内部排序算法比较课程设计报告种基本排序
数据结构-第十章-内部排序
![数据结构-第十章-内部排序](https://img.taocdn.com/s3/m/0ffd09a4f524ccbff12184e2.png)
0
1
2
3
4
5
6
7
8
i=5
MAXINT 49 2 3
MAXINT 49 6 3 MAXINT 49 6 3 MAXINT 49 6 8
38 1
38 1 38 1 38 1
65 97 5 0
65 5 65 5 65 5 97 0 97 0 97 0
76 4
76 4 76 4 76 4
13
27
49
i=6
最坏情况下,待排记录按关键字非递增有序 排列(逆序)时,第 i 趟时第 i+1 个对象 必须与前面 i 个对象都做排序码比较, 并且 每做1次比较就要做1次数据移动。总比较 次 数 为 (n+2)(n-1)/2 次 , 总 移 动 次 数 为 (n+4)(n-1)/2。 在平均情况下的排序码比较次数和对象移 动次数约为 n2/4。因此,直接插入排序的 时间复杂度为 O(n2)。 直接插入排序是一种稳定的排序方法。
折半插入排序 (Binary Insertsort)
基本思想 既然每个要插入记录之前的纪录 已经按关键字有序排列,在查找插入位 臵时就没有必要逐个关键字比较,可以 使用折半查找来实现。由此进行的插入 排序称之为折半插入排序。
折半插入排序的算法
void BInsertSort (SqList &L){ for (i=2;i<=L.length;++i){ L.r[0]=L.r[i]; low=1;high=i-1; //查找范围由1到i-1 while(low<=high){ m=(low+high)/2; if LT(L.r[0].key,L.r[m].key) high=m-1; else low=m+1; }//while 折半查找 for (j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; //折半查找结束后high+1位臵即为插入位臵 L.r[high+1]=L.r[0]; }//for }//BInsertSort
数据结构课程设计—内部排序算法比较
![数据结构课程设计—内部排序算法比较](https://img.taocdn.com/s3/m/45da7ada03d276a20029bd64783e0912a3167c15.png)
数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。
内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。
本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
冒泡排序是一种简单直观的排序算法。
它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。
因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。
插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。
选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。
以此类推,直到全部待排序的数据元素排完。
选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。
快速排序是一种分治的排序算法。
它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。
快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。
然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。
归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。
第10章-内部排序PPT课件
![第10章-内部排序PPT课件](https://img.taocdn.com/s3/m/261c132c04a1b0717ed5ddc6.png)
-
算法效率
时间复杂度
待排序记录按关键字从小到大排列(正序)
n
比较次数: 1 n 1 i2
移动次数: 0
待排序记录按关键字从大到小排列(逆序)
比较次数:
n i (n2)(n1)
i2
2
移动次数:
n
(n4)(n1)
(i1)
i2
2
待排序记录随机,取平均值
比较次数: n 2
4
移动次数: n 2
4
总的时间复杂度:T(n)=O(n2)
空间复杂度:S(n)=O(1)
-
3. 折半插入排序
排序过程:用折半查找方法确定插入位置。 举例:
i=1: (38) (49) 38 65 97 76 13 27 49
5 R’={5}
R={10,2}
2 R’={2,5}
R={2}
10 R’={2,5,10}
R={ }
2 R’={2,2,5,10}
-
2. 直接插入排序
排序过程:整个排序过程为n-1趟插入
将序列中第1个记录看成是一个有序子序列 从第2个记录开始,逐个进行插入,直至整个序列有序
R1 R2 …… Rn
内部排序适用于记录个数不很多的小文件; 外部排序则适用于记录个数太多,不能一次 将其全部放入内存的大文件
排序依据策略
插入排序:直接插入排序, 折半插入排序, 希尔排序 交换排序:冒泡排序, 快速排序 选择排序:简单选择排序, 堆排序 归并排序:2-路归并排序 基数排序
数据结构课程设计实践报告
![数据结构课程设计实践报告](https://img.taocdn.com/s3/m/9faffdf2f705cc175527098e.png)
数据结构实验报告本文是范文,仅供参考写作,禁止抄袭本文内容上传提交,违者取消写作资格,成绩不合格!实验名称:排序算法比较提交文档学生姓名:提交文档学生学号:同组成员名单:指导教师姓名:排序算法比较一、实验目的和要求1、设计目的1.掌握各种排序的基本思想。
2.掌握各种排序方法的算法实现。
3.掌握各种排序方法的优劣分析及花费的时间的计算。
4.掌握各种排序方法所适应的不同场合。
2、设计内容和要求利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并统计每一种排序上机所花费的时间二、运行环境(软、硬件环境)软件环境:Vc6.0编程软件运行平台: Win32硬件:普通个人pc机三、算法设计的思想1、冒泡排序:bubbleSort()基本思想: 设待排序的文件为r[1..n]第1趟(遍):从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-1)第1趟之后,n个关键字中最大的记录移到了r[n]的位置上。
第2趟:从r[1]开始,依次比较两个相邻记录的关键字r[i].key和r[i+1].key,若r[i].key>r[i+1].key,则交换记录r[i]和r[i+1]的位置;否则,不交换。
