2019年成人高考高起点数学(理)考试真题及答案
(完整版)2019年全国成人高考数学试卷及答案(word版本)
(完整版)2019年全国成⼈⾼考数学试卷及答案(word 版本)绝密★启⽤前2019年成⼈⾼等学校招⽣全国统⼀考试数学(⽂史财经类)第Ⅰ卷(选择题,共85分)⼀、选择题:本⼤题共17⼩题,每⼩题5分,共85分,在每⼩题给出的4个选项中只有⼀项是符合题⽬要求的.1.设全集=U {1,2,3,4},集合M={3,4} ,则=M C UA.{2,3}B.{2,4}C.{1,4} D .{1,2}2.函数x y 4cos =的最⼩正周期为 A.4π B.2π C. π D.π2 3.设甲:0=b ⼄:函数b kx y +=的图像经过坐标原点,则A 甲是⼄的充分条件但不是必要条件B. 甲是⼄的必要条件但不是充分条件C 甲是⼄的充要条件D. 甲既不是⼄的充分条件也不是⼄的必要条件4.已知,21tan =α则)4tan(πα+= A.-3 B.31- C.31 D.3 5.函数21x y -=的定义域是A.{x x |≥-1}B. {x x |≤1}C. {x x |≤-1}D. {|x -1≤x ≤1}6.设,10<A. 1B. 120<C.0log 21x 7.不等式|21+x |21>的解集为 A. {|x 01<<-x } B. {|x 10-<>x x 或} C. {|x 1->x } D. {|x 0D.24种9.若向量),1,1(),1,1(-==b a 则=-b a 2321 A.(1,2) B.(1,-2) C.(-1,2) D .(-1,-2) 10.0213)2(161log -++=A.5B.4C.3D.211.函数542--=x x y 的图像与x 轴交于A 、B 两点,则|AB|=A.3B.4C.5D.612.下列函数中,为奇函数的是A. 32+-=x yB. xy 2-= C.32-=x y D.x y cos 3= 13.双曲线116922=-y x 的焦点坐标是 A. (-5,0) , (5,0) B.(0,7-) ,(0,7 ) C. (0,-5) , (0,5) D.)7,0(),7,0(-14.若直线01=-+y mx 与直线0124=++y x 平⾏,则m=A. -1B. 0C. 1D.215.在等⽐数列{n a }中,4a 65=a ,则7632a a a a =A.12B. 24C. 36D.7216.已知函数)(x f 的定义域为R, 且,14)2(+=x x f 则=)1(f17.甲⼄各⾃独⽴地射击⼀次,已知甲射中10环的概率为0.9,⼄射中10环的概率为0.5,则甲⼄都射中10环的概率为A. 0.2B. 0.25C. 0.45D.0.75⼆.填空题:本⼤题共4⼩题,每⼩题4分,共16分。
2019年成人高考《高数一》考试真题(含解析)
学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过2019年成人高等学校招生全国统一考试专升本高等数学(一)第Ⅰ卷(选择题)一、选择题(1-10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.当x→O时,x+x2+x3+x4为x的()。
A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小2.limx→∞�1+2x�x=()。
A.-e2B.-eC.eD.e23.设函数y=cos2x,则y′=()。
A.2sin2xB.-2sin2xC.sin2xD.-sin2x4.设函数f(x)在[a,b]上连续,在(a.b)可导,f′(x)>0,f(a)f(b)<0,则在(a.b)内零点的个数为()。
A.3B.2C.1D.05.设2x为f(x)的一个原函数,则f(x)=()。
A.0B.2C.x2D.x2+C6.设函数f(x)=arctan x,则∫f′(x)dx=()。
A.−arctan x+CB.−11+x2+CC.arctan x+CD.11+x2+C7.设I1=∫x2dx10,I2=∫x3dx110,I3=∫x4dx10,则()。
A.I1>I2>I3B.I2>I3>I1C.I3>I2>I1D. I1>I3>I28.设函数z=x2e y,则∂z∂x�(1,0)=()。
A.0B.12第 1 页,共 6 页2/25C.1D.29.平面x +2y −3z +4=0的一个法向量为( )。
A.{1,−3,4}B.{1,2,4}C.{1,2,−3}D.{2,−3,4}10.微分方程y ′′+(y ′)3+y 4=x 的阶数为( )。
A.1 B.2C.3D.4第Ⅱ卷(非选择题)二、填空题(11-22小题,每小题4分,共40分)11.lim x→0tan 2x x = 。
2019年成人高等学校招生全国统一考试高起点数学试题与答案
7.【答案】A 【考情点拨】本题考查了绝对值不等式的知识点.
