(整理)电阻炉温度控制系统1
基于单片机的电阻炉温度控制系统设计
基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
电阻炉温度控制系统ppt
LED数码管显示程序设计
对多个八段LED数码管的接口方法主要有两 种:动态驱动法和静态驱动法。本文的LED 数码管显示采用串口静态显示 。这种பைடு நூலகம்法 用于显示位数较少,显示亮度较大的地方 效果较好 。
键盘程序设计
电阻炉温度控制系统
学院:科技学院 班级:06电科 姓名:李宇 指导老师:王继红
本文用8031单片机实现电阻炉温度的控制。 电阻炉是一类使用非常广泛的工业设备, 利用单片机实现温度的实时控制,对提高 劳动生产率和产品质量,节约能源都有着 积极意义。随着电子技术的发展,特别是 单片机计算机的出现,对被控制对象采用 功能强、体积小、价格低的智能化温度控 制装置进行控制成为现实。本文将介绍用 单片机对热水电阻炉进行温度控制的过程。
电阻炉温度控制系统原理框图
在温度控制系统中,温度检测及放大任务 通常用温度变送器来完成。为了降低成本, 简化结构,本系统采用了 OP07型温度变送 器的输入回路部份 ,本控制系统输入通道用 测温电路和精密放大器,省去可采样保持 器;输出通道取消了D/A转换器,执行机构 选用了可控硅控制器。从而使整个控制系 统结构简单,操作方便,控制精度高,具 有很高的性价比 .
主程序设计
整个系统包括管理程序和控制程序两部分, 管理程序是对显示LED进行动态刷新,处理 键盘的扫描和响应、进行掉电保护的处理、 执行中断服务操作等。控制程序是对被控 对象进行采样、数据处理,根据控制算法 进行计算和输出等。
上限报警处理程序设计
本文采用音乐声报警。单频音报警单路, 简单实用,已能满足音响报警的一般需要。 不足之处在于音调单一,而且采用压电鸣 音元件,音量也较小,且不可调整。
8031芯片介绍
8031是由8个部件组成,即CPU,时钟电路, 数据存储器,并行口(P0~P3)串行口, 定时计数器和中断系统。 8031有五个中断源,即外部中断两个,定 时计数中断两个,串行中断一个,全部的 中断分为高和低的两个输出级 .
电阻炉温度控制系统
电阻炉温度控制系统一、 系统总体描述电阻炉温度控制系统包括单回路温度控制系统和双回路温度控制系统,单回路电阻炉温度控制系统的实物如图1所示,主要由计算机,采集板卡,控制箱,加热炉体组成。
由计算机和采集板卡完成温度采集,控制算法计算,输出控制,监控画面等主要功能。
控制箱装有温度显示与变送仪表、控制执行机构、控制量显示、手控电路等。
加温炉体由民用烤箱改装,较为美观,适合实验室应用。
单回路电阻炉温度控制系统主要性能指标如下:(1)计算机采集控制板卡PCI-1711:A/D 12位 输入电压 0 - 5vD/A 12位 输出电压 0 - 5v(2)控制及加热箱: 控制电压 0 ~ 220V控制温度 20~250 ℃测温元件 PT-100热电阻(输出:直流0~5V ,或4~20mA )执行元件 固态继电器(输入:直流0~5V ,输出:交流0~220V )单回路温度控制系统是一个典型的计算机控制系统,其硬件结构如图2所示:图2电阻炉温度控制系统硬件结构图图1电阻炉温度控制系统二、硬件系统设计系统的硬件设计包括传感器、执行器、A/D 和D/A 的设计,而PCI 总线接口属于计算机的系统总线,下面分别加以详细介绍。
1、传感器设计温度传感器有热电阻和热电偶,热电阻最大的特点是工作在中低温区,性能稳定,测量精度高。
系统中电炉的温度被控制在0~250℃之间,为了留有余地,我们要将温度的范围选在0~400℃,它为中低温区,所以本系统选用的是热电阻PT100作为温度检测元件,实物如图3所示。
热电阻中集成了温度变送器,将热电阻信号转换为0~5V 的标准电压信号或4~20mA 的标准电流信号输出,供计算机系统进行数据采集。
热电阻传感器是利用电阻随温度变化的特性制成的温度传感器。
热电阻传感器按其制造材料来分,可分为金属热电阻和半导体热电阻两大类;按其结构来分,有普通型热电阻、铠装热电阻和薄膜热电阻;按其用途来分,有工业用热电阻、精密的和标准的热电阻。
电阻炉温度控制系统的设计
电阻炉温度控制系统的设计在许多工业生产过程中,电阻炉被广泛应用于各种材料的加热和熔炼。