(i=1,2,...n-2)第2趟之后,前n-1个关键字中最大的记录移到了r[n-1]的位置上,作完n-1趟,或者不需再交换记录时为止。
2、选择排序:selSort()每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
选择排序不像冒泡排序算法那样先并不急于调换位置,第一轮(k=1)先从array[k]开始逐个检查,看哪个数最小就记下该数所在的位置于minlIndex中,等一轮扫描完毕,如果找到比array[k-1]更小的元素,则把array[minlIndex]和a[k-1]对调,这时array[k]到最后一个元素中最小的元素就换到了array[k-1]的位置。
各种内排序算法的实验心得
![各种内排序算法的实验心得](https://img.taocdn.com/s3/m/ebcea6eda48da0116c175f0e7cd184254a351b49.png)
各种内排序算法的实验心得
1. 冒泡排序
冒泡排序是一种简单的排序算法,但它的时间复杂度为O(n^2),在处理大量数据时效率很低。
在实验过程中,我发现当数据量较小时,冒泡排序的效率其实还是不错的,但一旦数据量增加,它的效率就明显下降了。
2. 插入排序
插入排序的时间复杂度也是O(n^2),类似于冒泡排序。
但是插入排序比冒泡排序更快,因为它每次只需要比较一个元素。
在实验中,我发现当数据量比较小且有序时,插入排序的效率非常高,但如果数据量较大且随机分布,效率就会明显下降。
3. 选择排序
选择排序同样是时间复杂度为O(n^2)的算法,但是它比冒泡排序和插入排序都要快。
在实验中,我发现当数据量很大时,选择排序的效率比较稳定,但是当数据量比较小时,它的效率反而不如插入排序。
4. 快速排序
快速排序是一种常用的排序算法,它的时间复杂度为O(nlogn),比冒泡、插入和选择排序都要快。
在实验中,我发现当数据量比较大时,快速排序的效率非常高,但是当数据量比较小时,它的效率反而不如插入排序和选择排序。
5. 归并排序
归并排序与快速排序的时间复杂度相同,都是O(nlogn)。
但是归并排序比快速排序更稳定,因为它的最坏时间复杂度是O(nlogn)。
在实验中,我发现当数据量比较大时,归并排序的效率非常高,而且在处理大量数据时表现优异。
6. 基数排序
基数排序是一种特殊的排序算法,它适用于数据量较大且每个元素长度相同的情况。
在实验中,我发现基数排序的效率非常高,尤其是对于大量数据的排序。
但需要注意的是,基数排序无法处理字符串等非数字类型的数据。
各种排序算法的课程设计
![各种排序算法的课程设计](https://img.taocdn.com/s3/m/d370dddabdeb19e8b8f67c1cfad6195f302be852.png)
各种排序算法的课程设计一、课程目标知识目标:1. 让学生掌握排序算法的基本概念,了解不同排序算法的优缺点及应用场景。
2. 使学生能够理解和掌握冒泡排序、选择排序、插入排序等基本排序算法的原理和实现方法。
3. 帮助学生理解排序算法的时间复杂度和空间复杂度,并能够分析不同算法的效率。
技能目标:1. 培养学生运用编程语言实现排序算法的能力,提高编程实践操作技能。
2. 培养学生通过分析问题,选择合适的排序算法解决实际问题的能力。
情感态度价值观目标:1. 激发学生对计算机科学和算法的兴趣,培养主动探究和自主学习的精神。
2. 培养学生面对问题时的耐心和细心,提高解决问题的信心和团队合作意识。
3. 使学生认识到排序算法在生活中的广泛应用,体会算法对人类社会的贡献。
课程性质分析:本课程为计算机科学相关学科,旨在让学生掌握排序算法的基本原理和实现方法,提高编程实践能力。
学生特点分析:学生处于年级中段,具有一定的编程基础和逻辑思维能力,对新鲜事物充满好奇心,但学习耐心和自律性有待提高。
教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力。
2. 通过案例分析,引导学生主动思考,提高问题解决能力。
3. 创设互动、轻松的学习氛围,关注学生个体差异,激发学习兴趣。
二、教学内容1. 排序算法基本概念:介绍排序的定义、排序算法的稳定性、内排序与外排序的分类。
2. 冒泡排序:讲解冒泡排序的原理、实现步骤,分析其时间复杂度和空间复杂度。
3. 选择排序:介绍选择排序的原理、实现步骤,分析其时间复杂度和空间复杂度。
4. 插入排序:讲解插入排序的原理、实现步骤,分析其时间复杂度和空间复杂度。
5. 排序算法比较:对比冒泡排序、选择排序和插入排序的优缺点,探讨在不同场景下如何选择合适的排序算法。
6. 教学案例:结合实际案例,让学生动手实践排序算法,提高编程能力。
7. 排序算法拓展:简要介绍其他常用排序算法(如快速排序、归并排序等)的原理和应用。
用Java实现常见的8种内部排序算法
![用Java实现常见的8种内部排序算法](https://img.taocdn.com/s3/m/527a9153a9956bec0975f46527d3240c8447a1c4.png)
⽤Java实现常见的8种内部排序算法⼀、插⼊类排序插⼊类排序就是在⼀个有序的序列中,插⼊⼀个新的关键字。
从⽽达到新的有序序列。
插⼊排序⼀般有直接插⼊排序、折半插⼊排序和希尔排序。
1. 插⼊排序1.1 直接插⼊排序/*** 直接⽐较,将⼤元素向后移来移动数组*/public static void InsertSort(int[] A) {for(int i = 1; i < A.length; i++) {int temp = A[i]; //temp ⽤于存储元素,防⽌后⾯移动数组被前⼀个元素覆盖int j;for(j = i; j > 0 && temp < A[j-1]; j--) { //如果 temp ⽐前⼀个元素⼩,则移动数组A[j] = A[j-1];}A[j] = temp; //如果 temp ⽐前⼀个元素⼤,遍历下⼀个元素}}/*** 这⾥是通过类似于冒泡交换的⽅式来找到插⼊元素的最佳位置。
