阻抗

阻抗
阻抗

阻抗设计

附件三1. 阻抗定义及分类:

1.1阻抗(Zo):

对流经其中已知频率之交流电流,所产生的总阻力称为阻抗(Zo),对印刷电路板而言,是指在高频讯号之下,某一线路层( signal layer)对其最接近的相关层(reference plane)总合之阻抗.

1.2特性阻抗:

在传输讯号线中,高频讯号或电磁波传播时所遭遇的阻力称之为特性阻抗

1.3差动阻抗:

由两根差动信号线组成的控制阻抗的一种复杂结构,驱动端输入的信号为极性相反的两个信号波形,分别由两根差动线传送,在接收端这两个差动信号相减,这种方式主要用于高速数模电路中以获得更好的信号完整性及抗噪声干扰

1.4 Coplanar阻抗:

当阻抗线距导体的距离小于等于最近对应层的距离时即为Coplanar阻抗.

1.5介质常数(Dielectric Constant),又称透电率(Permittivity):

指介质材料的电容ε,与相同条件下以真空为介质之电容εo,两者之比值(ε/εo). 即. Εr=ε/εo.

1.6介质:

原指电容器两极板之间的绝缘材料而言,现已泛指任何两导体之间的绝缘物质,如各种树脂与配合的棉纸以及玻纤布.

1.7 影响阻抗之要素相对于阻抗变化之关系(其中一个参数变化, 假设其余条件不变)

1.7.1 阻抗线宽:阻抗线宽与阻抗成反比, 线宽越细, 阻抗越高, 线宽越粗,阻抗越低.

1.7.2 介质厚度:介质厚度与阻抗成正比, 介质越厚则阻抗越高, 介质越薄则阻抗越低.

1.7.3 介电常数:介电常数与阻抗成反比, 介电常数越高,阻抗越低,介电常数越低,阻抗越高.

1.7.4 防焊厚度:防焊厚度与阻抗成反比.在一定厚度范围内,防焊厚度越厚,阻抗越低,防焊厚

度越薄,阻抗越高.

1.7.5 铜箔厚度:铜箔厚度与阻抗成反比, 铜厚越厚,阻抗越低,铜厚越薄, 阻抗越高.

1.7.6 差动阻抗:间距与阻抗成正比.间距越大,阻抗越大. 其余影响因素则与特性阻抗相同.

1.7.7 Coplanar阻抗:阻抗线距导体的间距与阻抗成正比,间距越大,阻抗越大.其它影响因素

则与特性阻抗相同.

2. 作业内容:

2.1 客户数据确认

2.1.1. 确认客户有无阻抗要求,有无阻抗类型及迭构要求,是否为厂内打样的第一个版本,若

不是确认阻抗.迭构等是否与前版相同.

2.1.2. 如有阻抗及迭构要求且为厂内打样的第一个版本则需模拟确认阻抗能否达到规格中

心值,软件接口如下图

A. 选择阻抗类型:

参考表格内之阻抗结构选择与之对应的阻抗模拟类型.

B. 参数输入区

以上图为例,依照阻抗类型指示之参数分别输入介质厚度(H),防焊厚度(H1), 线宽上幅(W),线宽下幅(W1),线路铜厚(T), 介质常数(Er or Dk). 以上参数需根据理论值分别模拟上, 中, 下限值, 以界定线宽及介质管控范围.

参数的取值方法

B-1: 当信号层铜箔为Hoz时,W=W1-0.5mil,T=0.7

B-2: 当信号层铜箔为1OZ时,W=W1-0.8mil,T=1.2

B-3: 当信号层为外层时,W=W1-1.0mil,T依面铜管控中值为准;

B-4: 当信号层为内层且经过电镀时,W=W1-0.8mil,T依面铜管控中值为准;

B-5: Dk值内外层均为3.8,此为厂内的经验值,并非实际Dk,只能供参考

C. 计算结果

按下键, 就在字段4显示出计算结果.