为了确保产品质量和工艺稳定性,电阻炉温度控制系统应满足以下需求:控制精度高:温度波动范围应在±1℃以内,以确保工艺稳定性和产品的一致性。
响应时间快:系统应能迅速跟踪设定温度,减小加热过程的时间误差,提高生产效率。
安全可靠:系统应具备过载保护、短路保护、过热保护等安全措施,确保设备和人身安全。
可扩展性:系统应便于扩展和升级,以适应不同工艺需求和技术发展。
电阻炉温度控制系统的电路设计是整个系统的核心部分。
加热器功率控制、温度传感器选择和电路保护等关键环节直接关系到系统的性能和稳定性。
以下是电路设计的重点:加热器功率控制:一般采用PID控制器来实现加热器功率的调节。
PID 控制器可以根据温度误差来自动调节加热器的功率,减小温度波动。
温度传感器选择:常用的温度传感器有热电偶和红外测温仪。
选择合适的传感器对提高系统的测量精度至关重要。
电路保护:为防止系统故障对设备和人身造成伤害,电路应设计多种保护措施。
例如,加热器应配备熔断器、过载保护器和短路保护器等。
电阻炉温度控制系统的软件设计是实现整个系统智能化的关键。
软件应包括输入输出端口设置、算法实现等关键模块。
以下是软件设计的要点:输入输出端口设置:软件应设置必要的输入输出端口,以便于用户对系统进行控制和监视。
例如,软件应支持通过界面设置加热器的启动/停止、温度设定值等。
算法实现:系统软件应实现高效的温度控制算法,如PID控制算法,以实现精确的温度控制。
算法应具有自适应性,能够根据环境条件和材料属性等变化进行自我调整,提高控制效果。
在完成电阻炉温度控制系统的设计和调试后,需要对系统进行严格的测试与结果验证,以确保系统的性能和稳定性达到预期要求。
测试应包括以下步骤:测试环境搭建:搭建测试平台,选择合适的电阻炉、温度传感器、控制系统等设备进行联调测试。
空载测试:在无负载的情况下,测试系统的加热速度、稳定性和精度等指标。
电阻炉炉温自动控制系统
电阻炉以电为热源,通过电热元件将能转化为热能,在炉内对金属进行加热。电阻炉和火焰比,热效率高,可达50%-80%,热工制度容易控制,劳动条件好,炉体寿命长,炉温均匀,适用于要求较严的工件加热。电阻炉的功率是根据电阻炉的热平衡原则确定的,通过热平衡计算,可以比较精确的计算出电炉的功率。电炉所需的功率应包括炉子蓄热,工件加热需要热量、工件保温需要的热量、气氛裂解所需的热量,热损失等。其中炉子蓄热由电炉的规格、构造和主要尺寸、炉衬厚度,材料导热系数决定。电阻炉是热处理生产中应用最广的加热设备,通过不知在炉内的加热元件将电能转化为热能并记住辐射与对流的传热方式加热工件。
电阻炉温度控制系统
电阻炉温度控制系统1. 确定总体方案在某煤气/焦碳生产企业中,为了把握工艺规律和控制参数,按比例制作了一台模拟炼焦炉,其中的煤炭采用电阻丝进行加热。
要求控制电阻炉中A点的温度按预定的规律变化,同时监测B点的温度,一旦B点温度超过允许值,就应该发出报警信息、并停止加热。
根据设计任务的要求,采用8031单片机系统组成的数字控制器代替常规模拟调节器。
整个系统在规定的采样时刻经过A/D转换采集由温度传感器反馈回来的温度反馈测量值,并和给定值进行比较,将经过控制运算后的控制量输出给执行元件控制电阻丝的加热过程。
此外,系统还应实现人机接口功能。
系统总体框图如图1所示。
图1 模拟炼焦炉温度控制系统总体框图2. 系统硬件设计按前面的总体设计方案,该系统硬件的设计包括以下几个部分。
⑴人机接口电路本系统允许用户根据需要随时改变系统的工作状态和控制参数,为此设置了4位LED显示和相应的操作键盘,并由专用控制芯片8279实现与CPU的接口。
采用8279后,可以节省CPU用于查询键盘输入和管理显示输出的时间,降低了对CPU处理速度的要求,同时也减少了软件工作量。
⑵温度测量电路热电偶用来检测炉温,将温度值转换为毫伏级的电压信号。
为便于信号远距离传送,采用温度变送器,把热电偶输出信号转换为4~20毫安的电流信号,在接收端再经I/V变换使之变成适于A/D转换的电压信号。
在系统中,采用多路复用方式对两路热电偶信号、冷端补偿信号和标准电压信号进行A/D转换。
系统运行过程中,定期对标准电压进行采样,以修正A/D转换器的灵敏度、保证测控精度。