⽽传统的是直接⽐较,移动数组元素并最后找到合适的位置*/public static void InsertSort2(int[] A) { //A[] 是给定的待排数组for(int i = 0; i < A.length - 1; i++) { //遍历数组for(int j = i + 1; j > 0; j--) { //在有序的序列中插⼊新的关键字if(A[j] < A[j-1]) { //这⾥直接使⽤交换来移动元素int temp = A[j];A[j] = A[j-1];A[j-1] = temp;}}}}/*** 时间复杂度:两个 for 循环 O(n^2)* 空间复杂度:占⽤⼀个数组⼤⼩,属于常量,所以是 O(1)*/1.2 折半插⼊排序/** 从直接插⼊排序的主要流程是:1.遍历数组确定新关键字 2.在有序序列中寻找插⼊关键字的位置* 考虑到数组线性表的特性,采⽤⼆分法可以快速寻找到插⼊关键字的位置,提⾼整体排序时间*/public static void BInsertSort(int[] A) {for(int i = 1; i < A.length; i++) {int temp = A[i];//⼆分法查找int low = 0;int high = i - 1;int mid;while(low <= high) {mid = (high + low)/2;if (A[mid] > temp) {high = mid - 1;} else {low = mid + 1;}}//向后移动插⼊关键字位置后的元素for(int j = i - 1; j >= high + 1; j--) {A[j + 1] = A[j];}//将元素插⼊到寻找到的位置A[high + 1] = temp;}}2. 希尔排序希尔排序⼜称缩⼩增量排序,其本质还是插⼊排序,只不过是将待排序列按某种规则分成⼏个⼦序列,然后如同前⾯的插⼊排序⼀般对这些⼦序列进⾏排序。
算法21--内部排序--归并排序
![算法21--内部排序--归并排序](https://img.taocdn.com/s3/m/d2c3adda172ded630b1cb630.png)
实现这种递归调用的关键是为过程建立递归调用工作栈。通 常,在一个过程中调用另一过程时,系统需在运行被调用过 程之前先完成3件事:
(1)将所有实参指针,返回地址等信息传递给被调用过程; (2)为被调用过程的局部变量分配存储区; (3)将控制转移到被调用过程的入口。 在从被调用过程返回调用过程时,系统也相应地要完成3件事: (1)保存被调用过程的计算结果; (2)释放分配给被调用过程的数据区; (3)依照被凋用过程保存的返回地址将控制转移到调用过程.
实际的意义:可以把一个长度为n 的无序序列看成 是 n 个长度为 1 的有序子序列 ,首先做两两归 并,得到 n/2 个长度为 2 的子序列;再做两两 归并,…,如此重复,直到最后得到一个长度为 n
的有序序列。
归并排序
初始序列
[49] [38] [65] [97 [76] [13] [27]
第一步 第二步
T(1)=1 T(n)=kT(n/m)+f(n)
2019/10/20
归并排序时间复杂性分析
• 合并趟数: log2n • 每趟进行比较的代价 n • 总的代价为 T(n) = O ( nlog2n ) • 在一般情况下:
c
n=1
T(n) =
T( n/2 ) + T( n/2 ) + cn n>1
优缺点:Ω的这个定义的优点是与O的定义对称,缺点 是当 f(N) 对自然数的不同无穷子集有不同的表达式, 且有不同的阶时,未能很好地刻画出 f(N)的下界。
2019/10/20
f(n) cg(n)
n0
n
2019/10/20
代入法解递归方程
方法的关键步骤在于预先对解答作出推测,然后用 数学归纳法证明推测的正确性。
数据结构(C语言版)实验报告 (内部排序算法比较)
![数据结构(C语言版)实验报告 (内部排序算法比较)](https://img.taocdn.com/s3/m/f4f111275a8102d276a22fa9.png)
《数据结构与算法》实验报告一、需求分析问题描述:在教科书中,各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间。
试通过随机数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
基本要求:(l)对以下6种常用的内部排序算法进行比较:起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序。
(2)待排序表的表长不小于100000;其中的数据要用伪随机数程序产生;至少要用5组不同的输入数据作比较;比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换计为3次移动)。
(3)最后要对结果作简单分析,包括对各组数据得出结果波动大小的解释。
数据测试:二.概要设计1.程序所需的抽象数据类型的定义:typedef int BOOL; //说明BOOL是int的别名typedef struct StudentData { int num; //存放关键字}Data; typedef struct LinkList { int Length; //数组长度Data Record[MAXSIZE]; //用数组存放所有的随机数} LinkList int RandArray[MAXSIZE]; //定义长度为MAXSIZE的随机数组void RandomNum() //随机生成函数void InitLinkList(LinkList* L) //初始化链表BOOL LT(int i, int j,int* CmpNum) //比较i和j 的大小void Display(LinkList* L) //显示输出函数void ShellSort(LinkList* L, int dlta[], int t,int* CmpNum, int* ChgNum) //希尔排序void QuickSort (LinkList* L, int* CmpNum, int* ChgNum) //快速排序void HeapSort (LinkList* L, int* CmpNum, int* ChgNum) //堆排序void BubbleSort(LinkList* L, int* CmpNum, int* ChgNum) //冒泡排序void SelSort(LinkList* L, int* CmpNum, int* ChgNum) //选择排序void Compare(LinkList* L,int* CmpNum, int* ChgNum) //比较所有排序2 .各程序模块之间的层次(调用)关系:二、详细设计typedef int BOOL; //定义标识符关键字BOOL别名为int typedef struct StudentData //记录数据类型{int num; //定义关键字类型}Data; //排序的记录数据类型定义typedef struct LinkList //记录线性表{int Length; //定义表长Data Record[MAXSIZE]; //表长记录最大值}LinkList; //排序的记录线性表类型定义int RandArray[MAXSIZE]; //定义随机数组类型及最大值/******************随机生成函数********************/void RandomNum(){int i; srand((int)time(NULL)); //用伪随机数程序产生伪随机数for(i=0; i小于MAXSIZE; i++) RandArray[i]<=(int)rand(); 返回;}/*****************初始化链表**********************/void InitLinkList(LinkList* L) //初始化链表{int i;memset(L,0,sizeof(LinkList));RandomNum();for(i=0; i小于<MAXSIZE; i++)L->Record[i].num<=RandArray[i]; L->Length<=i;}BOOL LT(int i, int j,int* CmpNum){(*CmpNum)++; 若i<j) 则返回TRUE; 否则返回FALSE;}void Display(LinkList* L){FILE* f; //定义一个文件指针f int i;若打开文件的指令不为空则//通过文件指针f打开文件为条件判断{ //是否应该打开文件输出“can't open file”;exit(0); }for (i=0; i小于L->Length; i++)fprintf(f,"%d\n",L->Record[i].num);通过文件指针f关闭文件;三、调试分析1.