{ 【应试解析】Ix +
一11l>
-1
斗
x
+
一1 >
一1
或
x
+
1
一
<
一一1
21 2
22
22
(1
)
即 飞xlix> 0或x <-tLJ
- 37 -
【】
A. 9
B. 5
c. 7
0.3
17.甲、乙各自独立地射占一 次,已知甲射中10环的概率为0.9 ,乙射中10环
的概率为0.5 ,则甲、乙都射中10环的概率是为
【】
A.0.2
B. 0.45
C.0.25
0.0. 75
第II卷(非选择题,共65分〉 二、填空题(本大题共4小题,每小题4分,共 16分〉
2019年成人高等学校招生全国统一考试高起点
数学
第I卷(选择题,共85分〉 一 、选择题〈本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个 选项中,只有一 项是符合题目要求的〉
l.设全集U=={l, 2, 3,针,集合\1== {3, 4},则CuM ==
【】
A. {2, 3}
3
1)-一(1,
-1)=(寸,2).
222
2
10.【答案】D
【考情点拨】本题考查了指数函数与对数函数运算的知识点 .
【应试解析】log 3 1+162 +(一 2)。 = 0+4+1=5.
2019年成人高考专升本《高数》试题及答案(卷一)
2019年成人高考专升本《高数》试题及答案(卷一)不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变( “>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4 ,求x? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8 ,合并同类项之后得-3x>-12, 两边同除-3 得x<4 (记得改变符号) 。
知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分) 。
知识点4:含有绝对值的不等式1. 定义:含有绝对值符号的不等式,如:|x|a 型不等式及其解法。
2. 简单绝对值不等式的解法:|x|>a 的解集是{x|x>a 或x<-a} ,大于取两边,大于大的小于小的。
3. 复杂绝对值不等式的解法:|ax+b|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。
|ax+b|(注意,当a<0 的时候,不等号要改变方向) ;解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或”知识点5:一元二次不等式1. 定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。
如:( 2)求出x 之后,大于取两边,大于大的小于小的; 小于取中间,即可求出答案。
2019年成人高考高起点数学(理)考试真题及答案
2019年成人高考高起点数学(理)考试试题第I卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分,共85分。
在每个小题给出的四个选项中,选出- -项符合题目要求的。
1.设全集U=({,23.4),集合M=(3,4,则CuM =A.{2,3}B.{2,4]}C(1,4}D.(1,2}解答: D .[分析]求补集,是集合缺少的部分,应该选D2.函数y = cos4x的最小正周期为A.IB,πD.2π解答: c[分析]本题考查了三角函数的周期的知识点最小正周期.设用: b=0;乙:函数y= kx + b的图像经过坐标原点,则A.甲是乙的充分条件但不是必要条件B.用是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件解答: C[分析]本题考查了充分条件和必要条件的知识点,4.已知tana=1/2,则tan(a+π/4)=A.-3B.一1/3c.1/2D.3解答: D5.函数y=√1-x2“的定义域是A. {x|x≥-1}B. {xIx≤1}C. {x|x≤-1}D. {x|-1≤x≤1} .解答: D[分析] 1-x°≥0时,原函数有意义,即x°≤1即(x1-1≤x≤1}6.设0物D. log;x> 0解答: B[分析] 1<2*<2,logx> 0,logax<07.不等式|x +第>当的解集为A. {x|-1- -1] ,C. {1>0或x<-1}D. {xkx<0}解答: C[分析] |x+当≥当解得x+ξ<←或x+>即{x|x>0或x<-1}8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排法共有A.3种B. 8种C.4种D.24种解答: C[分析]甲乙站在两边,有2种排法,丙丁站在中间有2种排法,总计: 2*3=4. 9,若向量a=(1,), b=(1,-1), 则1/2a-3/2b=;A. (-1,2)B. (1,-2)C. (1,2)D. (-1,-2)【答案】 A11,y=x2- 4x- 的图像与x轴交于A.B两点,则丨AB 丨=A.3B 4C.5D.6(答案) D12【答案】c13【答案】b14.若直线mx +y-1= 0与直线4x+ 2y+1= 0平行,则m=A. -1B.0C.1D.2解答: D[分析]直线平行,斜率相等15.在等比数列中,若a4a5= 6,则a2a3a6a7,=A.36B.24C. 12D.6解答: A[分析]等比数列性质,下角标之和相等,乘积相等,则asag= azay= azae,则azazagaz =3616.已知函数f(x)的定义域为R,且f(2x)=4x+ 1,则f(1) =A.5B.3C.7解答: B[分析]令x =则f(2x)=4x + 1变为f(2x号)=4x2+ 1=317.甲、乙各独立地射击一次,己知甲射中10环的概率为0.9,乙射中10换的概率为0.5,则甲、乙都射中10环的概率为D.0,75解答: A[分析]甲、乙射击是独立的,则甲、乙都射中10环的概率为0.9*0.5=0.45以下题目缺少题干,答案仅供参考二、填空题:本大题共4小题,每小题4分,共16分。