为提高系统抗干扰能力,在多路转换开关的控制电路A/D转换电路的数字部分中还采用了光电隔离措施。
⑶温度控制电路电阻丝由过零触发型的双向可控硅整流电路驱动,通过调节加热阻丝上的平均电压来控制加热功率,最终达到控制炉温的目的,其原理见图2。
MOC3021是可控硅型光电隔离器件,它只能触发小功率可控硅。
因此,本系统中通过MOC3021控制双向可控硅BCR1,再由BCR1控制主电路的双向可控硅BCR2。
浅析工业电阻炉温度控制系统
关键词: 电阻炉 温度控制系统 PD I 调节器的参数整定 单元组合仪表 中图分类号 :H 6 T 8 文献标识码 : A 文章编号 :0 7 9 1 (0 10—0 0- 2 1 0 — 4 62 1)3 0 9 0
尽管 科学 在 日新 月异 的 飞 速发 展 , 控制 原 、 副线圈虽不相连 , 电能 却可 以通过磁场 例关系, 用微分方程形式表示为 : △Y= KP £ 手 段也 在不 断 的 向前 进 步 , 能化 、 成度 、 从原线圈到达副线圈。 智 集 开 放 性 、 靠 度 越来 越 高 , 可 目前 常 用 的控 制
』t : 窨 EA dy
l 1
为统一标准 电流信号4 2 mA) — 0 其输出信号 具 有 如 下特 点 :1测量 精度 高 : 电偶 与被 () 热
式中 , 为积分 时间 ; 为积分速度 。
去控 制 执行 机构 的 动作 , 机 构 的动 作改 测对象直接接触 , 执行 不受 中问介质的影响。 ) 显 然 , ( 2 斜率 与 调 节 器 积 分速 度 成 正 比 的 变变 压器 的供 电 电压 , 而实 现 了对 电阻炉 热 响 应 时 间快 : 电偶 对 温 度 变 化 反 应 灵 从 热 直 线 是 积分 过 程 的 描 述 。 线 越 陡 , 直 表示 积 温度 的控 制 。 敏 。 ) 范 围 大 : 电偶从 一 旷+ 10  ̄ ( 测量 3 热 4 60 C 分速 度 越快 , 分 作用 越强 。 积 1 2 各设 备 的 工作 原 理 及 其用 途 均 可连 续 测 温 。 ) 能 可 靠 , 机械 强 度 好 。 . (性 4 2 13微 分 () 制规 律 .. D控 电阻 炉 ; 控对 象 电阻炉 是实 验 室所 用 使用 寿命 长 , 装 方便 。 被 安 具 有 微 分 控 制 规 律 的调 节器 其 输 出信 的 管 式 电 阻炉 , 种 电 阻炉 供 实 验 室 、 矿 该 工 号 的 变 化量 △Y与偏 差 信 号 £ 变 化 速 度 的 企业 、 单 位进 行化 学 分 析 、 理 测定 、 科研 物 加 2 PD调节 器及 其参 数的 整定 .I 成 正 比 , 分方 程 形式表 示 可 为 : 用微 热时 使用 。 在 实 际工 业 生 产 应用 中, 调节 器 是 构成 变 压 器 ; 压 器 是 改 变 交 流 电压 的 设 变
课程设计—电阻炉炉温控制系统
电阻炉炉温控制系统设计1课程设计规定1.1 课题内容应用计算机旳实时监控和温度测量技术,采用单片机、温度检测电路、温度控制电路等,采用比例环反馈、数字PID闭环调整两种方式实现电阻炉炉温旳实时监控。
1.2 规定和技术指标用单片机和对应旳构成部件构成电阻炉温旳自动控制系统,规定测温范围0~100℃,使其控制系统控制旳温度保温值旳变化范围为30~60℃。
规定:(1)完毕电阻炉温度控制系统设计,包括硬件电路设计和软件程序设计;(2)采用LED实时显示控温时旳实际炉温和设定炉温,如将炉温加热并控制在60℃;当炉温工作至设定温度时,蜂鸣器每2秒报警一次,绿色LED灯常亮。
当炉温超过设定温度5℃,过温保护电路动作,蜂鸣器常鸣,红色LED常亮。
(3)对其主电路和控制电路设计对应旳保护电路,使其安全可靠地工作。
(4)具有防干烧功能。
(5)具有定期功能,设定一段时间自动加温,如1分钟。
1.3 元器件清单另有剪刀、镊子等工具表1.1 元器件清单2电路设计2.1 总体设计方案基本方案:运用温度变送器和温度检测电路将电阻炉实际温度转换成对应旳数字信号,送入单片机,进行数据处理后,通过显示屏显示温度,并判断与否报警,同步将实际炉温与设定温度比较,根据对应旳算法(如PID)计算出控制量,通过控制对应旳加热电路实现对炉温旳控制。
本系统采用STC89C52作为系统旳主控芯片,负责加热炉旳温度检测与控制。