调试过程中遇到的问题及经验体会:在本次程序的编写和调试过程中,我曾多次修改代码,并根据调试显示的界面一次次调整代码。
数据结构内部排序算法比较
![数据结构内部排序算法比较](https://img.taocdn.com/s3/m/cb67e037a32d7375a4178042.png)
内部排序算法比较第一章问题描述排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。
比较的结果用一个直方图表示。
第二章系统分析界面的设计如图所示:|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:如上图所示该系统的功能有:(1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。
(2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。
(3)选择0 打印“谢谢使用!!”退出系统的使用!!第三章系统设计(I)友好的人机界面设计:(如图3.1所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|(3.1)(II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:(用户在此输入操作方式)(3.2)(III)系统采用定义结构体数组来存储数据。
数据结构课程设计报告
![数据结构课程设计报告](https://img.taocdn.com/s3/m/8074d92a0912a21614792921.png)
}
通过查阅资料,希尔排序的复杂度应该为O( )。
通过运行程序,获得其运行时间、比较次数、交换次数和数组规模关系如下:
起泡排序
起泡排序基本思路是遍历未排序的数组,将相邻两个元素中较小的移向后方。多次遍历数组未排序部分后完成排序。
对于堆排序,他的平均时间复杂度为O(n*logn)。
算法实现如下:
voidHeapAdjust(intarray[],inti,intnLength){
intnChild;
intnTemp;
for(;2*i+1<nLength;i=nChild){
nChild=2*i+1;
if(nChild<nLength-1&&array[nChild+1]>array[nChild])++nChild;
inttemp,j;
for(inti= 0;i<len; ++i){
temp= a[i];
j =i- 1;
while(temp > a[j] && j > -1) {
a[j + 1] = a[j];
j -= 1;
}
a[j + 1] = temp;
}//end for
}//endInsert_Sort()
简单选择排序
简单选择排序通过遍历未排序数组,从中选出最小的元素并置于有序数组的第一个,其时间复杂度为O( ),而且这种排序算法是一种稳定的排序算法。
算法实现如下:
voidSelection_Sort(int*a,intlen){
数据结构课程设计题目
![数据结构课程设计题目](https://img.taocdn.com/s3/m/81b143d44793daef5ef7ba0d4a7302768e996f13.png)
数据结构课程设计题目以下7个题目任选其一。
1.排序算法比较利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且(1)统计每一种排序上机所花费的时间。
(2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。
(3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。
(4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。
2.图的深度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用堆栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现图的深度优先搜索遍历。
画出搜索顺序示意图。
3.图的广度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度优先搜索遍历。
画出搜索顺序示意图。
4.二叉树的遍历对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。
画出搜索顺序示意图。
5.链表操作利用链表的插入运算建立线性链表,然后利用链表的查找、删除、计数、输出等运算反复实现链表的这些操作(插入、删除、查找、计数、输出单独写成函数的形式),并能在屏幕上输出操作前后的结果。
画出搜索顺序示意图。
6.一元稀疏多项式简单计数器(1)输入并建立多项式(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。
序列按指数降序排列。
(3)多项式a和b相加,建立多项式a+b,输出相加的多项式。
(4)多项式a和b相减,建立多项式a-b,输出相减的多项式。
用带头结点的单链表存储多项式。
测试数据:(1)(2x+5x8-3.1x11)+(7-5x8+11x9)(2)(6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)7.实现两个链表的合并基本功能要求:(1)建立两个链表A和B,链表元素个数分别为m和n个。
数据结构课程设计题目
![数据结构课程设计题目](https://img.taocdn.com/s3/m/41c446b4f424ccbff121dd36a32d7375a417c6bf.png)
数据结构课程设计题⽬《数据结构》课程设计题⽬1. 排序算法的性能分析问题描述设计⼀个测试程序,⽐较⼏种内部排序算法的关键字⽐较次数和移动次数以取得直观感受。
基本要求(1)对冒泡排序、直接排序、选择排序、箱⼦排序、堆排序、快速排序及归并排序算法进⾏⽐较。
