新初中数学一次函数易错题汇编及答案解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新初中数学一次函数易错题汇编及答案解析(1)
一、选择题
1.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2
B .m=2,n=2
C .m≠2,n=1
D .m=2,n=1
【答案】A
【解析】
【分析】
直接利用一次函数的定义分析得出答案.
【详解】
解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,
∴n-1=1,m-2≠0,
解得:n=2,m≠2.
故选A .
【点睛】
此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.
2.已知过点()2?3,
-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )
A .352s -≤≤-
B .362s -<≤-
C .362s -≤≤-
D .372
s -<≤- 【答案】B
【解析】 试题分析:∵过点()2?3,
-的直线()0y ax b a =+≠不经过第一象限, ∴0
{0
23
a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.
由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32
s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-
. 故选B.
考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.
3.
如图,已知一次函数y x =-+A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为
( )
A .22
B .2
C .5
D .3
【答案】D
【解析】
【分析】
【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:
当x=0时,y=﹣x+22=22,则A (0,22),
当y=0时,﹣x+22=0,解得x=22,则B (22,0),
所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12
AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到
PM=22OP OM -=21OP -,
当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.
故选D .
【点睛】
本题考查切线的性质;一次函数图象上点的坐标特征.
4.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )
A .123x x x <<
B .132x x x <<
C .213x x x <<
D .321x x x <<
【答案】D
【解析】
【分析】
根据一次函数的性质即可得答案.
【详解】
∵一次函数1y x =--中10k =-<,
∴y 随x 的增大而减小,
∵123y y y <<,
∴123x x x >>.
故选:D .
【点睛】
本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.
5.若一次函数32y x =-+的图象与x 轴交于点A ,与y 轴交于点,B 则AOB V (O 为坐标原点)的面积为( )
A .32
B .2
C .23
D .3
【答案】C
【解析】
【分析】
根据直线解析式求出OA 、OB 的长度,根据面积公式计算即可.
【详解】
当32y x =-+中y=0时,解得x=
23,当x=0时,解得y=2, ∴A(23
,0),B(0,2), ∴OA=23
,OB=2, ∴1122223AOB S OA OB =
⋅=⨯⨯=V 23, 故选:C.
【点睛】
此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.
6.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).
A .1x >-
B .2x <-
C .1x <-
D .无法确定
【答案】C
【解析】
【分析】 求关于x 的不等式12k x b k x +>的解集就是求:能使函数1y k x b =+的图象在函数2y k x =的上边的自变量的取值范围.
【详解】
解:能使函数1y k x b =+的图象在函数2y k x =的上边时的自变量的取值范围是1x <-. 故关于x 的不等式12k x b k x +>的解集为:1x <-.
故选:C .
【点睛】
本题考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y ax b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.利用数形结合是解题的关键.
7.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2
B .8
C .﹣2
D .﹣8
【答案】A
【解析】
试题分析:设正比例函数解析式为:y=kx ,将点A (3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x ,将B (m ,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A .
考点:一次函数图象上点的坐标特征.
8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =
1x
(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )
A .4个
B .3个
C .2个
D .1个 【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.