其重要任务是:1、读取DS18B20旳温度数据;2、控制继电器通断,保证温度到达设定值并保温;3、读取键盘设置旳温度值;4、在LED上显示设置旳温度、目前温度以和恒温时间;5、当温度抵达警戒值旳时候控制蜂鸣器报警。
图2.1 总体构造图由于加热炉仅能通过通断电路控制,不具有良好旳可控性,且加热所需旳速度和精度规定并不高,这里无需使用PID算法这样旳高速跟踪算法,只要使用二次线性化旳措施控制,就可以很好地实现炉子旳加热和恒温控制了。
电阻炉温度温度控制系统说明书
一.概述温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。
例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等;控制方案有直接数字控制(DDC),推断控制,预测控制,模糊控制(Fuzzy),专家控制(Expert Control),鲁棒控制(Robust Control),推理控制等。
本设计的控制对象为一电加热炉,输入为加在电阻丝两断的电压,输出为电加热炉内的温度。
输入和输出的传递函数为:G(s)=2/(s(s+1))。
控温范围为100~500℃,所采用的控制方案为直接数字控制(DDC)中的最少拍控制。
二.温度控制系统的组成框图采用典型的反馈式温度控制系统,组成部分见下图。
其中数字控制器的功能由微型机算机实现。
三.温度控制系统结构图及总述图中由4~20mA变送器,I/V,A/D转换器构成输入通道,用于采集炉内的温度信号。
其中,变送器选用XTR101,它将热电偶信号(温度信号)变为4~20mA电流输出,再由高精密电流/电压变换器RCV420将4~20mA电流信号变为0~5V标准电压信号,以供A/D转换用。
转换后的数字量与与炉温的给定值数字化后进行比较,即可得到实际炉温和给定炉温的偏差。
炉温的设定值由键盘输入。
由微型计算机构成的数字控制器按最小拍进行运算,计算出所需要的控制量。
数字控制器的输出经标度变换后送给8253,由8253定时计数器转变为高低电平的不同持续时间,送至SCR触发电路,触发晶闸管并改变其导通角大小,从而控制电加热炉的加热电压,起到调温的作用。
四.温度控制系统硬件与其详细功能介绍1.微型计算机的选择选择8086微处理器构成炉温控制系统,使其工作于最小方式下。
并配备以8284A ——时钟发生器,8282——带三态缓冲器的通用8位地址锁存器,8286——具有三态输出的8位双极型总线收发器。
计算机控制技术课程设计之电阻炉温度控制系统
摘要随着科学技术的迅猛发展,各个领域对温度控制系统的精度、稳定性等要求越来越高,控制系统也千变万化。
电阻炉广泛应用于各行各业,其温度控制通常采用模拟或数字调节仪表进行调节,但存在着某些固有的缺点。
而采用单片机进行炉温控制,可大大地提高控制质量和自动化水平,具有良好的经济效益和推广价值。
本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。
关键字:电阻炉89C51单片机温度控制A/D转换电阻炉温度控制系统1系统的描述与分析1.1系统的介绍该系统的被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。
可控硅控制器输入为0~5伏时对应电炉温度0~500℃,温度传感器测量值对应也为0~5伏,对象的特性为带有纯滞后环节的一阶惯性系统,这里惯性时间常数取T1=30秒,滞后时间常数取τ=10秒。
该系统利用单片机可以方便地实现对PID参数的选择与设定,实现工业过程中PID控制。
它采用温度传感器热电偶将检测到的实际炉温进行A/D转换,再送入计算机中,与设定值进行比较,得出偏差。
对此偏差按PID规律进行调整,得出对应的控制量来控制驱动电路,调节电炉的加热功率,从而实现对炉温的控制。
利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID控制和键盘终端处理(各参数数值的修正)与显示。
在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长,否则会使干扰无法与时消除,使调节品质下降。