(2)待排序表的表长不⼩于100,表中数据随机产⽣,⾄少⽤5组不同数据作⽐较,⽐较指标:关键字参加⽐较次数和关键字的移动次数(关键字交换记为3次移动)。
(3)输出⽐较结果。
选做内容(1)对不同表长进⾏⽐较。
(2)验证各算法的稳定性。
(3)输出界⾯的优化。
2. 排序算法思想的可视化演⽰—1基本要求排序数据随机产⽣,针对随机案例,对冒泡排序、箱⼦排序、堆排序、归并算法,提供排序执⾏过程的动态图形演⽰。
3. 排序算法思想的可视化演⽰—2基本要求排序数据随机产⽣,针对随机案例,,对插⼊排序、选择排序、基数排序、快速排序算法,提供排序执⾏过程的动态图形演⽰。
4. 线性表的实现与分析基本要求①设计并实现线性表。
②线性表分别采取数组(公式化描述)、单链表、双向链表、间接寻址存储⽅式③针对随机产⽣的线性表实例,实现线性表的插⼊、删除、搜索操作动态演⽰(图形演⽰)。
5. 等价类实现及其应⽤问题描述:某⼯⼚有⼀台机器能够执⾏n个任务,任务i的释放时间为r i(是⼀个整数),最后期限为d i(也是整数)。
在该机上完成每个任务都需要⼀个单元的时间。
⼀种可⾏的调度⽅案是为每个任务分配相应的时间段,使得任务i的时间段正好位于释放时间和最后期限之间。
⼀个时间段不允许分配给多个任务。
基本要求:使⽤等价类实现以上机器调度问题。
等价类分别采取两种数据结构实现。
6. ⼀元稀疏多项式计算器问题描述设计⼀个⼀元稀疏多项式简单计算器。
基本要求⼀元稀疏多项式简单计算器的基本功能是:(1)输⼊并建⽴多项式;(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,…,c n,e n,其中n是多项式的项数,c i,e i,分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相加,建⽴多项式a+b;(4)多项式a和b相减,建⽴多项式a-b;(5)计算多项式在x处的值;(6)计算器的仿真界⾯(选做)7. 长整数的代数计算问题描述应⽤线性数据结构解决长整数的计算问题。
数据结构课程设计选题
![数据结构课程设计选题](https://img.taocdn.com/s3/m/c8af50d10d22590102020740be1e650e52eacf93.png)
数据结构课程设计选题数据结构课程设计选题题⽬选题⼀:迷宫与栈问题【问题描述】以⼀个mXn的长⽅阵表⽰迷宫,0和1分别表⽰迷宫中的通路和障碍。
设计⼀个程序,对任意设定的迷宫,求出⼀条从⼊⼝到出⼝的通路,或得出没有通路的结论。
【任务要求】1)⾸先实现⼀个以链表作存储结构的栈类型,然后编写⼀个求解迷宫的⾮递归程序。
求得的通路以三元组(i,j,d)的形式输出。
其中:(i,j)指⽰迷宫中的⼀个坐标,d表⽰⾛到下⼀坐标的⽅向。
如,对于下列数据的迷宫,输出⼀条通路为:(1,1,1),(1,2,2),(2,2,2),(3,2,3),(3,1,2),…。
2)编写递归形式的算法,求得迷宫中所有可能的通路。
3)以⽅阵形式输出迷宫及其通路。
【测试数据】迷宫的测试数据如下:左上⾓(0,1)为⼊⼝,右下⾓(8,9)为出⼝。
出⼝出⼝选题⼆:算术表达式与⼆叉树【问题描述】⼀个表达式和⼀棵⼆叉树之间,存在着⾃然的对应关系。
写⼀个程序,实现基于⼆叉树表⽰的算术表达式的操作。
【任务要求】假设算术表达式Expression内可以含有变量(a~z)、常量(0~9)和⼆元运算符(+,-,*,/,^(乘幂))。
实现以下操作:1)ReadExpre(E)—以字符序列的形式输⼊语法正确的前缀表达式并构造表达式E。
2)WriteExpre(E)—⽤带括弧的中缀表达式输出表达式E。
3)Assign(V,c)—实现对变量V的赋值(V=c),变量的初值为0。
4)Value(E)—对算术表达式E求值。
5)CompoundExpr(P,E1,E2)--构造⼀个新的复合表达式(E1)P(E2)【测试数据】1)分别输⼊0;a;-91;+a*bc;+*5^x2*8x;+++*3^x3*2^x2x6并输出。
2)每当输⼊⼀个表达式后,对其中的变量赋值,然后对表达式求值。
选题三:银⾏业务模拟与离散事件模拟【问题描述】假设某银⾏有4个窗⼝对外接待客户,从早晨银⾏开门(开门9:00am,关门5:00pm)起不断有客户进⼊银⾏。
课程设计内部排序算法
![课程设计内部排序算法](https://img.taocdn.com/s3/m/795e9eba7e192279168884868762caaedd33baf8.png)
课程设计内部排序算法一、教学目标本章节的教学目标是让学生掌握内部排序算法的原理和实现方法,培养学生运用算法解决问题的能力。
具体目标如下:1.知识目标:(1)了解内部排序算法的概念和分类。
(2)掌握常用内部排序算法(冒泡排序、选择排序、插入排序、快速排序等)的原理和实现。
(3)了解内部排序算法的性能分析及应用场景。
2.技能目标:(1)能够运用内部排序算法解决实际问题。
(2)能够对给定的排序算法进行优化和改进。
(3)具备编程实现内部排序算法的能力。
3.情感态度价值观目标:(1)培养学生对算法学习的兴趣和自信心。
(2)培养学生团队合作、自主探究的学习精神。
(3)培养学生关注算法在实际应用中的价值,提高解决问题的能力。
二、教学内容本章节的教学内容主要包括以下几个部分:1.内部排序算法的概念和分类。
2.常用内部排序算法的原理和实现(冒泡排序、选择排序、插入排序、快速排序等)。
3.内部排序算法的性能分析及应用场景。
4.内部排序算法在实际问题中的应用案例。
三、教学方法为了提高教学效果,本章节将采用以下教学方法:1.讲授法:讲解内部排序算法的原理和实现方法。
2.案例分析法:分析实际问题,引导学生运用内部排序算法解决问题。
3.实验法:让学生动手编程实现内部排序算法,提高实际操作能力。
4.讨论法:分组讨论,引导学生思考内部排序算法的优化和改进。
四、教学资源为了支持教学内容和教学方法的实施,本章节将准备以下教学资源:1.教材:《数据结构与算法》等相关教材。
2.参考书:《算法导论》、《排序与搜索》等。
3.多媒体资料:内部排序算法的动画演示、教学视频等。
4.实验设备:计算机、编程环境等。
五、教学评估本章节的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。
评估方式包括:1.平时表现:通过课堂参与、提问、小组讨论等环节,评估学生的学习态度和课堂表现。
2.作业:布置相关的编程练习和算法分析作业,评估学生的理解和应用能力。
内部排序算法实现与性能分析课程设计
![内部排序算法实现与性能分析课程设计](https://img.taocdn.com/s3/m/52c3e63a31126edb6f1a10d6.png)