2019年上海成考高起点《数学》(理)真题及答案
第 I 卷(选择题,共 85 分) 一、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每个小题给出的 四个选项中,选出- -项符合题目要求的。 1.设全集 U=({,23.4),集合 M=(3,4,则 CuM = A.{2,3}B.{2,4]}C(1,4}D.(1,2} [答案] D . [解析]求补集,是集合缺少的部分,应该选 D 2.函数 y = cos4x 的最小正周期为 A.I B,π D.2π [答案] c [解析]本题考查了三角函数的周期的知识点最小正周期.设用: b=0;乙:函 数 y= kx + b 的图像经过坐标原点,则 A.甲是乙的充分条件但不是必要条件 B.用是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
[答案] C [解析]本题考查了充分条件和必要条件的知识点, 4.已知 tana=1/2,则 tan(a+π/4)= A.-3 B.一 1/3 c.1/2 D.3 [答案] D 5.函数 y=√1-x2“的定义域是 A. {x|x≥-1} B. {xIx≤1}C. {x|x≤-1} D. {x|-1≤x≤1} .[答案] D [解析] 1-x°≥0 时,原函数有意义,即 x°≤1 即(x1-1≤x≤1}6.设 0 物 D. log;x> 0[答案] B [解析] 1<2*<2,logx> 0,logax<0 7.不等式|x +第>当的解集为 A. {x|-1- -1] , C. {1>0 或 x<-1}D. {xkx<0}[答案] C
[解析] |x+当≥当解得 x+ξ<←或 x+>即{x|x>0 或 x<-1} 8.甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排 法共有 A.3 种 B. 8 种 C.4 种 D.24 种 [答案] C [解析]甲乙站在两边,有 2 种排法,丙丁站在中间有 2 种排法,总计: 2*3=4. 9,若向量 a=(1,), b=(1,-1), 则 1/2a-3/2b=; A. (-1,2) B. (1,-2) C. (1,2) D. (-1,-2) 【答案】 A 11,y=x2- 4x- 的图像与 x 轴交于 A.B 两点,则丨 AB 丨= A.3 B4 C.5
2019年成考高起点《数学》真题及答案
2019年成人高等学校招生全国统一考试高起点数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4}集合M={3,4},则M C U =【】A.{2,3}B.{2,4}C.{1,2}D.{1,4}2.函数y=cos4x 的最小正周期为【】A.2π B.4π C.π D.π2 3.设甲:b=0;乙:函数y=kx+b 的图像经过坐标原点,则【】A.甲是乙的充分条件但不是必要条件B.甲是乙的充要条件C.甲是乙的必要条件但不是充分条件D.甲既不是乙的充分条件也不是乙的必要条件4.已知21tan =α.则=+)4tan(πα【】A.-3B.31-C.3D.315.函数21x y -=的定义域是【】A.{}1-≥x xB.{}1≤x xC.{}11≤≤-x x D.{}1-≤x x 6.设0<x<1,则【】A.0log 2>xB.120<<x C.0log 21<x D.221<<x 7.不等式2121>+x 的解集为【】A.{}10-<>x x x 或B.{}01<<-x xC.{}1->x x D.{}0<x x 8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排法共有【】A.4种 B.2种 C.8种 D.24种9.若向量a =(1,1),b =(1,一1),则=-b a 2321【】A.(1.2) B.(-1.2) C.(1,-2)D.(-1,-2)10.=-++0213)2(161log 【】A.2B.4C.3D.511.函数542--=x x y 的图像与x 轴交于A,B 两点,则|AB|=A.3 B.4 C.6 D.512.下列函数中,为奇函数的是【】A.xy 2-= B.y=-2x+3 C.32-=x y D.y=3cosx 13.双曲线116922=-y x 的焦点坐标是【】A.(0,-7),(0,7)B.(-7,0),(7,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线01=-+y mx 与直线0124=++y x 平行,则m=【】A.-1B .0C.2D.115.在等比数列{}n a 中,若,654=a a 则=7632a a a a 【】A.12B.36C.24D.7216.已知函数()x f 的定义域为R ,且,14)2(+=x x f 则=)1(f 【】A.9B.5C.7D.317.甲、乙各自独立地射击一次,已知甲射中10环的概率为0.9,乙射中10环的概率为0.5,则甲、乙都射中10环的概率为【】A.0.2 B.0.45 C.0.25 D.0.75第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.椭圆1422=+y x 的离心率为_______。