1.2技术指标设计一个基于闭环直接数字控制算法的电阻炉温度控制系统具体化技术指标如下:1.电阻炉温度控制在0~500℃;2. 加热过程中恒温控制,误差为±2℃;3. LED实时显示系统温度,用键盘输入温度,精度为1℃;4. 采用直接数字控制算法,要求误差小,平稳性好;2方案的比较和确定方案一系统采用8031作为系统的微处理器。
基于plc电阻炉温度控制系统
基于PLC电阻炉温度控制系统简介基于PLC的电阻炉温度控制系统是一种自动化控制系统,用于对电阻炉的温度进行精确控制。
该系统利用PLC(可编程逻辑控制器)作为控制核心,通过传感器实时采集电阻炉的温度数据,并根据设定的控制策略调整电阻炉的工作状态,以保持温度在目标范围内。
系统组成基于PLC的电阻炉温度控制系统主要由以下组件组成:1.电阻炉:作为温度控制的对象,通过加热元件对物体进行加热,同时配备温度传感器用于实时监测温度。
2.PLC:作为控制核心,负责采集传感器数据、执行控制策略,并向电阻炉发送控制信号。
3.温度传感器:用于实时监测电阻炉的温度变化,将温度数据传输给PLC。
4.控制面板:提供用户界面,用户可以通过控制面板设定温度参数,监测实时温度变化,并进行控制策略的调整。
5.人机界面:用于与系统进行交互,包括触摸屏、键盘、指示灯等。
工作原理基于PLC的电阻炉温度控制系统的工作原理如下:1.传感器实时采集电阻炉的温度数据,并将数据传输给PLC。
2.PLC根据设定的控制策略对温度数据进行处理,判断温度是否在目标范围内。
3.如果温度超出目标范围,PLC会根据控制策略调整电阻炉的工作状态,以使温度回到目标范围内。
4.控制面板提供用户界面,用户可以通过控制面板设定温度参数,改变控制策略。
5.人机界面用于与系统进行交互,用户可以通过触摸屏、键盘等方式设定温度参数、监测实时温度变化,并进行控制策略的调整。
优势和应用基于PLC的电阻炉温度控制系统具有以下优势:1.精确控制:通过PLC的高精度数据处理和控制算法,能够实现对电阻炉温度的精确控制,提高生产效率和产品质量。
2.自动化:系统能够实现自动控制和自动调节,减少人工干预,提高生产效率。
3.可编程性:PLC具有可编程性,可以根据不同的需求进行程序设计,以适应不同的生产过程和温度控制要求。
基于PLC的电阻炉温度控制系统广泛应用于各个行业,包括冶金、化工、电子等领域。
电阻炉炉温自动控制系统
目录1概述: (2)1.1设计目的 (2)1.2设计内容、步骤及要点 (2)2详细设计说明 (3)2.1硬件设计与调试 (3)3对该系统的进一步设想 (9)3.1定时加热 (9)3.2远程控制 (9)3.3不同时间设置不同温度 (9)4课程设计总结 (10)5软件使用说明 (10)6附录(参考文献,原代码:) (10)参考文献: (10)原代码: (10)1 概述:1.1设计目的本课程的实训实际上是学生学习完《微机控制系统原理与应用》课程后,进行的一次全面的综合训练,其目的在于加深对计算机控制技术理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计和撰写设计说明书的能力。
1.2设计内容、步骤及要点用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。
1. 课程设计内容:(1)设计内容及要求电加热炉用电炉丝提供功率,使其将炉内温度稳定到给定的温度值。
在本控制对象电阻加热炉(或电水壶)功率为1KW,有220V交流电源供电,采用双向可控硅进行控制。
(2)工艺要求按照规定的曲线进行升温和降温,温度控制范围为0—75℃,升温和降温阶段的温度控制精度为+1℃,保温阶段温度控制精度为+1℃。
(3)要求实现的系统基本功能微机自动调节:正常工况下,系统投入自动。
模拟手动操作:当系统发生异常,投入手动控制。
微机监控功能:显示当前被控量的设定值、实际值,控制量的输出值,参数报警时有灯光报警。
本课程设计包含两大部分内容:设计报告和设计软硬件。
其中设计软硬件在题目验收时由指导教师检查,设计报告作为书面材料提交。
设计报告的主要内容有:A、硬件设计模拟量输入通道:单端对地输入;输入电压信号量程为0~5VDC;输出码制为单极性二进制码。
模拟量输出通道:采用电流输出方式。
选择主电路器件并设计主电路。