2.1.3 若试算的阻抗线宽未在客规范围内则需向客户提出工程问题,调整线宽或介层.

2.1.4 若非厂内打样的第一个版本且叠构阻抗要求与前版相同则需至品保查询前版的品

质履历表判定此版阻抗是否需调整;每次调整阻抗一般依据实际数据调整,反推Dk值,并按照新的Dk计算阻抗

例:某料号前版的阻抗控制层别为:L1 L2,L1—L2的成品介层为2.2mil,外层铜厚

1.4,成品线宽3.5mil,成品阻抗47.55欧,客户阻抗管控范围50+/-5欧,则依如下方式推

算出DK值:

2.2 阻抗设计:

2.2.1 阻抗条之标准设计原则:

A. 阻抗孔径ψ(1.0~1.1 mm), PITCH=0.1”

B. 做全铜面时,孔与铜面的Clearance=20mil;

C. 外层PAD以D+12mil制作, 防焊以外层+5mil制作PAD;

D. 护卫铜条到线的距离应大于两倍的阻抗线宽.

E. 阻抗条宽度0.4”, Coupon线长度大于3”, 一般是5”, 长度不足时以绕线制作

F. Coupon设计在Panel内时以蚀刻字加厂内料号&阻抗规格和公差值&讯号线和关

联层别名称于Coupon条对应内外层.

G. 当板内有多组不同阻抗时, 针对不同之COUPON进行编号(如:A,B,C,D……),以

方便CAM作业及现场量测.

H. 如有特殊要求则另外依要求制作.

2.2.2 阻抗条制作

)

A. 阻抗条制作(一

B. 外层全铜面制作(二)

外层全铜面制作时钻孔要有PAD, 且Clearance需20mil.

C. 绕线制作(三)

Type 1. D -------- 转角弧度至少90度;

W ------ 信号线线宽;

S =S1 ------ 铜面到信号线距离MIN 2倍线宽;

Resistant copper block ------- 为避免信号干扰而设计,类似于护卫线,其

宽度15 ~ 20mil即可。

D. 绕线制作(四)

Type2. (较常用)“蚯蚓状”

W --------- 转角弧度至少90度, 粗信号线路时最好做120度

T = B --------- curve (弧线) 高度, 取决于信号线长度, 如果是信号线长度足够

就做小一点;如果是R/T 是OK的,信号线3”以上即可以量测得到.

S --------- 铜面到信号线距离MIN 2倍线宽

.

2.2.3 阻抗条的放置:客户无特别要求时,放在Panel中;客户有要求时,依客户要求放置;

转厂料号依转出厂的方式.

2.2.4 阻抗附件之制作及存档:

根据阻抗试算结果及阻抗条制作, 制作阻抗附件给CAM制作数据.

2.2.5阻抗值在工单上的备注:

A: 非转厂料号时:

a:工单外层阻抗中值为不加防焊时的Polar模拟值,公差为客户成品公差-1欧;

b.内外层阻抗线均以实际模拟的中值线宽+/-0.3进行管控.

B: 转厂料号时:

a.内外层阻抗管控规格完全Follow转出厂定义;

b.内外层阻抗线宽管控全部Follow转出厂定义.

2.3 阻抗设计重点检查项目:

2.3.1 阻抗Type是否正确

2.3.2 阻抗线是否正确对应到设计之参考层上

2.3.3 阻抗线不可被屏蔽到.但护卫线和护卫线重叠之情形是允许的。

2.3.4 为防止板弯翘,无特别要求时, 内层之非阻抗控制层以铺铜进行制作.

2.3.5 阻抗Coupon条设于Panel板间时,须加厂内料号﹑层别名﹑阻抗值及控制线宽

2.3.6 护卫铜条到线的距离应大于两位的阻抗线宽,护卫线一般为min 20mil.

3. 制程条件管制:

3.1 微影工程师确定出制程稳定的机台. 对于所有阻抗板,微影需进行首件检查,首件检验无

误后才可进行后续大量生产.

3.2 压合以正常制程条件制作,若板厚异常请将板厚数据给微影.品管和产品.