2019年成人高考数学真题(理工类)WORD版
2019年成人高等学校招生全国统一考试(高起点)数学试题(理工农医类)第Ⅰ卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集={1,2,3,4}U ,集合={3,4}M ,则U M =( )A . {2,3}B .{2,4}C .{1,2}D .{1,4}2.函数cos 4y x =的最小正周期为( )A . 2πB . 4π C . π D .2π 3.设甲:0b =;乙:函数y kx b =+的图像经过坐标原点,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的充要条件C .甲是乙的必要条件但不是充分条件D .甲既不是乙的充分条件也不是乙的必要条件4.已知1tan 2α=,则tan()4πα+=( ) A . 3- B .13- C . 3 D .135.函数()f x = )A . {1}x x ≥-B .{1}x x ≤C . {11}x x -≤≤D .{1}x x ≤- 6.设01x <<,则( )A .2log 0x >B .021x <<C .12log 0x < D .122x <<7.不等式1122x +>的解集为( ) A .{01}x x x ><-或 B .{10}x x -<< C .{1}x x >- D .{0}x x <8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排放共有( ) A .4种 B .2种 C .8种 D .32种9.若向量(1,1)a =,(1,1)b =-,则1322a b -=( ) A .(1,2) B .(1,2)- C .(1,2)- D .(1,2)--10. 1023log 116(2)++-=( )A .2B .4C .3D .511.函数245y x x =--的图像与x 轴交于,A B 两点,则AB =( )A . 3B .4C . 6D .512.下列函数中,为奇函数的是( ) A .2y x=- B .23y x =-+ C .23y x =- D .3cos y x = 13.双曲线221916x y -=焦点坐标是( )A .(0,B .(C .(0,5),(0,5)-D .(5,0),(5,0)-14.若直线10mx y +-=与直线4210x y ++=平行,则m =( )A .1-B .0C .2D .115.在等比数列{}n a 中,若456a a =,则2367a a a a =( ) A .12 B .36 C .24 D .7216.已知函数()f x 的定义域为R ,且()241f x x =+,则()1f =( )A .9B .5C .7D .317.甲、乙各自独立地射击一次,已知甲射中10环的概率为0.9,乙射中10环的概率为0.5,,则甲、乙都射中10环的概率为( )A .0.2B .0.45C .0.25D .0.75第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)(18)椭圆2214x y +=的离心率为 . (19)函数()221f x x x =-+,在1x =处的导数为 . (20)设函数()f x x b =+,且(2)3f =,则()3f = .(21)从一批相同型号的钢管中抽取5根,测其内径,得到如下样本数据(单位:mm )110.8,109.4,111.2,109.5,109.1,则该样本的方差为 2mm .三、解答题(本大题共4小题,共49分。
(完整版)2019年全国成人高考数学试卷及答案(word版本)
(完整版)2019年全国成人高考数学试卷及答案(word版本)绝密★启用前2019年成人高等学校招生全国统一考试数学(文史财经类)第Ⅰ卷(选择题,共85分)一、选择题:本大题共17小题,每小题5分,共85分,在每小题给出的4个选项中只有一项是符合题目要求的.1.设全集=U {1,2,3,4},集合M={3,4} ,则=M C UA.{2,3}B.{2,4}C.{1,4} D .{1,2}2.函数x y 4cos =的最小正周期为 A.4π B.2π C. π D.π2 3.设甲:0=b 乙:函数b kx y +=的图像经过坐标原点,则A 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件4.已知,21tan =α则)4tan(πα+= A.-3 B.31- C.31 D.3 5.函数21x y -=的定义域是A.{x x |≥-1}B. {x x |≤1}C. {x x |≤-1}D. {|x -1≤x ≤1}6.设,10<<="">A. 1<<="" bdsfid="90" p="">B. 120<<x< bdsfid="92" p=""></x<>C.0log 21x 7.不等式|21+x |21>的解集为 A. {|x 01<<-x } B. {|x 10-<>x x 或} C. {|x 1->x } D. {|x 0<="">8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排法共有A. 