2abil+e 其中,e 是误差项。
在第 9 章中,我们证明了在某些假定下,如 何用诸如 IQ 的代理变量代替能力,从而通过 以下回归可得到一致估计量 log(wage)对 educ,IQ 回归 然而假定不能得到适当的代理变量(或它不 具备足以获取 1 一致估计量所需的性质)。
我们一开始先说明,在存在遗漏变量的情况 下,如何用 IV 法获得一致估计量。此外, IV 至少能在某些假定下用于解决变量误差 (errors-in-variables)问题。下一章将证明运 用 IV 法如何估计联立方程模型。
我们对工具变量估计的论述严格遵照我们在 第 1 篇中对普通最小二乘的推导,其中假定 我们有一个来自潜在总体的随机样本。这个 起点很合人意,因为除了简化符号之外,它 还强调用潜在总体来表述对 IV 估计所做的重 要假定 (正如用 OLS 时一样)。
最终,假如我们能为 educ 找到一个工具变 量,我们仍可以根据方程 (15. 1)来进行估 计,为描述该方法,将简单回归模型写成: y=β 0+β 1x+u (15.2)
其中我们认为 x 与 u 相关: Cov(x,u)≠0 (15.3)
无论 x 与 u 是否相关,工具变量法都行得通, 但出于后面将会看到的原因, 若 x 与 u 不相 关,我们还是应该使用 OLS。 为了在 x 与 u 相关时得到 0 和 1 的一致估 计量,我们还需要一些额外信息。这些信息 由一个满足某些性质的新变量给出。
假定我们有一个可观测到的变量 z,它满足 两个假定 : (1)z 与 u 不相关,即 Cov(z,u)=0 (2) z 与 x 相关,即 Cov(z,x)≠0 (15.4) (15.5)
我们则称 z 是 x 的工具变量 (instrumental variable),有时也简称 x 的工具(instrument) 。
即使能获得,如果我们的兴趣在于变量的影响, 而该变量又不随时间而变化,它对于我们也几 无用处:一阶差分或固定效应估计排除了不随 时间而变化的变量。 此外,迄今为止我们所研 究的面板数据方法,还不能解决与解释变量相 关的时变(即随着时间而不断变化的)遗漏变 量问题。
在本章,我们对内生性问题采用了一种不同的 方法。你将看到如何用工具变量法 (IV)来解决 一个或多个解释变量的内生性问题。就应用计 量经济学中线性方程的估计而言,两阶段最小 二乘法 (2SLS 或 TSLS)的受欢迎程度仅次于普 通最小二乘。
第 9 章则证明了,对无法观测解释变量给出适 宜的代理变量,能消除 (或至少减轻)遗漏变量 偏误。不幸的是,我们不是总能得到适宜的代 理变量。
在前面两章,我们解释了在出现不随时间而 变化的遗漏变量情况下, 如何对面板数据应 用固定效应估计或一阶差分来估计随时间而 变化的自变量的影响。尽管这些方法非常有 用,可我们不是总能获得面板数据。
不幸的是,相反的情况经常发生,我们的估 计值可能在数值上太大了,以至于我们要也能获得令人满 意的结果,但并不是总可以找到一好的代理。 该方法试图通过用代理变量取代无法观测变 量来解决遗漏变量的问题。另一种方法是将 无法观测变量留在误差项中,但不是用 OLS 估计模型,而是运用一种承认存在遗漏变量 的估计方法。这便是工具变量法所要做的。
(2)我们可以试图为无法观测变量寻找并使 用一个适宜的代理变量; (3)我们可以假定遗漏变量不随时间变化。 适用第 13 章与第 14 章中的固定效应或一阶 差分方法,若能把估计值与关键参数的偏误 方向一同给出,则第一个回答便令人满意。
例如,如果我们能说一个正参数(譬如工作 培训对未来工资的影响)的估计量有朝零偏 误,并且我们找到了一个统计上显著的正估 计值,那么我们还是了解到一些东西:工作 培训对工资有正的影响,而我们很可能低估 了该影响。
有时候,人们把工具 z 满足方程 (15.4)的要 求概括为“z 在方程 (15.2)中是“外生的”, 所以我们经常把式 (15.4)称为工具外生性 (instrument exogeneity) 条件。从遗漏变量 的角度看,工具外生性意味着,z 应当对 y 无 偏效应 (一旦 x 和 u 中的遗漏变量被控制) , 也不应当与其他影响 y 的无法观测因素相关。
方程 (15.5)意味着 z 必然与内生解释变量 x 有着或正或负的关系。这个条件有时被称为 工具相关性(instrument relevance)( 即“z 在解释 x 中的变异时有重要作用”)。
如我们在第 2 篇中所示,OLS 可以应用于时 间序列数据,而工具变量法也一样可以。15.7 节讨论了在时间序列数据中应用 IV 法时出现 的一些特殊问题。在 15.8 节中,我们将论述 其在混合横截面和面板数据上的应用。
15.1 动机:简单回归模型中的遗漏变量
面对可能发生的遗漏变量偏误(或无法观测 异质性),迄令为止我们已讨论了三种选择: (1)我们可以忽略此问题,承受有偏而又不 一致估计量的结果;
相关文档
最新文档