3.3 电镀工程师确定出制程稳定的机台. 对于所有阻抗板,电镀需进行首件检查,首件检验无

误后才可进行后续大量生产.

3.4 微影及电镀首件制作OK所用之生产条件,一旦确立,制程中若无异常出现,不可任意更改,

此生产条件含生产之机台别、各种速度、压力等,并必须记录存盘. 对于首件制作所确立之生产条件,制程中若需修改,必须通过工程师或工程师以上人员确认.

3.5 制程中进行自主检查,记录存盘.

4. 制程异常信息处理:

4.1 调整制程条件还不能达到控制要求时,将所有质量数据及时提供给产品设计调整阻抗

设计内容,尽可能在制程中改善.

4.2 若外层在制造过程中发现阻抗OK但阻抗线宽NG需及时反馈至设计课查询此阻抗线宽

是否在客户要求线宽范围内,若在则消除异常.

4.3 若量产中内层线宽出现NG状况,需及时将相关线宽数据反鐀至设计课,设计课依据提

供的线宽数据用Polar进行仿真以判定阻抗out spec 的风险性.

5. 成品阻抗异常信息整合:

品保安排合格人员进行成品检验,一旦发现阻抗控制板之阻抗值有异常状况,须对各项因素进行分析数据与阻抗测试报告一并提供给相关单位: 产品、制造、品保IPQC。

阻抗匹配基本认识

阻抗匹配基本認識 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U×[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=(U/(R+r))2×R=U2×R/(R2+2×R×r+r2) =U2×R/((R-r)2+4×R×r) =U2/(((R-r)2/R)+4×r) 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则 是由我们来选择的。注意式中((R-r)2/R),当R=r时,(R-r)2/R可 取得最小值0,这时负载电阻R上可获得最大输出功率 Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可 获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。 当交流电路中含有容性或感性阻抗时,结论有所改变,就是需 要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。 Z=R+jX ﹐Z=R-jX 在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。 有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻 抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值 比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子(单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式:;

其中,电阻是阻抗的实部,电抗是阻抗的虚部,是阻抗的大小,是虚数单位,是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流,就可计算出阻抗两端 的电压降。相位因子则是电流滞后于电压的相位差(在时域,电流 信号会比电压信号慢秒;其中,是单位为秒的周期)。

阻抗图谱(doc)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 阻抗图谱(doc) 金属支撑固体氧化物燃料电池阻抗谱动态分析应以及电极材 料微结构的退化, 并有望实现 SOFC 的快速启动和关闭[2, 3]. 金 属支撑 SOFC 因具有成金属支撑固体氧化物燃料电池 阻抗谱动态分析黄秋安 1, 2 汪秉文 1 徐玲 芳 2 王亮 1 (1 华中科技大学控制科学与工程系, 湖北武汉 430074; 2 湖北大学物理学与电子技术学院, 湖北武汉430062) 摘要: 采用悬浮等离子喷涂工艺制造金属支撑固体氧化 物燃料电池(SOFC) , 阴极为 SSCo-SDC (质量分数比为75%∶ 25%) , 电解质为 SDC, 阳极为 NiO-SDC (质量分数比为70%∶ 30%) , 支撑 体为多孔Hastelloy X 合金. 在450~600℃下, 对极化电阻、欧 姆电阻、本体电阻与界面接触电阻分别进行了静态分析, 分析结果 显示接触电阻对欧姆极化损失的影响较大. 电池经受 3 次慢速热 循环(3℃/min)和 12 次快速热循环(60℃/ min) , 并记录600℃时 动态阻抗谱和开路电压. 基于对欧姆电阻和极化电阻的动态分析, 给出了金属支撑 SOFC 可能的降解机理. 动态分析结果也显示, 金 属支撑体的抗氧化性在金属支撑 SOFC 稳定性中发挥重要作用. 关键词: 固体氧化物燃料电池; 电化学阻抗谱; 热循环; 动态分析; 降解机理固体氧化物燃料电池(solid oxide fuel cell, SOFC) 被视作 21 世纪最有潜力的绿色发电系统[1] ,然而, 高成本、短寿命和低稳定性仍严重制约着其发展. 降低 SOFC 操作温度 1 / 5