2种B. 4种C. 8种D.24种9.若向量),1,1(),1,1(-==b a 则=-b a 2321 A.(1,2) B.(1,-2) C.(-1,2) D .(-1,-2) 10.0213)2(161log -++=A.5B.4C.3D.211.函数542--=x x y 的图像与x 轴交于A 、B 两点,则|AB|=A.3B.4C.5D.612.下列函数中,为奇函数的是A. 32+-=x yB. xy 2-= C.32-=x y D.x y cos 3= 13.双曲线116922=-y x 的焦点坐标是 A. (-5,0) , (5,0) B.(0,7-) ,(0,7 ) C. (0,-5) , (0,5) D.)7,0(),7,0(-14.若直线01=-+y mx 与直线0124=++y x 平行,则m=A. -1B. 0C. 1D.215.在等比数列{n a }中,4a 65=a ,则7632a a a a =A.12B. 24C. 36D.7216.已知函数)(x f 的定义域为R, 且,14)2(+=x x f 则=)1(fA. 3B. 5C. 7D.917.甲乙各自独立地射击一次,已知甲射中10环的概率为0.9,乙射中10环的概率为0.5,则甲乙都射中10环的概率为A. 0.2B. 0.25C. 0.45D.0.75二.填空题:本大题共4小题,每小题4分,共16分。
2019年成人高考高起专《数学》真题及答案
成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间150分钟。
第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc5.若π2<θ<π,且sin θ=13,则cos θ=( ) A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16) B.(-3,18) C.(-3,16) D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。
2019年成人高考高数一真题及答案
2019年成人高考专升本高等数学(一)一、选择题(1-10小题,每小题4分,共40分)1. 当x →0时,x +x 2+x 3+x 4为x 的( )A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小2.lim x→∞(1+2x )x =( ) A.−e 2 B.−e C. e D. e 23. 设函数y =cos 2x ,则y′=( )A.2sin 2xB.−2sin 2xC. sin 2xD.−sin 2x4.设函数f(x)在[a,b]上连续,在(a,b)可导,f ′(x)>0,f(a)f(b)<0,则f(x) 在(a,b)零点的个数为( )A. 3B.2C.1D. 05. 设2x 为f (x )的一个原函数,则f (x )=( )A.0B.2C.x 2D. x 2+C6.设函数f (x )=arc tan x ,则∫f ′(x )dx =( )A.−arc tan x +CB.−11+x 2+CC. arc tan x +CD. 11+x 2+C7.I 1= ∫x 2dx ,I 2= ∫x 3dx ,1010I 3= ∫x 4dx ,10则( )A. I 1> I 2>I 3B. I 2> I 3>I 1C. I 3> I 2>I 1D. I 1> I 3>I 28. 设函数z =x 2e y ,则ðZ ðx |(1,0) =( )A.0B.12C.1D.29.平面x +2y −3z +4=0的一个法向量为( )A.{1,-3,4}B. {1,2,4}C. {1,2,-3}D. {2,-3,4}10.微分方程yy ′+(y ′)3+y 4=x 的阶数为( )A.1B.2C.3D.4二、填空题(11-20小题,每小题4分,共40分)11. lim x→0 tan 2x x = 12.若函数f (x )= 在点x=0处连续,则a=13. 设函数y =e 2x ,则dy =14.函数f (x )=x 3−12x 的极小值点x=15. √1−x 2= 16. ∫x tan 2x dx =1−117.设函数z =x 3+y 2,则dz =18.设函数z =xarc sin y ,ð2Zðx 2=19.幂级数∑nx n ∞n=1的收敛半径为20.微分方程y ′=2x 的通解y =三、解答题(21-28题,共70分)21.计算limx→0sin x+2kx x =2,求k22.设函数y =sin(2x −1),求y′23.设函数y =xlnx ,求y′′24.计算∫(x 13+e x )dx 5x x<0a x ≥025. 设函数z=1x −1y,求:x2ðZðx+y2ðZðy26.设D是由曲线x=1−y2与x轴、y轴,在第一象限围成的有界区域,求(1)D的面积S.(2)D绕x轴旋转所得旋转体的体积V.27. 求微分方程y′′−5y′−6y=0的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年成人高考高起点数学(理)考试试题
第I卷(选择题,共85分)
一、选择题:本大题共17小题,每小题5分,共85分。
在每个小题给出的四个选项中,选出- -项符合题目要求的。
1.设全集U=({,23.4),集合M=(3,4,则CuM =
A.{2,3}
B.{2,4]}C(1,4}D.(1,2}
解答: D .