目录1、问题描述: (2)1.1题目内容: (2)1.2基本要求: (2)1.3测试数据: (2)2、需求分析: (2)2.1程序的基本功能: (2)2.2输入值、输出值以及输入输出形式: (2)2.3各个模块的功能要求: (2)3、概要设计: (3)3.1所需的ADT,每个程序中使用的存储结构设计说明 (3)3.2主程序流程以及模块调用关系 (3)3.3每个模块的算法设计说明(流程图) (4)3.3.1气泡排序: (4)3.3.2直插排序 (5)3.3.3选择排序 (6)3.3.4希尔排序 (7)3.3.5快速排序 (8)4、详细设计: (9)4.1函数调用关系图 (9)5、各个算法实现的源程序: (9)5.1、冒泡排序及其主要算法 (9)5.2、直接插入排序及其主要算法 (10)5.3、选择排序及其主要算法 (10)5.4、希尔排序及其主要算法 (11)6、调试分析: (12)7、使用说明: (13)8、测试结果: (14)9、主要参考文献 (14)1、问题描述:1.1题目内容:内部排序算法实现与性能分析1.2基本要求:(1)数据结构定义(2)利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、希尔等排序方法进行排序,并统计每一种排序上机所花费的时间,对各种排序算法做分析比较.1.3测试数据:由函数随机产生的数据,由于是随机产生的,所以在此不一一写出。
2、需求分析:2.1程序的基本功能:输入30000个随机整数,对这些数进行多种方法进行排序,并对这些排序做比较,在屏幕上输出每种排序方法所比较的次数,交换的次数,和时间复杂度。
2.2输入值、输出值以及输入输出形式:由于程序中所需的数据都是有函数随机生成的整形数,不需要用户自己输入,用户只需要对演示程序中的一些提示做一些必要的选择以便于程序的执行。
程序输出的是对六种排序做的一些比较,即输出六种排序各排序过程中所比较的数据的个数,交换的数据的次数,和排序完成所用的时间。
各种排序算法比较课程设计
![各种排序算法比较课程设计](https://img.taocdn.com/s3/m/c70b8a10e55c3b3567ec102de2bd960590c6d9ef.png)
各种排序算法比较课程设计一、课程目标知识目标:1. 学生能理解并掌握冒泡排序、选择排序、插入排序等基本排序算法的原理与实现步骤。
2. 学生能够比较不同排序算法的时间复杂度和空间复杂度,并分析其优缺点。
3. 学生了解排序算法在实际应用中的重要性,能够举例说明。
技能目标:1. 学生能够运用编程语言(如Python、C++等)实现不同排序算法,并解决实际问题。
2. 学生具备分析排序算法性能的能力,能够根据实际问题选择合适的排序算法。
情感态度价值观目标:1. 学生对排序算法产生兴趣,认识到算法在计算机科学中的重要作用。
2. 学生通过合作学习,培养团队协作精神和沟通能力。
3. 学生在解决实际问题的过程中,培养勇于挑战、持续优化的精神。
课程性质:本课程为计算机科学领域的一门核心课程,旨在帮助学生掌握基本排序算法,提高编程能力和问题解决能力。
学生特点:六年级学生,已具备一定的编程基础,对算法有一定了解,但尚需深入学习和实践。
教学要求:结合学生特点和课程性质,将课程目标分解为具体的学习成果,注重实践操作和团队合作,以提高学生的编程能力和算法思维。
二、教学内容1. 冒泡排序:原理讲解,实现步骤,代码实践,性能分析。
- 课本章节:第三章第二节“冒泡排序”2. 选择排序:原理讲解,实现步骤,代码实践,性能分析。
- 课本章节:第三章第三节“选择排序”3. 插入排序:原理讲解,实现步骤,代码实践,性能分析。
- 课本章节:第三章第四节“插入排序”4. 排序算法比较:时间复杂度、空间复杂度分析,优缺点对比。
- 课本章节:第三章第五节“排序算法的比较与应用”教学进度安排:第一课时:冒泡排序原理讲解与代码实践。
第二课时:选择排序原理讲解与代码实践。
第三课时:插入排序原理讲解与代码实践。
第四课时:排序算法性能分析,优缺点对比,实际应用案例讨论。
教学内容确保科学性和系统性,结合课本章节,让学生在实践中掌握排序算法,并通过比较分析,深入理解排序算法的内涵。
数据结构课程设计排序实验报告
![数据结构课程设计排序实验报告](https://img.taocdn.com/s3/m/b2dd1cdda0116c175f0e4852.png)
《数据结构》课程设计报告专业班级姓名学号指导教师起止时间课程设计:排序综合一、任务描述利用随机函数产生n个随机整数(20000以上),对这些数进行多种方法进行排序。
(1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并排序)。
并把排序后的结果保存在不同的文件中。
(2)统计每一种排序方法的性能(以上机运行程序所花费的时间为准进行对比),找出其中两种较快的方法。
要求:根据以上任务说明,设计程序完成功能。
二、问题分析1、功能分析分析设计课题的要求,要求编程实现以下功能:(1)随机生成N个整数,存放到线性表中;(2)起泡排序并计算所需时间;(3)简单选择排序并计算时间;(4)希尔排序并计算时间;(5)直接插入排序并计算所需时间;(6)时间效率比较。
2、数据对象分析存储数据的线性表应为顺序存储。
三、数据结构设计使用顺序表实现,有关定义如下:typedef int Status;typedef int KeyType ; //设排序码为整型量typedef int InfoType;typedef struct { //定义被排序记录结构类型KeyType key ; //排序码I nfoType otherinfo; //其它数据项} RedType ;typedef struct {RedType * r; //存储带排序记录的顺序表//r[0]作哨兵或缓冲区int length ; //顺序表的长度} SqList ; //定义顺序表类型四、功能设计(一)主控菜单设计为实现通各种排序的功能,首先设计一个含有多个菜单项的主控菜单程序,然后再为这些菜单项配上相应的功能。
程序运行后,给出5个菜单项的内容和输入提示,如下:1.起泡排序2.简单选择排序3.希尔排序4. 直接插入排序0. 退出系统(二)程序模块结构由课题要求可将程序划分为以下几个模块(即实现程序功能所需的函数):●主控菜单项选择函数menu()●创建排序表函数InitList_Sq()●起泡排序函数Bubble_sort()●简单选择排序函数SelectSort()●希尔排序函数ShellSort();●对顺序表L进行直接插入排序函数Insertsort()(三)函数调用关系程序的主要结构(函数调用关系)如下图所示。
数据结构课程设计排序算法总结
![数据结构课程设计排序算法总结](https://img.taocdn.com/s3/m/9b9eba444b7302768e9951e79b89680203d86be3.png)
排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。
(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。
折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。