阻抗测试系统

作为PCB制造商,你现在完全有把握为客户生产控制阻抗PCB — 据估计,此类电路板将在几年后占有70%左右的市场分额。但是,你怎么检验PCBs的特性,怎么控制生产流程,如何证 明质量符合客户的要 求? 单击图打开应用视图 CITS800s8 - 8通道 单端 差动CITS800s4 - 4通道阻抗测量很容易 专用于PCB生产环境 是CEM内部检查的理想选择 测量PCB和样品测试 客户一致性报告 自动数据记录日志 提高紧藕合线路的精确度 CITS800s2是Polar推出的第六代阻抗测试系统,对于刚刚涉足阻抗控制的客户来说,它是最具代表性受欢迎的型号。CITS800s 具备差动测量和单端测量功能,适用于低等到中等的测试量。 CITS800s4适用于中等规模、混合生产大量的单端和差动阻抗控制的PCB制造商。 CITS800s8适用于大规模、混合生产大量单端和差动控制阻抗PCB的制造商,CITS800s8也可与RITS520a飞针阻抗测试系统一起使用,用于重复量大、产量大的场合。 如果你需要测试大量试样或电路板上的试样,请参看RITS510a 自动试样测试系统或RITS520a 飞针阻抗测试系统。 在许多情况下应用控制阻抗PCB,以确保高频信号的完整性。只要数字信号的边沿速度大于1纳秒,或者模拟信号的频率在

单端 差动CITS800s2 - 2通道 单端 差动适用于有大量混合试样类型的应用场合,或者单端和差动试样混合的 应用场合Polar生产各种与特殊阻抗相匹配的测试探头,包括这里所展示的IPD-100差动型。IP-50V是改进后的可变节距型, 也可供实验室使用。300MHz以上,设计师总是指定使用这些类型的PCB。 PCB线路的特征阻抗由线路尺寸和PCB材料的特性所决定,每批特性都不一样。为了控制线路阻抗,PCB制造商通常靠改变线宽来补偿不同批次的PCB材料。以前,他们不得不使用象时域反射计(TDR)这样的专业实验室设备,来测量电路板上有代表性的蚀刻线路特性,或者测试试样的特性。这种方法很复杂,成本高,离理想的生产环境要求相差很远。 很多电子工程师,特别是在国防/航天、通信和IT行业想不断提高性能极限的工程师们,通过采用差动信号和平衡线路提高噪声抑制能力,从而减少高速互接结构的时间错误,现在将控制阻抗PCB提高到一个新的阶段。对于为这些迅速增长的电子行业提供服务的PCB制造商来说,检验这些平衡线路的差动阻抗现在是易如反掌。 非常易于使用 CITS阻抗测试系统非常容易使用。功能强大基于Windows的软件使测试的每个方面都实现自动化,只需单击一下鼠标或踩一下脚踏开关即可控制整个过程。你只需定位微带线探头,选择一个内有正常PCB测试阻抗和容差的文件,然后踩一下脚踏开关。这里无需进行与复杂TDR测量在通常情况下有关的任何调节,例如设置垂直增益、脉冲时间延迟和时基值。CITS可以自动执行一系列阻抗测试,在适当的时候提示你重新定位探头,从而达到最大的测试量。 测试结果简单易懂 — CITS自动处理数据,生成并显示明确的特性阻抗同距离的关系,直观显示合格/不合格状态。 自动数据记录日志功能使测试结果 — 与系统设置数据和测量标准 — 可以很容易地导出到很多第三方数据库或电子表格软件包,便于进行实时统计过程控制。每次测试的合格/不合格状态也可以通过仪器后面板上的光隔离信号输出,以便于同其他工厂自动化设备集成。 测试控制灵活 可跟踪测量精度令CITS的操作异常简单。此外,QA专家仍然可以自如地指定复杂的测试参数,例如传播速度和损失补偿,以及合/不合格限定、结果处理和数据日志记录等标准测试功能。 你可以打印测试结果,以便给客户提供一致性报告,将数据存在磁盘里便于存档或是日后分析,或者将数据导出来便于实时SPC处理。可选的宏报告生成器有多种标准报告可供选择,可