温度传感器的选择与安装。
B、软件设计设计数据采集程序;数据滤波程序;标度变换程序;控制计算程序(PID控制);控制输出程序(限幅输出);要求有参数(给定值、采样周期、PID参数)设定和修改功能;实时显示控制回路的给定值、测量参数、控制量。
电阻炉温度控制系统设计
Alpha
第1章 绪论
1.
通过本次实训使学生将课本中所学的专业知识应用于设计实践,以巩固课堂学的专业知识,为今后的毕业设计打下良好的基础。
This time we design theme design is a design based on the temperature control system of resistance furnace computer control system algorithm, required through the MCU control of resistance furnace temperature, through the keyboard input LED display numerical control the temperature exceeds the set temperature, the time can send out the alarm, and because the use of direct digital control algorithm, the error is small, better stability.
由数据采集、信号放大、模数转换等模块构成。设计是通过温度传感器将温度信号转变为电流(电压)信号,我们知道经温度变化引起电流(电压)信号的改变是非常小的,此时如果被模数转换器采集的话效果不是很明显的,因此我们将其通过一个信号放大模块进行放大。再通过模数转换器后送入单片机AT89C51,而单片机通过PID算法控制电炉加热,使数码管显示实时温度,实现温度的精度控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要温度控制是工业对象中主要的控制参数之一,其控制系统本身的动态特性属于一阶纯滞后环节,象冶金、机械、食品、化工各类工业中,广泛使用的各种加热炉、热处理炉、反应炉等,对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。
以8031单片机为核心,采用温度变送器桥路和固态继电器控温电路,实现对电炉温度的自动控制。
该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。
电阻炉炉温控制系统的控制过程是:单片机定时对炉温进行检测,经A/D 转换芯片得到相应的数字量,经过计算机进行数据转换,得到应有的控制量,去控制加热功率,从而实现对温度的控制。
关键词:电炉温度控制系统 ADC0809AD转换器目录1 控制方案总述 (1)2 硬件电路设计 (2)2.1 温度检测和变送器部分 (3)2.2 接口电路 (3)2.2.1 主要特性 (3)2.2.2 内部结构 (4)2.2.3 外部特性(引脚功能) (4)2.3 接口电路 (6)3 软件设计 (7)3.1 主程序 (8)3.2 T0中断服务程序 (9)3.3 子程序 (11)3.3.1采样子程序SAMP (11)3.3.2 数字滤波子程序FILTER (12)3.3.3积分分离PID控制算法的程序设计 (13)4 基于MATLAB仿真被控对象 (14)5 结果分析 (16)设计小结 (18)参考文献 (19)附录 (20)温度控制系统设计1 控制方案总述随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,特别是微型计算机的出现使现代的科学研究得到了质的飞跃,利用单片机来改造落后的设备具有性价比高、提高设备的使用寿命、提高设备的自动化程度的特点。
本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。
这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。
采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。