[分析]求补集,是集合缺少的部分,应该选D
2.函数y = cos4x的最小正周期为
A.I
B,π
D.2π
解答: c
[分析]本题考查了三角函数的周期的知识点最小正周期.设用: b=0;乙:函数y= kx + b的图像经过坐标原点,则
A.甲是乙的充分条件但不是必要条件
B.用是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
解答: C
[分析]本题考查了充分条件和必要条件的知识点,
4.已知tana=1/2,则tan(a+π/4)=
A.-3
B.一1/3
c.1/2
D.3
解答: D
5.函数y=√1-x2“的定义域是
A. {x|x≥-1}
B. {xIx≤1}
C. {x|x≤-1}
D. {x|-1≤x≤1} .解答: D
[分析] 1-x°≥0时,原函数有意义,即x°≤1即(x1-1≤x≤1}6.设0
物
D. log;x> 0解答: B
[分析] 1<2*<2,logx> 0,logax<0
7.不等式|x +第>当的解集为A. {x|-1- -1] ,
C. {1>0或x<-1}
D. {xkx<0}解答: C
[分析] |x+当≥当解得x+ξ<←或x+>即{x|x>0或x<-1}
8.甲、乙、丙、丁4人排成一行,其中甲、乙必须排在两端,则不同的排法共有
A.3种
B. 8种
C.4种
D.24种
解答: C
[分析]甲乙站在两边,有2种排法,丙丁站在中间有2种排法,总计: 2*3=4.
9,若向量a=(1,), b=(1,-1), 则1/2a-3/2b=;
A. (-1,2)
B. (1,-2)
C. (1,2)
D. (-1,-2)
【答案】 A
11,y=x2- 4x- 的图像与x轴交于A.B两点,则丨AB 丨=
A.3
B 4
C.5
D.6
(答案) D
12【答案】c
13【答案】b
14.若直线mx +y-1= 0与直线4x+ 2y+1= 0平行,则m=
A. -1
B.0
C.1
D.2
解答: D
[分析]直线平行,斜率相等
15.在等比数列中,若a4a5= 6,则a2a3a6a7,=
A.36
B.24
C. 12
D.6
解答: A
[分析]等比数列性质,下角标之和相等,乘积相等,则asag= azay= azae,则azazagaz =36
16.已知函数f(x)的定义域为R,且f(2x)=4x+ 1,则f(1) =
A.5
B.3
C.7
解答: B
[分析]令x =则f(2x)=4x + 1变为f(2x号)=4x2+ 1=3
17.甲、乙各独立地射击一次,己知甲射中10环的概率为0.9,乙射中10换的概率为0.5,则甲、乙都射中10环的概率为
A.0.45
B.0.25
C.0.2
D.0,75
解答: A
[分析]甲、乙射击是独立的,则甲、乙都射中10环的概率为0.9*0.5=0.45以下题目缺少题干,答案仅供参考
二、填空题:本大题共4小题,每小题4分,共16分。
18, 19.0 20, 4 21,0.7
三、计算题:本大题共4小题,22-24 每小题12分,25题13分,共49分。
22.缺少题干,仅供参考
S2o= 20a1 +- d=-55
23.AB= V6
24.缺少题干,仅供参考
函数在(-∞,-2),(-V2, +oo)单增,(-√2,√2)单减函数在x=-VZ处取得极大值为f(-v②)= 8√2+ 1
函数在x = V2处取得极小值为f(v2)=-8√2+ 1。