(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。
(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。
(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。
(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。
假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。
常用的内部排序方法
![常用的内部排序方法](https://img.taocdn.com/s3/m/afca33d650e2524de5187ee4.png)
常用的内部排序方法有:交换排序(冒泡排序、快速排序)、选择排序(简单选择排序、堆排序)、插入排序(直接插入排序、希尔排序)、归并排序、基数排序(一关键字、多关键字)。
一、冒泡排序:1.基本思想:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2.排序过程:设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:49 13 13 13 13 13 13 1338 49 27 27 27 27 27 2765 38 49 38 38 38 38 3897 65 38 49 49 49 49 4976 97 65 49 49 49 49 4913 76 97 65 65 65 65 6527 27 76 97 76 76 76 7649 49 49 76 97 97 97 97二、快速排序(Quick Sort)1.基本思想:在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X 则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2.排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一次交换后[27 38 65 97 76 13 49 49]第二次交换后[27 38 49 97 76 13 65 49]J向左扫描,位置不变,第三次交换后[27 38 13 97 76 49 65 49]I向右扫描,位置不变,第四次交换后[27 38 13 49 76 97 65 49]J向左扫描[27 38 13 49 76 97 65 49](一次划分过程)初始关键字[49 38 65 97 76 13 27 49]一趟排序之后[27 38 13]49 [76 97 65 49]二趟排序之后[13]27 [38]49 [49 65]76 [97]三趟排序之后13 27 38 49 49 [65]76 97最后的排序结果13 27 38 49 49 65 76 97三、简单选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥学院计算机科学与技术系课程设计报告2017〜2018 学年第一学期课程课程设计名称学生姓名学号数据结构与算法内部排序算法比较操彦1504012027指导教师2017 年9 月1、问题分析和任务定义各种内部排序算法的时间复杂度分析结果只给出了算法执行时间的阶,或大概执行时间,存在一定的却缺陷。
我们将通过随机的数据比较各算法的关键字比较次数和关键字移动次数,以取得直观感受。
所设计的程序应能够将产生的随机数据同时用不同的内部排序算法排序,并列出关键字比较次数与移动次数,方便比较。
待排序表的表长不少于100,为方便起见,我们令表长等于100,用5组随机的数据排序的结果作比较。
2、数据结构的选择和概要设计一.可能排序表的抽象数据类型定义:ADT OrderableList {数据对象:D=個€ IntegerSet , i=1 , 2, ........... , n, n>0}数据关系:R1= { 已:| 丘:—L,机| € D,i=2, n}基本操作:Ini tList (n)操作结果:构造一个长度为n,元素值依次为1, 2, ....... , n的有序表。
Ran domizeList(d,is In verseOrder)操作结果:首先根据islnverseOrder 为True或False,将表置为逆序或正序,然后将表进行d (0< d< 8)级随机打乱。
d为0时表不打乱,d越大,打乱程度越高。
RecallList ()操作结果:恢复最后一次用Ran domizeList随机大乱的可排序表。
ListLe ngth ()操作结果:返回可排序的长度。
ListEmpty ()操作结果:若可排序表为空表,则返回True,否则返回False。
BubbleSort (&c, &s)操作结果:进行冒泡排序,返回关键字比较次数c和移动次数s。
InsertSort (&c, &s)操作结果:进行插入排序,返回关键字比较次数c和移动次数S。
SelectSort (&c, &s)操作结果:进行选择排序,返回关键字比较次数c和移动次数S。
Quicksort ( &c, &s)操作结果:进行快速排序,返回关键字比较次数c和移动次数S。
ShellSort ( &c, &s)操作结果:进行希尔排序,返回关键字比较次数c和移动次数S。
HeapSort ( &c,&s)操作结果:进行堆排序,返回关键字比较次数c和移动次数s。
ListTraveres ( visit() )操作结果:依次对L中的每个元素调用函数visit ()。
} ADT OrderableList二.概要设计:1.冒泡排序:冒泡排序的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面。
即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。
然后比较第2个数和第3个数,将小数放前,大数放后,如此继续,直至比较最后两个数,将小数放前,大数放后。
至此第一趟结束,将最大的数放到了最后。
在第二趟:仍从第一对数开始比较(因为可能由于第 2 个数和第3个数的交换,使得第1个数不再小于第2个数),将小数放前,大数放后,一直比较到倒数第二个数(倒数第一的位置上已经是最大的),第二趟结束,在倒数第二的位置上得到一个新的最大数(其实在整个数列中是第二大的数)。
如此下去,重复以上过程,直至最终完成排序。
2.直接插入排序:直接插入排序是一种最简单的排序方法,它的基本操作是将一个记录插入到已牌号序的有序表中,从而得到一个新的、记录数增1的有序表。
3.简单选择排序:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环。
4.希尔排序:希尔排序又称“缩小增量排序”,它也是一种属插入排序类的方法,但在时间效率上较前述集中排序方法有较大的改进。
它的基本思想是:先将整个待排序记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。