为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。
采用AT80C51为核心,结合温度传感器热电偶和AD转换器来监测被控温度数据,并把数据传递给单片机同时显示实时数据。
同时键盘会给与要求的控制温度大小供单片机把其和测量温度进行比较处理,从而控制执行系统的开关量的通断状态,达到温度检测、赋值和控制的作用。
其系统结构框图如图1所示:2 硬件电路设计硬件电路如图2所示:图2 硬件电路图现对各部分电路分述如下:2.1 温度检测和变送器部分温度计的检测元件和变送器的类型选择与被控温度及进度等级有关。
镍鉻/镍铝热电偶适用于0~1000摄氏度的温度测量范围,相应输出电压为0~41.32mV。
变送器由毫伏变送器和电流/电压变送器组成:毫伏变送器用于把热电偶输出的0~41.32mV变换成0~10mA范围内的电流;电流/电压变送器用于把毫伏变送器输出的0~10mA电流变换成0~5V范围内的电压。
为了提高测量精度,变送器可以进行零点迁移。
例如,若温度测量范围为0~300摄氏度,则热电偶输出为0~12.396mV,毫伏变送器零点迁移后输出0~10mA范围的电流。
这样,采用8位A/D转换器就可以量化温度误差达到正负2.34摄氏度以内。
2.2 接口电路8031的接口电路有8155、2732和ADC0809等芯片。
8155用于键盘LED 显示器接口,2372可以作为8031的外部ROM存储器,ADC0809为温度测量电路的输入接口。
ADC0809是采样频率为8位的、以逐次逼近原理进行模——数转换的器件。
其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。
2.2.1 主要特性1)8路8位A/D转换器,即分辨率8位。
2)具有转换起停控制端。
3)转换时间为100μs4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。
6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。
2.2.2 内部结构ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A 转换器、逐次逼近。
2.2.3 外部特性(引脚功能)ADC0809芯片有28条引脚,采用双列直插式封装,如图3所示。
图3 ADC0809引脚图下面说明各引脚功能。
IN0~IN7:8路模拟量输入端。
2-1~2-8:8位数字量输出端。
ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。
START: A/D转换启动信号,输入,高电平有效。
EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。
OE:数据输出允许信号,输入,高电平有效。
当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。
CLK:时钟脉冲输入端。
要求时钟频率不高于640KHZ。
REF(+)、REF(-):基准电压。
Vcc:电源,单一+5V。
GND:地。
ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。
此地址经译码选通8路模拟输入之一到比较器。
START上升沿将逐次逼近寄存器复位。
下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。
直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。
当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。
8155有40条引脚,如图4所示。
图4 8155引脚图下面说明各引脚功能:AD0~AD7:三态地址/数据线。
是低8位地址与数据复用线。
地址可以是8155片内RAM单元地址或I/O端口地址。
AD0~AD7上的地址由ALE的下降沿素存到8155片内地址锁存器。
也就是由AIE信号来区别AD0~AD7上出现的地址信息还是数据信息。
ALE:地址锁存允许信号。