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

微带线(microstrip)和带状线(stripline)

微带线(microstrip)和带状线(stripline) 微带线剖面图 适合制作微波集成电路的平面结构传输线。与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。一般用薄膜工艺制造。介质基片选用介电常数高、微波损耗低的材料。导体应具有导电率高、稳定性好、与基片的粘附性强等特点。 两个方面的作用 在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。 1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。 微带线 2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。按照传输线的结构,可以将它分为微带线和带状线。 在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。最常使用的微带线结构有4种:表面微带线(surface

microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。 2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关。 物理性能 带状线是介于两个接地层之间的印制导线,它是一条置于两层导电平面之间的电介质中间的铜带线。它的特性阻抗和印制导线的宽度、厚度、电介质的介电常数以及两个接层的距离有关。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.单位长度带状线的传输延迟时间与线的宽度或间距是无关的;仅取决于所用介质的相对介电常数 物理盆 微带线和带状线的异同 1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。 2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的. 单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关

阻抗测量完整解决方案

是德科技 LCR 表、阻抗分析仪 和测试夹具 材料、半导体和元器件测试及在线测量解决方案 选型指南

使用作为行业标准的仪器, 成功完成阻抗测量 过去的半个多世纪中,惠普、安捷伦和是德科技不断创新,为业界提供了卓越的阻抗分析产品。无论研发、生产、质控、进货检查或者其他应用,能够帮助客户成功完成任务是我们最大的荣耀。从阻抗分析仪到全面的测试附件,我们将一如既往地为您提供完整解决方案,满足您的需求。选择是德科技阻抗测量解决方案,实现业务成功。是德科技提供: 卓越的产品性能:是德科技产品可提供同类产品中更出 色的精度和可重复性,以及超快的测量速度。表 1 中列出的三种阻抗测量解决方案可满足不同的测量需求。 全面的解决方案:是德科技的阻抗分析仪产品系列可在 从 5 Hz 到 3 GHz 的频率范围内执行测量,使您能在十分广阔的范围内根据测量需求做出更好的选择。本选型指南为您概括 介绍可以选择的所有产品和附件。 适合应用所需的频率范围: 是德科技产品提供出色的性能,而且丰富的频率选件可以经济的价格满足您的需求。您可以选择更适合自身应用的频率范围,也可以灵活选择各种频率升级选件。您可以用少量投资只购买当前所需的性能,而后再根据需求变化进行升级。 专业技术:是德科技在提供阻抗测量解决方案方面拥有几十 年的经验。多年的经验和持续的技术创新已经融入是德科技各种 LCR 表和阻抗分析仪的设计和制造过程当中。是德科技还有大量相关的技术资料,帮助您更加正确高效地完成各种测量任务(这些资料的清单在第 15 页列出)。 应用范围十分广泛的先进测量技术 图 1 是 Keysight LCR 表和阻抗分析仪所使用的不同测试技术的比较,正如您所看到的那样,每一种技术都有其特别的测量优势: –自动平衡桥法的阻抗测量范围最宽,典型的测量频率在 20 Hz 到 120 MHz 之间,这项技术适用于低频和通用测试。 100M 10M 1M 100K 10K 1K 100101100m 10m 1m 是德科技阻抗分析仪/LCR 表测量方法比较 10% 精度范围 1 10 100 1K 10K 100K 1M 10M 100M 1G 10G 测量频率范围(Hz ) 阻抗测量范围(Ω) 自动平衡桥法 I-V RF I-V 图 1. 阻抗分析仪/LCR 表的阻抗测量技术

USB识别及阻抗匹配

USB识别及阻抗匹配 2016/11/22 修改记录: 目录 https://www.360docs.net/doc/5815254602.html,B传送数率......................................................................................................................... https://www.360docs.net/doc/5815254602.html,B接口定义......................................................................................................................... https://www.360docs.net/doc/5815254602.html,B识别................................................................................................................................. 2.1.全速和低速识别...................................................................................................................... 2.2.高速识别.................................................................................................................................. https://www.360docs.net/doc/5815254602.html,B匹配.................................................................................................................................