5.堆排序:由二叉堆的定义可知,堆顶元素(即二叉堆的根节点)一定为堆中的最大值或最小值,因此如果我们输出堆顶元素后,将剩余的元素再调整为二叉堆,继而再次输出堆顶元素,再将剩余的元素调整为二叉堆,反复执行该过程,这样便可输出一个有序序列,这个过程我们就叫做堆排序。
般所用到的是2-路归并排序,即将含有n个元素的序列看成是n个有序的子序列,每个子序列的长度为1,而后两两合并,得到n/2个长度为2或1的有序子序列,再进行两两合并。
直到最后由两个有序的子序列合并成为一个长度为n的有序序列。
2-路归并的核心操作是将一维数组中前后相邻的两个有序序列归并为一个有序序列。
7.快速排序:快速排序的基本实现思想就是将当前待排序列分成两个部分、一个值。
一个值:就是选定出一个值作为被比较的元素。
两个部分:所有比该被选定元素大的部分都去该元素的右边,所有比被选定元素小的部分都去该元素的左边。
这样我们就确定了该元素在这个待排序列中的位置,其实也就是我们已经将这个元素“排好了”。
3、详细设计和编码1.冒泡排序:void gen sort(i nt b[],i nt n){int i,j;i nt s=0,t=0;for(i=0;i< n-1;i++){for(j=i+1;j <n ;j++){t++;if(b[i]>b[j]){int temp=b[i];b[i]=b[j];b[j]=temp;s+=3;}}} cout<<"移动次数="<<s<<","<<"比较次数="<<t<<endl;2.直接插入排序:void insertsort(sqlist b,int n){int i,j;int s=0,t=0;for(i=2;i<n;i++){b[0]=b[i];s++;j=i-1;t++;while(b[0].key<b[j].key){b[j+1]=b[j];j--;s++;t++;}b[j+1]=b[0];s++;}cout<<" 移动次数="<<s<<","<<" 比较次数="<<t<<endl; }3.简单选择排序:void gentsort(int b[],int n){int i,j,k;int s=0,t=0;for(i=0;i<n-1;i++){k=i;for(j=i+1;j<n;j++){t++;if(b[k]>b[j]){k=j;}}if(k!=i){int temp=b[k];b[k]=b[i];b[i]=temp;s+=3;}}cout<<" 移动次数="<<s<<","<<" 比较次数="<<t<<endl; }4.希尔排序:void shellsort(sqlist b,int n){int i,j,gap;rec x;int s=0,t=0;gap=n/2;while(gap>0) {for(i=gap+1;i<n;i++)li-T'g a p 八 whi-euvo)宀H +if(bm.keyvbu+gapLkey)宀xubEbullbu+gapkb u +g a p ll x li-s-a p 八S +U 3 八 e -s e li-o 八 gapugapQ)}C O U A A-<轻資蒲 H -A A W A A ---A A -民超資蒲 H -A A A A e n d r5・1^"voidsift(sq=sfrjnfsjnfm)宀in二recxx*-srf o r 〒2*s A um j f 2)S ++a A m QO QO (E •keyA r 1?二• key))++"q ++if (一(x.keyAE.key))break 八二 s H r s s 丄 P++}r[s]=x;p++;}void heapsort(sqlist &r,int m){int i;rec w;for(i=m/2;i>0;--i)sift(r,i,m);for(i=m;i>1;--i){w=r[i];r[i]=r[1];r[1]=w;p+=3;sift(r,1,i-1);}}void sorting(sqlist &r,int t){BeforeSort();heapsort(r,t);display(p,q);}void init(int a[]){// 随机生成N 个整数并int i; srand ( ( unsigned int ) time ( NULL ) );for(i=0;i<N;i++)a[i]=rand()%99+1;6. 归并排序:#include <stdio.h>void cutTwo(int sourceArr[],int *tempArr[],int start,int end);void merge(int sourceArr[],int *tempArr[],int start,int mid,int end);int main(int argc, char *argv[]){int a[8]={50, 10, 20, 30, 70, 40, 80, 60};int *b[8]={};int i;cutTwo(a,b,0,8);for(i=0;i<8;i++){printf("%d ",a[i]);}return 0;}/*归并排序算法:*/void merge(int sourceArr[],int *tempArr[],int start,int mid,int end){ // 当前我们有一个源数组,我们在比较时将这个源数组一分为二进行比较归并排序/*start 指向左边部分的开始位置,mid+1 指向右边部分的开始位置,我们还需要一个k 的下标,用于存储我们交换过来的数组到临时数组tempArr[]*/int i=start; // 定义一个i 下标,用于表示左边部分开始的位置下标int j=mid+1; // 定义一个j 下标,用于表示右边部分开始的位置下标int k=0;/*因为我们在比较时是不断的比较,直到一个子序列到达最后,所以我们应该用while 循环来做,结束条件:无非就是左边序列到头了或者是右边序列到头了,即:i<=mid&&j<=end 只有在这两个条件都成立的条件下说明两个子序列都没有到头*/while(i<=mid&&j<=end){ // 当i=mid+1 或者j=end+1 时说明子序列中有一个到头了,则跳出循环if(sourceArr[i]<=sourceArr[j]){ // 表示当前i 比较小,那么我们就将小的值赋给ktempArr[k]=sourceArr[i];k=k+1;i=i+1;}else{tempArr[k]=sourceArr[j];k=k+1;j=j+1;}/*不能将k,i,j 的加1操作放在if else 判断的外面,因为我们在进行比较的时候,只是将下标所指的数字小的放在左边,将下标所指的数字大的不动,因为我们小的下标加 1 后还要和刚才下标所指的数字再次进行比较,如果放在外面,那么我们的比较的对象不对了(因为的大的数字的下标加 1 了,前面的一个数字没有进行比较)*/}/*当有一个子序列到头以后,我们就要将剩余没到头的子序列的剩余元素放到k 的右边,因为剩余的肯定是已经有序的,且肯定比已经到头的子序列的全部元素都要大的。