在ALE信号的下降沿把ADO~AD7上的8位地址信息,CE片选信号及IO/M信号都锁存到8155内部存储器中。
IO/M:I/O端口和RAM选择信号。
当IO/M=1时,AD0~AD7的地址位8155I/O 端口地址,选择I/O端口。
当IO/M=0时,AD0~AD7的地址位8155片内RAM 单元地址,选择RAM存储单元。
CE:片选信号。
低电平有效。
由ALE信号的下降沿锁存到8155内部存储器。
RD:读选通信号。
低电平有效。
当RD=0,CE=0时开启AD0~AD7的缓冲器,被选中的片内RAM单元或IO口的内容送到AD0~AD7上。
WR:写选通信号。
低电平有效,当CE,WR都有效时,CPU输出到AD0~AD7上的信息想偶尔到8155片内PAM单元或I/O端口。
PA0~PA7:A口的I/O线。
PB0~PB7:B口的I/O线。
PC0~PC5:C口的I/O线。
TMRIN:定时器输入。
TMROUT:定时器输出。
2.3 接口电路8031对温度的控制是通过可控硅调功器电路实现的,如硬件电路图(图2)所示。
双向可控硅管和加热丝串接在交流220V,50Hz交流电回路中。
在给定周期T内,8031只要改变可控硅的接通时间便可改变加热丝的功率,以达到调节温度的目的。
如下图所示,可控硅在给定周期T内具有不同接通时间的情况。
显然,可控硅在给定周期T的100%时间内接通时的功率最大。
可控硅接通时间可以通过可控硅控制极上的触发脉冲控制。
该触发脉冲由8031用软件在P1.3引脚上产生,经过零同步脉冲同步后经光耦管和驱动器输出送到可控硅的控制极上。
可控硅调功器输出功率与通断时间的关系如图5所示。
图5 可控硅调功器输出功率与通断时间的关系3 软件设计温度控制程序的设计应考虑如下问题:1.键盘扫描、键码识别和温度显示;2.炉温采样,数字滤波;3.数据处理时把所有数按定点纯小数补码形式转换,然后把8位温度采样值Umin和Umax都变成16位参加运算,运算结果取8位有效值;4.越限报警和处理;5.PID计算,温度标度转换。
通常,符合上述功能的温度控制程序由主程序和T0中断服务程序组成。
3.1 主程序主程序应包括8051本身的初始化、8155初始化等。
流程图如6所示。
图6 主程序流程图3.2 T0中断服务程序T0中断服务程序时温度控制系统的主体程序,用于启动A/D转换、读入采样数据、数字滤波、越限温度报警和越限处理、PID计算和输出可控硅的同步触发脉冲等。
P1.3引脚上输出的该同步脉冲宽度由T1计数器的溢出中断控制,8051利用等待T1溢出中断空隙时间完成把本次采样值转换成显示值并放入显示缓冲区和调用温度显示程序。
8051从T1中断服务程序返回后便可恢复现场并返回主程序,以等待下次T0中断。
流程图如图7所示。
图7 T0中断服务流程图3.3 子程序3.3.1采样子程序SAMP采样子程序流程图如图8所示。
图8 采样子程序流程图3.3.2 数字滤波子程序FILTER数字滤波子程序用于滤去来自控制现场对采样值的干扰。
流程图如图9所示。
图9 数字滤波子程序流程图3.3.3积分分离PID 控制算法的程序设计PID 算法的表达式为:])()(1)([)(0⎰++=tDIp dt t de T dt t e T t e K t u式中u(t):调节器的输出信号;e (t):偏差信号;pK :调节器的比例系数;TI :调节器的积分时间; TD :调节器的微分时间。
在计算机控制中,为实现数字控制,必须对上式进行离散化处理。
用数字形式的差分方程代替连续系统的微分方程。
设系统的采样周期为T ,在t=kT 时刻进行采样,∑⎰=≈ki ti Te dt t e 0)()(T k e k e dt de )1)()t (--≈(式中e(k):根据本次采样值所得到的偏差; e (k-1):由上次采样所得到的偏差。
将上面的三个式子代入,则有T 1k e k e k i e k e K ]T1k e k e T i e T Tk e [K k u dk 0i p k0i Ip )()()()()()()()()(--++=--++=∑∑==i D k β式中,T 为采样时间,β项为积分项的开关系数βββ>≤ ⎝⎛=)()(01k e k e积分分离PID 控制算法程序流程图如图10所示。