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.360docs.net/doc/5815254602.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

基于分形技术的阶跃阻抗带通滤波器

第36卷第6期 2014年12月探测与控制学报Journal of Detection &Control Vol .36No .6Dec .2014 一?收稿日期:2014-05-23作者简介:马亮(1987 ),男,陕西西安人,硕士研究生,研究方向:电磁场与微波三E -mail :ml363258006@https://www.360docs.net/doc/5815254602.html, 三基于分形技术的阶跃阻抗带通滤波器 马一亮,王海彬 (机电动态控制重点实验室,陕西西安710065) 摘一要:针对阶跃阻抗带通滤波器由于微带线电流出现不连续性问题,而造成使用经典设计方法设计的滤波器出现较大设计偏差问题,引入分形思想,通过改变阶跃阻抗谐振器形状的方法,使SIR 带通滤波器的实际性能尽 可能接近设计目标,通过对3GHz 基于分形技术的阶跃阻抗带通滤波器进行设计仿真表明,经分形技术优化后的SIR 带通滤波器不仅通带内性能完全符合实际要求,而且保证了对谐波的抑制,同时还能降低加工难度三关键词:阶跃阻抗滤波器;分形技术;谐波抑制 中图分类号:TJ43一一一一文献标志码:A 一一一一文章编号:1008-1194(2014)06-0081-04 A Ste p Im p edance Band p ass Filter of Fractal Technolo gy MA Lian g ,WANG Haibin (Scienceand techuolo gy on electromechanical l y uamic comtnol laborator y ,Xi an 710065,China )Abstract :In view of the lar g e desi g n deviation caused b y the current discontinuit y of ste p im p edance band p ass filter ,the fractal thou g ht was introduced.B y chan g in g the sha p e of ste p im p edance resonance ,the SIR band p ass filter was made as close as p ossible to the actual p erformance of the desi g n g oals based on the 3GHZ ste p im p ed -ance based on fractal band p ass filter desi g n and simulation.Simulation results showed that the o p timized SIR band p ass filter p erformance within the p assband full y met the actual re q uirements ,but also ensured the harmon -ic su pp ression ,besides ,it could reduce the p rocessin g difficult y .Ke y words :ste p im p edance filter ;fractal technolo gy ;harmonic su pp ression 0一引言 由于普通滤波器寄生通带一般出现在主通带的 二倍或三倍的地方,因此不利于抑制高次谐波的输 出三前人利用阶跃阻抗[1]谐振器(简称SIR )构成微波带通滤波器,通过调节耦合段微带线与过渡段微带线的阻抗比,可以使得寄生通带远离主通带整数倍频 率点[2],从而为解决谐波抑制问题提供了有效途径三然而,由于SIR 滤波器要求耦合段与过渡段特性阻抗 有阶跃性变化,微带线宽随之发生突变导致电流出现 不连续性[3],因此经典分析方法设计的SIR 滤波器在 实际应用中会出现较大的设计偏差,使滤波器的电特 性及寄生通带与设计预期不相吻合三针对上述问题, 引入分形思想,通过改变阶跃阻抗谐振器形状的方 法,设计基于分形技术的SIR 带通滤波器三 1一SIR 滤波器结构SIR 是由两个以上具有不同特征阻抗的传输线组合而成的横向电磁场或准横向电磁场模式的谐振器[4],如图1所示 三 图1一SIR 结构Fi g .1一SIR structure

实验四__阻抗测量(归一化阻抗测试实例)

实验四 阻抗测量(归一化阻抗测试实例) 一、实验目的和要求 应用所学的理论知识,学会并掌握利用微波测量线系统测量微波负载阻抗(或导纳)的方法,熟悉阻抗园图应用。 二、实验内容 利用微波测量线系统测量电容性膜片和电感性膜片的阻抗。其中需先测量出驻波比和电压波节点到终端开口处的距离,然后利用阻抗园图求出它们阻抗的归一化值。 三、实验原理 在微波波段内,测量阻抗的方法很多。最常用的方法就是本实验所采用的利用微波测量线系统测量阻抗的方法,基本原理如下: 首先利用微波测量线系统测量(在给定终端负载条件下)沿线驻波比(ρ)及第一电压波节点到终端的距离(1l )。然后利用阻抗园图求出归一化负载阻抗(L Z ~)。 1. 测量驻波比 在实验过程中,可按如下方法估算驻波比。使晶体检波器工作于小信号状态(加大信号源输出的衰减量),测出沿线电压波腹点处对应的选频放大器电流表表头指示的最大值(Imax )及电压波节点处对应的选频放大器电流表表头指示的最小值(Imin ),沿线驻波比可按下式估算: Imin Imax / =ρ 另外本实验使用的YM3892选频放大器,已近似按平方律基本的规律刻度了驻波比,由此也可估算驻波比。具体方法是:先在电压波腹点调选频放大器的衰减旋钮,使其电流表表头指示值达满刻度,然后调节测量线小探针位置旋钮至电压波节点,此时对应的选频放大器电流表指针所指的驻波比刻度值即为晶体按平方律基本时的驻波比的近似值。

应该指出,此方法为视检波晶体按平方律检波时而给出的驻波比的近似值。 2. 测量第一电压波节点到终端的距离 由于受到测量线所开缝隙的限制,小探针无法移到接负载的位置,也即不能直接测量第一电压波节点到终端的距离(1l ),可以采用间接测量法如下。 首先将短路片与测量线终端连接。此时,沿线为驻波状态。终端为电压波节点,并且,由终端向信号源方向沿线每移动半个相波长(2/P )的距离就会出现一个电压波节点。因此,总会有几个电压波节点落在测量线刻度区之内,取测量线中间部分的一个电压波节点作为测量的起点(测量线开缝边缘部分泄漏误差较大),记该点位置(由游标卡尺读出)为Zoa ,该点可视为终端负载的(参考)位置。[ 参见图六(a )] 然后,将被测负载加匹配负载与测量线终端连接。此时,沿线呈行驻波状态。电压波节点在图六(a )的基础上依次向右(负载方向)平移1l 长度[ 参见图六(b )]。测出在负载一侧离Zoa 位置最近的一个(新)电压波节点的位置(记为Zob ),则被测负载加匹配负载时,第一电压波节点到终端的距离求为: Zob Zoa Z -= 由驻波比ρ和d 的值,在阻抗园图上即可求出被测负载的归一化阻抗。 本实验在微波传输系统中插入电感性膜片和电容性膜片。用上述方法测出电感性膜片加匹配负载和电容性膜片加匹配负载的归一化阻抗和阻抗。 Z Z Zob Zoa 0 E 图 (a (b )

阻抗匹配与史密斯(Smith)圆图 基本原理

阻抗匹配与史密斯(Smith)圆图:基本原理 本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的 作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。 另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ?史密斯圆图:本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 图1.阻抗和史密斯圆图基础

电路板关于阻抗匹配

一.阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2、并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播; B 所有的反射都被匹配电阻吸收; C 负载端接受到的信号幅度与源端发送的信号幅度近似相同。 在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。

zview软件拟合电化学阻抗图解

zview软件拟合电化学阻抗图解

————————————————————————————————作者:————————————————————————————————日期:

前些天传了个zview软件,最近又看到很多人在问这个,今天有点时间,干脆简单怎么使用。 1.导入数据 [有人PM我,说看不到图,估计是最近教育网连google不畅之故,因为我的图是上传至google空间的。今天索性把图重新上传至本坛,以消除此问题。另,如果图有错,请pm我] [第二次重新上传部分不能显示图,呵呵,留影,看看还会不会再出错07-07-17] [Last edit by maxwell] 仪器采购指南:电化学工作站电化学配件PH电极 关键词:拟合zview入门交流阻抗谱

相关帖子:【资料】电化学噪声的分析与应用1 支持:15次感谢:10次2006-9-12 19:29:00 1楼:RE:【原创】一步一步叫你用Zview拟合交流阻抗谱(入门篇) maxwell (maxwell) 技术:军士长 财富:温饱 积分:870 经验:130 声望:68 时 长:3510 [个人资料] [给他留言] [帖子合集] [回复] [引用并回复] [维护] 2.数据格式要求: 只要是三列数据,如下图:实部、虚部和频率即可; [Last edit by maxwell]

相关帖子:【讨论】电解池的设计 2006-9-12 19:32:00 2楼:RE:【原创】一步一步叫你用Zview 拟合交流阻抗谱(入门篇) maxwell (maxwell) 技术:军士长 财富:温饱 积分:870 经验:130 声望:68 时 长:3510 [个人资料] [给他留言] [帖子合集] [回复] [引用并回复] [维护] 3.激活数据: [Last edit by maxwell]

阻抗测量

人体阻抗的测量原理 阻抗信号的测量通常借助于置于体表的电极系统,向收件对象注入低于兴奋阈值的恒定交流电流,同时检测相应的电压变化,获得被测组织的阻抗信息。《多路独立人体阻抗测量和信号分析》 一般的生物阻抗信号测量系统包括4个部分:恒定交流电流源,信号拾取,放大及解调部分和阻抗信号分析处理部分。目前常用的检测系统工作过程如下:首先用一对电极把恒流源产生的电流注入被检测的生物组织,同时使用另一对电极拾取在电流激励下被检组织产生的电压、经放大、解调后传送给信号处理部分;信号分析处理的主要任务是提取复合信号中有意义的部分,用于临床诊断和生理参数计算。 根据上述检测方法以及有关生物学原理表明:1)可以认为检测到的电压信号与恒流源注入交流信号频率相同,,其峰值包络维阻抗信号的描记; 图1 皮肤的结构 1.皮肤阻抗的特性及其物理机制 皮肤的结构示意图( 图 1 ) 中, 皮肤的最外层是表皮 , 包括角质层, 其中有汗腺孔 , 下面是真皮及皮下组织, 其中有大量血管。由于真皮及皮下组织导电性较好, 可模拟为纯电阻 R 。皮肤的阻抗大小主要取决于角质层, 角质层相当于一层很薄的绝缘膜 , 类似于电容器的中间介质, 真皮和电极片类似于电容器的两个极板, 如图 1 所示。由于汗腺孔里有少量离子通过, 所以我们把表皮模拟为漏电的电容器。其表皮的阻抗可看成纯电容 C 和纯电阻R ’的并联 , 其表皮阻抗大小可用公式: 计算得之, 其中2f ωπ=。表皮下面的真皮和皮下组织电阻不太高, 其电性能象纯电阻R , 故皮肤阻抗电路模拟为图 2,从上面公式和图2中, 以显示出皮肤阻抗实质上具有容性阻抗的特性, 其皮肤阻抗大小随电流频率 f 增大而减小。

谈谈阻抗匹配的理解

谈谈阻抗匹配的理解 xfire 高频高速PCB设计围观198次一条评论编辑日期:2015-05-24 字体:大中小 阻抗匹配(impedance matching)信号源内阻与所接传输线的特性阻抗大小相等且相位相同,或传输线的特性阻抗与所接负载阻抗的大小相等且相位相同,分别称为传输线的输入端或输出端处于阻抗匹配状态,简称为阻抗匹配。否则,便称为阻抗失配。有时也直接叫做匹配或失配。 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R 越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。

相关文档
最新文档